Zeitschrift fiir Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 24 (2005), No. 1, 117-135

Asymptotic Behavior of Discontinuous Solutions
to Thermoelastic Systems with Second Sound

Reinhard Racke and Ya-Guang Wang

Abstract. We consider the Cauchy problem for linear and semilinear thermoelastic
systems with second sound in one space dimension with discontinuous initial data.
Due to Cattaneo’s law, replacing Fourier’s law for heat conduction, the system is
strictly hyperbolic. We investigate the behavior of discontinuous solutions as the
relaxation parameter tends to zero, which corresponds to a formal convergence of
the system to the hyperbolic-parabolic type of classical thermoelasticity. We obtain
that the jump of the temperature goes to zero while the jumps of the gradient of
the displacement and the spatial derivative of the temperature are propagated along
the characteristic curves of the elastic fields when the relaxation parameter vanishes.
Moreover, when certain growth conditions are imposed on the nonlinear functions,
we deduce that these jumps decay exponentially when the time goes to infinity, more
rapidly for small heat conduction coefficient.
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1. Introduction

We consider the semilinear system of thermoelasticity of second sound

Uy — Uy + B30, = fu, uy, g, 0)
Or + vqp + Oure = g(u, uy, uy, 0)
T +q+ kKb, = 0

in (0,00) x R, with initial conditions

u(0,z) = up(x), w(0,2) =wui(x), 0(0,2)=0(z), q¢0,z)=qy(z) (1.4)
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which may have jumps at x = 0. Here u, 6, g represent the elastic displacement,
the temperature difference and the heat flux, respectively, and are functions of
(t,z) € (0,00) x R. Moreover, «, 3,7, 9, T, k are positive constants, cp. [2, 7].
Equation (1.3) is Cattaneo’s law for heat conduction and turns, as 7 — 0, into
Fourier’s law

q+ kb0, =0. (1.5)

The system (1.1), (1.2), (1.5) is the hyperbolic-parabolic system of classical
thermoelasticity, cp. [5], while we shall study (1.1) — (1.3), which is a strictly
hyperbolic system.

Some results on the existence and large time behavior of smooth solutions
to system of thermoelasticity of second sound in one space dimension or high
space dimensions have been obtained in [7, 8, 11]. There is some literature
devoted to the study of the propagation of weak singularities of solutions to the
hyperbolic-parabolic system of classical thermoelasticity, and it is observed that
the weak singularities will be propagated mainly by the hyperbolic characteristic
fields while the parabolic impact exists, cp. [6, 9, 12, 13] and references therein.
The question how to describe the behavior of discontinuous solutions to the
hyperbolic-parabolic system of thermoelasticity is open. The purpose of the
present work is to study this problem by investigating the asymptotic behavior
of these jumps as 7 — 0, thus obtaining interesting information about the
relation between classical thermoelasticity (7 = 0) and the system considered
here.

Assuming that vy € W (R), (u,6o,q) € L>®(R), and uy,us, 6y, go have
jumps at z = 0, we know there exists a unique local solution (u,0,q) to the
semilinear hyperbolic problem (1.1) — (1.4), and it exists globally in time when
certain growth conditions are imposed on nonlinear functions f and g, moreover
the discontinuities of the initial data will be propagated along the characteristics
of the system (1.1) — (1.3) by using the classical theory of hyperbolic equations
([1, 10]). In this paper, we obtain that the jump of € goes to zero while the jumps
of Vi ,u and 0,0 are propagated along the characteristic curves {z £ at = 0}
when 7 — 0, which shows a regularizing effect of the parabolic operator for
the limit. Moreover, when f and g are independent of (uy,u,) or have certain
growth restriction with respect to (u;, u,) (see Theorem 4.1 for details.), one
deduces that the jumps of V;,u on {z & at = 0} decay exponentially when
t — oo, more rapidly for small heat conduction coefficient, which is similar to
the phenomenon observed by Hoff ([4]) for the discontinuous solutions to the
compressible Navier-Stokes equations. For simplicity of the presentation, we
shall study the system (1.1) — (1.3) only for the constant coefficient case, but
it is not difficult to see that our all discussion can be extended to the case of
variable coefficients.

The remainder of the paper is arranged as follows: In Section 2 we shall
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study the homogeneous linearized system, i.e. f = ¢ = 01in (1.1), (1.2). The
special semilinear system with f and g only depending on (u,6) will be con-
sidered in Section 3, and the general case (1.1) — (1.3) will be investigated in
Section 4.

