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Asymptotic Behavior of Discontinuous Solutions
to Thermoelastic Systems with Second Sound

Reinhard Racke and Ya-Guang Wang

Abstract. We consider the Cauchy problem for linear and semilinear thermoelastic
systems with second sound in one space dimension with discontinuous initial data.
Due to Cattaneo’s law, replacing Fourier’s law for heat conduction, the system is
strictly hyperbolic. We investigate the behavior of discontinuous solutions as the
relaxation parameter tends to zero, which corresponds to a formal convergence of
the system to the hyperbolic-parabolic type of classical thermoelasticity. We obtain
that the jump of the temperature goes to zero while the jumps of the gradient of
the displacement and the spatial derivative of the temperature are propagated along
the characteristic curves of the elastic fields when the relaxation parameter vanishes.
Moreover, when certain growth conditions are imposed on the nonlinear functions,
we deduce that these jumps decay exponentially when the time goes to infinity, more
rapidly for small heat conduction coefficient.
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1. Introduction

We consider the semilinear system of thermoelasticity of second sound

utt − α2uxx + βθx = f(u, ux, ut, θ) (1.1)

θt + γqx + δutx = g(u, ux, ut, θ) (1.2)

τqt + q + κθx = 0 (1.3)

in (0,∞)× R, with initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x), q(0, x) = q0(x) (1.4)
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which may have jumps at x = 0. Here u, θ, q represent the elastic displacement,
the temperature difference and the heat flux, respectively, and are functions of
(t, x) ∈ (0,∞) × R. Moreover, α, β, γ, δ, τ, κ are positive constants, cp. [2, 7].
Equation (1.3) is Cattaneo’s law for heat conduction and turns, as τ → 0, into
Fourier’s law

q + κθx = 0. (1.5)

The system (1.1), (1.2), (1.5) is the hyperbolic-parabolic system of classical
thermoelasticity, cp. [5], while we shall study (1.1) – (1.3), which is a strictly
hyperbolic system.

Some results on the existence and large time behavior of smooth solutions
to system of thermoelasticity of second sound in one space dimension or high
space dimensions have been obtained in [7, 8, 11]. There is some literature
devoted to the study of the propagation of weak singularities of solutions to the
hyperbolic-parabolic system of classical thermoelasticity, and it is observed that
the weak singularities will be propagated mainly by the hyperbolic characteristic
fields while the parabolic impact exists, cp. [6, 9, 12, 13] and references therein.
The question how to describe the behavior of discontinuous solutions to the
hyperbolic-parabolic system of thermoelasticity is open. The purpose of the
present work is to study this problem by investigating the asymptotic behavior
of these jumps as τ → 0, thus obtaining interesting information about the
relation between classical thermoelasticity (τ = 0) and the system considered
here.

Assuming that u0 ∈ W 1,∞(R), (u1, θ0, q0) ∈ L∞(R), and u′0, u1, θ0, q0 have
jumps at x = 0, we know there exists a unique local solution (u, θ, q) to the
semilinear hyperbolic problem (1.1) – (1.4), and it exists globally in time when
certain growth conditions are imposed on nonlinear functions f and g, moreover
the discontinuities of the initial data will be propagated along the characteristics
of the system (1.1) – (1.3) by using the classical theory of hyperbolic equations
([1, 10]). In this paper, we obtain that the jump of θ goes to zero while the jumps
of ∇t,xu and ∂xθ are propagated along the characteristic curves {x ± αt = 0}
when τ → 0, which shows a regularizing effect of the parabolic operator for
the limit. Moreover, when f and g are independent of (ut, ux) or have certain
growth restriction with respect to (ut, ux) (see Theorem 4.1 for details.), one
deduces that the jumps of ∇t,xu on {x ± αt = 0} decay exponentially when
t → ∞, more rapidly for small heat conduction coefficient, which is similar to
the phenomenon observed by Hoff ([4]) for the discontinuous solutions to the
compressible Navier-Stokes equations. For simplicity of the presentation, we
shall study the system (1.1) – (1.3) only for the constant coefficient case, but
it is not difficult to see that our all discussion can be extended to the case of
variable coefficients.