2. The linearized system

First we consider the homogeneous linearized equations corresponding to the
system (1.1) — (1.3), i.e. where f=¢ =0,

Uy — 0PUyy + B30, = 0 (2.1)
0 + Vqz + Oty
T4 —+ q + /iez = 0

Let
U + QUg
e = au,
U:= p ,
q
then U satisfies
U + A10,U + AgU = 0, (2.4)
where
—a 0 6 0
1
A= O @ B0 diag {o,o,o,-}.
: 2 07 T
0 0 20

The characteristic polynomial for A; equals
det(n - Id — Ay) = M — (0? + 08+ 22 4 22
T T

hence the eigenvalues are

?+03+2 £ /(a2 + 0+ Z)? — 422
/\1,2,3,4 ==+ 9 )

and (2.1) — (2.3) is strictly hyperbolic, cp. [7]. Since

2
\/(a2+5ﬁ+ﬂ)2—4a2ﬂ = ﬂ—1—55—042—1—27'0[ 65—1—0(72)
T T T Ky
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we obtain

A2 = Fa(l — ﬁﬂ + 0(72), A3 4 = ¢\/§ + O(V7). (2.5)

2Ky

Computing the right eigenvectors 7, = (r1x, rok, sk, 7ax)’ with (A\g - Id—Ay)ry, =
0 for k=1,2,3,4, we get

1 do—a B

Arta Apta
M ta 1 B

A - —

Tl = ﬁ 3 T2 = )\2_0, s Tk g )\kl « for k’ — 37 4 (26)
B g
r(Mta) k(d2—a) s
Tﬁ)q TﬂAZ T)\k

The left eigenvectors I, = (lx1, lk2, ks, lka) With (A - Id — Ay) = 0 for k =
1,2,3,4 are given by

Mta 20 +a) 29(M\ +«)
ll = 17 ) ’

)\1 — ) /\15

Ay — v 2Ny — ) 27v(Ae — @)
ly = 1 2.7
2 62 ()\2 + O[’ Y 5 Y )\25 ( )
) ) v

BT (2(Ak+a)’ 2 —a)’ Ak> o=

for constants {c};_; satisfying the normalization

1, i=k
l”’f:‘%k:{o i%k.

By a simple computation, we can choose

1 1
g =140(1), co=14+0(7), c3= 5 +0O(1), c4= 3 + O(7) (2.8)

in (2.7) to have the above normalization.
We study the thermoelastic system (2.1) — (2.3) with initial data

uw(0,z) = ug(x), u(0,z) = us(x), 6(0,2) = y(x), q(0,2) = go(x), (2.9)
where ug, u1, 0y and gg are piecewise smooth with possible jumps at x = 0. Let

hL

l3 ) R = (7’1,7”2,7’3,7’4)
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with I; = (lj1,...,lj4) and r; = (r1;,...,74;), then V = LU satisfies

AV + MDYV + AgV =0 (2.10)
Vo (), <0
V(0,2) =V, = 2.11
(0,2) = V() {mx), vo 0. (211)
where A = diag[\1, A2, A3, A4,
1 Ligrar ... lLiaTaa
AO = LA()R - - : :
T
l447'41 Y 1447'44

and Vp(z) = L(uy + aug, up — aug, 6, q0)'. By

we denote the characteristic lines for (2.10). If V' = (V4, V4, V3, V)’ has a jump
on Y, for some fixed k € {1, 2, 3,4}, then fori € {1,2,3,4}, from the differential
equations (2.10), we know that

4
1
j:

should be locally bounded everywhere. However, for any ¢ # k, X; := 0; + \;0,
is transversal to X;,. We obtain

(0) + \i0y) Vi, = const - [Vi] 5,05, , (2.13)

where gzk is the Dirac measure supported on ¥;. Here and afterward we denote
by [Vilg, the jump of V; on Xy, i.e. at (t*,2*) with z* = \gt*:

[mmﬁﬂﬁy:(mggm W@x%—mE%M)W@J)
>Nt <At

From (2.12) and (2.13), one gets
Vils, =0, i#k, (2.14)
that is, V; has no jump on ¥ if ¢ # k.

Moreover, by (2.10)

4
1

O + \0y) Vi + — [ V=0,

(O + A\i0y) k+7_; k4 Taj V
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which implies

1
(O + Ax0z) [Viels, + - lka rag [Vi]s, =0 (2.15)

by using (2.14) and noting that 0; + \z0, is tangential to Xy.
If we can show that
lk4 Tap > C>0 (2.16)

uniformly as 7 > 0, then (2.15) will imply that the jump of Vi on ¥, decays
exponentially as 7 — 0. Rel. (2.16) will be true for £ = 3,4 uniformly in 7, and
lga T4y are of order 7 for k = 1,2. Indeed, from (2.6) and (2.7) we have

1
l34 T43 = § + O(l) (217)
as 7 — 0. By (2.15), (2.17) we conclude

[Vals, = [Wlsy € 7754 — 0 (1 —0), (2.18)

where [V3]s, o) denotes the initial jump of V5, that is, the jump of V3 along X3
decays exponentially as 7 — 0. Similarly we obtain for V, along >,

Vils, = Vilmu@y € 7™ — 0 (7 —0) (2.19)

with '
l44 T4q4 = 5 + 0(1) (220)

Knowing for classical thermoelasticity that there is in general no smoothing
effect, but that singularities are propagated essentially as far as the pure elastic
part (wave equation for the displacement u) (cp. [6, 9, 12, 5]), we cannot hope
for a similar behavior of the remaining components [Vi]s,, [V2]s,. Instead we
obtain, observing

op

_ o 2
AMz=TFa(l 2577)"'0(7 ),
that 85 85
l147"41:%’T—FO(’TQ)7 ZQ4T4QZ%T+O(72).
Hence, by (2.15), for k = 1,2
151
(8t + /\kax) [Vk]zk + % + O(T) [Vk]zk =0

implying
_Bs -
[Vk]zk = [Vk]Ek(O) e 2n 1O )t, (2.21)
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that is, these jumps will not disappear as 7 — 0, but for fixed small 7, are
decaying exponentially as ¢ — oco. Returning from V' to the variable

4
U = (ut + qug, uy — aug, 0, q)) = RV = Z Vjrj,
j=1

we obtain for (u, ), using (2.18), (2.19), (2.21),

Ay — 5 B
Vo + Vs + v,
dota 2 ta C Mta (2.22)

=Vi+ O(NVa + O(1)Vs + O(VT)V4

u+ou, =V, +

showing a persistent jump in V; as 7 — 0, similarly for

A
w—auy =y iy Py Py
Al — A —a Ay — (2.23)
=0 (N Vi+Va+0 (VT)Vs + O (VT)Vi
and
A Ny —
A V- Bl VAR VAN 77
5 5 (2.24)

=0 (M) Vi+0 (1) Va+ Vs + Vi,

that is, the jumps of u; + au, persist while the jump in the temperature 6
disappears as 7 — 0, which is the ”final” parabolic effect being present.

Finally, we shall demonstrate that jumps in the first spatial derivative
of 6 will persist on ¥; and 5. For this, we need to study the behavior of
[0:Vils, (B=1,...,4;5=1,2).

The differential equation (2.10) yields

4
1
<&+M@>%+;§ymmﬂ0:a k—=1,2.3.4. (2.25)
=1

Observing (2.14) we conclude

1 .
[(31: + A\e0y) Vk} + - lkaray [Vils, =0, j#k (2.26)

by noting that [Vi]s, = 0 and J; + \;0, tangential to X; imply

[(0r + Xj0:)Vils, =0, j#Fk. (2.27)



124 R. Racke and Y.-G. Wang

Since 0; + A0, is transversal to X; (j # k) we can obtain [V () Vi]s, (j # k)

from [(at + )\k ax)Vk]g]
In detail, for the case (k,j) = (1,2), we have

[0+ M2) Vi L % (1+0() 2m(A1A ; ;){(322 ~a)

hence

U&+M&Nﬂ&+(£%+OUDW%hZO

which implies, using (2.21),

o _ B
(@ MoV == Wl ¢ #57+ O(r),

Similarly, we obtain

r ] d _ B
(004 2a02) Vi) = =3 Wl 0 ¢ 5+ O(1)

: : 5
(@04 Xs02) Vo | = _4W(1 +0(7))[Vi]s
5

(0 + M0z Vi .= 4\/W(1 +0(T) [Vyls

7=12

YR

7

Combining (2.30) and (2.27) for the case (k,j) = (3,1), it follows

[@wﬁzﬁ%u+Mﬂmﬁh

Similarly, we get

J

Oy, = (14 0() Vil
(B
0l = = (o + 0 Wil
Observing (2.27) we obtain
Vals, = (14 O(r) Vil
OVils = (14 O Vil

[‘/2]22 =0

j=1,2

(2.28)

(2.29)
(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
(2.36)

(2.37)
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In order to estimate [V, Vi]s, we notice that (A\0; — 0;) is transversal to X,
hence, applied to (2.25) for k = 1, we get

4
1
0= [(@ + Alax)<A18t — 8w) ‘/1 + ; ]Zl 114 7’4j (/\1815 — ax) ‘/J]

31
implying

1
(O + M 0y) |:<)\18t - ax)vl] . + - lig 71 |:<)\18t — 0y) Vl]

1 31

1A (2.38)
= —; Z l14 T4j |:()\18t — (993) ‘/J] 21.
7j=2
Substituting (2.32) — (2.37) into (2.38) it follows
(O + A1 Op) | (MO, — O )‘/1:| —|—ﬁ(1—|—0(7')) [(Alat—a )]
v * S 2Ky s,
(a4 1)
T 8K2v2 (1 + O<\/F)) [Vl} o
This implies, using (2.21),
(o —a) i
= (o —ayw] esnlrom):
31(0)

t

(1+0(y7)) / e (110m)0-9) 1] s (2.39)

1(s)

B ﬂ2(52(042 + 1)
8K2v2
0

= [na—ag ] easlen):

¥1(0)
326*(a* + 1) — £ (1+0(n))t
8k« (1 * O(\/;)>t€ ’ [Vl}

31(0)

which decays exponentially for fixed 7 as ¢t — oco. On the other hand, from
(2.14) and the equation

4
1
(at + A &r)Vl = —; E 1 l14 T4 Vg
j:

we get

= —% lara |:‘/1i| = _ﬂ_é(l + O<T>) [Vl] ’ (2.40)

1 2Ky 1

[(at + M)

1
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Combining (2.40) with (2.39) we get

(8 + D0Vl = A @4+ M 0V = [(hdh = 00) W]

]
or
0, Vils, = %(1 +om) ],
D (oo ] ey
- ag#“ [CR:N Vlkl(o)ei‘i(”%))t.

Therefore, by using (2.24), (2.32), (2.33), (2.34) and (2.41) we conclude

0, O, = |O()2:V1 + O(1)0,Va + 0, Vs + .V

¥

~ 1+ 0m) 1], +o0) (2.42)

r—0 0
= im (v
2Ky ™0 o1

that is, the jump in 0, 6 will not disappear in general.

Summarizing, essentially (2.14), (2.18) — (2.24), (2.42), we have proved the
following theorem.

Theorem 2.1. Let (u,0,q) be the solution to (2.1) — (2.3) with initial data
satisfying the following: ug, u1, 6y, qo are piecewise smooth with a possible jump
at x = 0. Then, along the characteristic curves, we have as 7 — 0

[v(tw)u]xz‘m — 0, [9]23,4 - 07 [af 0]23,4 —0

exzponentially in 7, and [0]s,, = O(1) for any fived (t,x). The jumps in the
gradient of w and 0, 0 do not disappear as T — 0 on i, but, for fived
small T, they decay exponentially as t — oo. Moreover, the rates of exponential
decay are given explicitly in terms of the coefficients of the differential equations

(2.1) - (2.3).

Remark 2.2. From (2.21), (2.22), (2.23) and (2.42) we see that the jumps on
Y12 in V,,u and 0,0 decay more rapidly for small heat conduction coefficient
kv when t — +o00, which is similar to the phenomenon, observed in David Hoff
3, 4], that for the discontinuous solutions of the compressible Navier-Stokes
equations, the jumps of the fluid density and velocity gradient across the particle
path decay exponentially in time, more rapidly for small viscosities.
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3. The semilinear system (I)

We now turn to the system (1.1) — (1.3) for the special semilinear case where
f and g depend at most on v and #. Again the initial data are assumed to
be piecewise smooth with possible jumps at x = 0; additionally f and g are
assumed to be smooth and globally Lipschitz in their arguments for simplicity.
These assumptions are not optimal certainly, e.g., the global Lipschitz property
of (f, g) is used in deriving estimates (3.8), (3.9), (3.12) and (3.13) below. When
the initial data satisfy ug € W1 and (uq, 0y, q0) € L™, then it is easy to show
that the solution to the problem (1.1) — (1.3) is bounded locally in time, and
it even can be bounded globally in time when certain growth conditions are
imposed on (f,g). If this is true, then it is not necessary to require (f,g) to be
Lipschitz, obviously.
Denoting by
uy = (0p £ ady)u

and

U:= (U7U+>U—,9>Q) "= (U0> Ui, Uy, Us, U4)/

we obtain the following first order system for U:

O,U + Bid,U + BoU = F(U) (3.1)
U0,2) = Uylay = 0 ) 7 <0 (32)
=P = Uf(x), >0, '

where UO(:E) = (Uo, Uy + Oluz)a Uy — OZU/O, 907 qO)/7

a 0
b (o)) B

with A;, Ay being given in (2.4) and

0 -10 0 O

o

Ao

o O O

FU) = (0, F(Uo, Us), F(Uo,Us), g(Us,Us), 0)'.

By ry,...,r4, 11, ..., 14 we denote the right resp. left eigenvectors to A; as given
in (2.6), (2.7), but also their natural extension to R® adding a leading zero:

)\1+Oé >\1+Oé H()\1+Oé))’

=0, 1
™ <7 ,)\1—06’ 6 ’ Tﬁ)\l

and so on. If

A=, T9:= (1,0,0,0,0)’, lo == (1707070>0)7
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then (Ao, A1, A2, Az, A\g) are the eigenvalues of By with right and left eigenvectors
(Tj, lj), j = O, 1, 2, 3, 4. Let now

R = (T07 -.-7T4)7 L = (l(/]7 ...7%1)/, V = LU’

then
OV +A 0,V + BV =F(V) (3.3)
V(0,z) = Vp(x), (3.4)
where
0 —ru —re2 —rig —Tu
~ ~ O ~
A = diag[X\g, ..., \s], Bo:=1] 0 Ao (3.5)
0
0

with Ag from (2.10), and

ﬁ(V) = LF(RV) = (0, linf +liaf + lisg, lonf + laof + lasg,
Isif + lsaf + 1339, laf + laof + lszg)".

Denote by Y := {(t,x)|x — A\t = 0} the characteristic lines, & = 0,1,2,3,4.
Then V; does not jump on X when j # k, which can be obtained as in Section 2.
Moreover, under the assumption that wug is continuous on R, V does not jump
at all which immediately follows from the differential equation in (3.3).

(i) : The behavior of [Vi]x, for k = 3,4.
The equation (3.3) yields

(3.6)

(8t + >\k ax>[‘/]g]2k + % lk:4r4k [Vk]zk - [ﬁk (V>]Ek

which implies
¢
Vilse = Vilseope ™™ 7 4 /[Fk (V)]spee 7 "amae ds. (3.7)
0

On the other hand we have, using the expansions from Section 2,

Fy(V) = (a1 f + lsof + I3ag)(RV)

4
= (lglf + l32f + l33g) (‘/Oa Z 7“3]"/]'>
j=1

- (% +0(n) (9+04)r) (Vo, ijrgjvj + Vit Vs)

J=1
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which implies N
[E(V)]sa0)] < e |[Va]zao]

for a constant ¢ > 0. Similarly, we have

3

A1) = (5+00) (5 015 (Vo Sty +14)

which implies

Hﬁ4<v)]24(8)‘ <c HV4]24(5)|'

129

(3.8)

(3.9)

Substituting (3.8) into (3.7) and using lzsras = & + O(7) (see Section 2), we

2
obtain

t
i < Wi | il
0
which implies
HV3]E3} S H%]Zs(o)‘e—agﬂﬁﬂt = ’[‘/3]23(0)|6_§(1+0(T))+ct7

that is, [V5]y, decays again exponentially fast as 7 — 0.

Similarly, we can obtain the exponential decay for [V}]s,:
[Vils] < |[Valsyo e 00D,

(ii): The behavior of [Vi]s, for k =1,2.
Equation (3.7) holds again for £ = 1,2, and we have

which implies
[E ()]s < elral|[Vilsao | < er [Vilsao)

Analogously,

Ba(V) = (1+00) (f = 1=f = “2rg) (Yo, 5 roiV;)

and _
[[Fa(V)]so()] < € ]raa||[[Valsas | < o7 [[Valsas |

(3.10)

(3.11)

(3.12)

(3.13)
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Substituting (3.12) and (3.13), respectively, into (3.7) we get, using lys 14 =
%T +O(7?) for k = 1,2,

‘ Vils, ‘ < ‘ Vils, o) ‘6(—%+O(T))t+m
(3.14)

B3

7—0 ;. —
= lim [[Vi]s, o e "

On the other hand, we have from (3.7)
t
|[Vvk]2k| Z Hvk]zk((]) e—% t+O(T)t CT/ Hvk]zk(s) ‘e(—%-FO(T))(t—S) ds
0

for k = 1,2, which implies

H‘/;C]Ek} > HVk]Ek(O)|@_% t+O(r)t Hvk]Zk(O)‘e_% t-‘rO(T)t(em't —1)
=9 i [l e 25 o
Combining (3.14) and (3.15) we conclude
lim [[Vils, | = lim |[Vils, 75 ', k=1,2, (3.16)

which means that, when 7 — 0, the jumps of [Vi]y, and [V3]s,, respectively, per-
sist and decay exponentially as ¢ — oo, more rapidly for small heat conduction
coefficient kv as noted in Remark 2.2.

Returning to the variables u,,u_, 6, q we have as in Section 2
uy = Vi+0(1) Vo + O(7) Vs + O(V/7) Vi
u_ = O(T)Vi + Va + O(VT)Vs + O(VT)Vi

0 =0(r)\Vi+0(n)Va+V3+ V)

) )
q= —5(1 +O(m))V1 — 5(1 + O(7))Va
— (14 O))Va+ | —(1+ O(7))V,
YT T T TV
which now implies
0]z, — 0 as 7—0 (3.17)
exponentially on X34, of order O(7) on ¥ o,
[u+]p,, — 0 exponentially, as 7 —0 (3.18)
(Ut ()]syq — 0 of order O(7) (3.19)
. . _Bs .
sl = IOl 5 ket (320



Thermoelasticity with Second Sound 131

We also notice
[¢]s,, — 0 exponentially, as 7 — 0, (3.21)

but
[¢]s,., iskeptas T — 0. (3.22)

Summarizing essentially (3.17) — (3.22), we have proved

Theorem 3.1. Let (u,0,q) be the solution to (1.1) — (1.3) where f = f(u,0),
g = g(u,0) are smooth and globally Lipschitz in u and 0, with initial data satis-
fying: uj, uy, Bo,qo are piecewise smooth with a possible jump at x = 0. Then,
along the characteristic curves, we have as 7 — 0, the asymptotic behavior
described in (3.17) — (3.22).

Remark 3.2. Due to the nonlinearity of the system (1.1) — (1.3) with (f,g)
depending on (u, #), in general one could not obtain the precise behavior of the
jump of 9,0 on ¥; (1 < k < 4) in constrast to the linear case, Theorem 2.1.
However, here we can obtain the asymptotic behavior (3.21), (3.22) of [¢|y, as
7 — 0, which is expected to have the same behavior as for —[6,]x, when 7 — 0
formally from (1.3).

4. The semilinear case (II)

Finally, we discuss the general semilinear system (1.1) — (1.3) with smooth
functions f and ¢ depending on (u;,u,) as well, and initial data as before.
With the notations from Section 3 for

U = (U, U’+’ U—, 0’ Q)/ = (U07 Ula U27 U37 U4),
the characteristic eigenvalues A\, and curves ¥, k =0, ..,4, we have
oU + B0, U + ByU = F(U),

where now F' is given by F(U) = (0, f, f, g,0) (Uy, Uy, Us, Us), without loss of
generality taking (u,,u_) instead of (uy,uy).

Similarly, with V' = LU
8,V + NJ,V + ByV = F(V), (4.1)

where )

4 4
F(V) = LF<VO> > Ve Y ruVi, ZT3ka>-

k=1 k=1 k=1
As in Section 2 one deduces
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e V; does not jump on ¥y if j # k

e 1} does not jump at all

o [V5]y, and [Vi]s, decay exponentially as 7 — 0.
Taking account of the dependency of F (V) on Zi:l r1x Vi and Zizl ror V3, for
the right hand side of (4.1), the estimates (3.12), (3.13) have to be modified in
the present case into

‘[ﬁl(v)]21($)| <c Hvl]El(S)l
[B(V)]sats)| < €|Vl

respectively, which does not allow for estimate (3.16) in general. Hence it
remains open whether the jumps of [Vi]y, and [V]x, persist when 7 — 0.

For 6 and V; ;u we obtain
0 =O(T)Vi+ O(1)Va + Vs + Vi,

hence
0]z, -0 as7—0, k=1,23,4 (4.2)

of order O(7) for k = 1,2, and exponentially for £ = 3,4. Moreover,

up = Vi +0(1) Vo + O(V7) Vs + O(V/7) Vi
u_ = O(T)\Vi + Vo + O(V7)Vs + O(\7)Vi

as before, hence
O]y, [Owulg, =0 as 7—0, k=34, (4.3)

exponentially, that is, possible discontinuities are preserved on ;o = {(¢, )|
x = +at}, which are the final "hyperbolic” characterizing curves also for clas-
sical thermoelasticity, cp. [9].

Using a Taylor expansion of f and g, we can refine the asymptotics as
follows:

(V)]s |
< W+ 0N (| fllem + et il + o e ) Vil
< 2 drry 3 ey 14 13 (4.4)
0 5
+ <:—57’ + O(T2)>< | g;”LOO + %THQ:@HLOO + %THQQHLEX) Hvl]zl|

where f} and g} denote the derivatives of f and g with respect to their j-th ar-
gument. If f and g are globally Lipschitz continuous in (uy,u_, 6), respectively,
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we conclude from (3.7), (4.4)

H‘/l]21| < | ‘/1]21 e~ 2m t+0(7) ¢
+ (Il Bl + 07 /\ Vil eSO g
Vils,| > [Vilso)]e 2 4ow)t

B f—
(1 e 00 2200

Inequality (4.5) implies
Vil | < [[ViJev e 00 tesilim00n

T—0

ler)
hm| Vils ‘e 13110 =550t

Substituting (4.7) into (4.6) it follows
ik [, | 25 "
— | Vilzao | €55 OO ( (15l oe+O()E _ 1>
=9 lim |[Vi]s, o) | emh (2 — lfblioety,
Similarly, we can deduce
PH(I) |[VQ]ZQ‘ < 113(1) HV2]22(0)|6 131l oo — 42 )t
PL% |Vals,| > llil% |Valso) | e B b2 — ellfslleety,
Using again the representations
uy = (3 + ady)u = Vi + O(7) Vo + O(V/7) Vs + O(v/7) Vi
_ = (0, — ady)u = O(T)Vi + Vo + O(yT)Vs + O(VT)V4
0 =0(T)V1+O(1)Va + Vg + Vi
o

q= _%(HO( )i — —(1+o< ))Va

- Earomm [Zaromm

we conclude
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(4.5)

(4.7)

(4.8)

(4.9)

(4.10)
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Theorem 4.1.
(1) In addition to the assumptions of Theorem 3.1, we also suppose that

f = flu,us + aug, up — quyg, 0)

9 = g(u,us + atg, uy — auy, 0)
are smooth in their arguments. Then, for k= 1,2,

[H]Ek - 07 [q]zk —0
[atu]gk — 0, [&Uu]gk — O

exponentially as 7 — 0 for k = 3,4, and as 7 — 0,
05, = O(7).

(2) Additionally, if f and g are globally Lipschitz in their last three arguments,
then u; + au, and uy — au, have jumps on ¥y and g respectively. The
gumps of uy + au, and u; — au, on Yo and X, respectively, vanish of
order O(T) at least when T — 0, and [q|s, is kept as T — 0 for k =1,2.
Moreover, we have that

(i) if f is independent of u; + au, (uy — aqu, resp.), then the jump of
g+ auy, (up— oy, resp.) will persist for all t > 0 with the same rate
as in the linear case (see Section 2).

(ii) of f depends on uy = uy + au, (u— = u — au, resp.), and satisfies
H%HLOO < % (||£%]\Lw < % resp.), then the jump of u; + au,

(uy — au, Tesp.) decays exponentially when t — oo.

Remark 4.2. For smooth data the convergence of the solutions (u,6,q) =
(u™,07,q") of (1.1) — (1.3) with f = g = 0 to the solutions of the corresponding
classical thermoelastic system (u°, 0%, ¢°) = (u°, 6°, —k6°) has been proved in [7],
provided gy = —~kby . The same remains open for the discontinuous solutions
discussed here.
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