The remainder of the paper is arranged as follows: In Section 2 we shall
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study the homogeneous linearized system, i.e. f = g = 0 in (1.1), (1.2). The
special semilinear system with f and g only depending on (u, θ) will be con-
sidered in Section 3, and the general case (1.1) – (1.3) will be investigated in
Section 4.

2. The linearized system

First we consider the homogeneous linearized equations corresponding to the
system (1.1) – (1.3), i.e. where f = g = 0,

utt − α2uxx + βθx = 0 (2.1)

θt + γqx + δutx = 0 (2.2)

τqt + q + κθx = 0 (2.3)

Let

U : =


ut + αux

ut − αux

θ
q

 ,

then U satisfies
∂tU + A1∂xU + A0U = 0, (2.4)

where

A1 : =


−α 0 β 0
0 α β 0
δ
2

δ
2

0 γ
0 0 κ

τ
0

 , A0 : = diag

[
0, 0, 0,

1

τ

]
.

The characteristic polynomial for A1 equals

det(λ · Id− A1) = λ4 − (α2 + δβ +
κγ

τ
)λ2 + α2κγ

τ

hence the eigenvalues are

λ1,2,3,4 = ±

√
α2 + δβ + κγ

τ
±

√
(α2 + δβ + κγ

τ
)2 − 4α2 κγ

τ

2
,

and (2.1) – (2.3) is strictly hyperbolic, cp. [7]. Since√
(α2 + δβ +

κγ

τ
)2 − 4α2

κγ

τ
=

κγ

τ
+ δβ − α2 + 2τ

α2δβ

κγ
+ O(τ 2)
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we obtain

λ1,2 = ∓α(1− δβ

2κγ
τ) + O(τ 2), λ3,4 = ∓

√
κγ

τ
+ O(

√
τ). (2.5)

Computing the right eigenvectors rk = (r1k, r2k, r3k, r4k)
′ with (λk · Id−A1)rk =

0 for k = 1, 2, 3, 4, we get

r1 =


1

λ1+α
λ1−α
λ1+α

β
κ(λ1+α)

τβλ1

 , r2 =


λ2−α
λ2+α

1
λ2−α

β
κ(λ2−α)

τβλ2

 , rk =


β

λk+α
β

λk−α

1
κ

τλk

 for k = 3, 4. (2.6)

The left eigenvectors lk = (lk1, lk2, lk3, lk4) with lk(λκ · Id − A1) = 0 for k =
1, 2, 3, 4 are given by

l1 = c1

(
1,

λ1 + α

λ1 − α
,

2(λ1 + α)

δ
,

2γ(λ1 + α)

λ1δ

)
l2 = c2

(
λ2 − α

λ2 + α
, 1,

2(λ2 − α)

δ
,
2γ(λ2 − α)

λ2δ

)
(2.7)

lk = ck

(
δ

2(λk + α)
,

δ

2(λk − α)
, 1,

γ

λk

)
for k = 3, 4

for constants {ck}4
k=1 satisfying the normalization

lirk = δik =

{
1, i = k
0, i 6= k.

By a simple computation, we can choose

c1 = 1 + O(τ), c2 = 1 + O(τ), c3 =
1

2
+ O(τ), c4 =

1

2
+ O(τ) (2.8)

in (2.7) to have the above normalization.

We study the thermoelastic system (2.1) – (2.3) with initial data

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x), q(0, x) = q0(x), (2.9)

where u0, u1, θ0 and q0 are piecewise smooth with possible jumps at x = 0. Let

L :=


l1
l2
l3
l4

 , R := (r1, r2, r3, r4)
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with lj = (lj1, . . . , lj4) and rj = (r1j, . . . , r4j)
′, then V = LU satisfies

∂tV + Λ∂xV + Â0V = 0 (2.10)

V (0, x) ≡ V0(x) ≡
{

V −
0 (x), x < 0

V +
0 (x), x > 0 ,

(2.11)

where Λ = diag[λ1, λ2, λ3, λ4],

Â0 := LA0R =
1

τ

 l14r41
...

l44r41

· · ·

· · ·

l14r44
...

l44r44


and V0(x) = L(u1 + αu′0, u1 − αu′0, θ0, q0)

′. By

Σk := {(t, x) | x− λkt = 0}, 1 ≤ k ≤ 4

we denote the characteristic lines for (2.10). If V = (V1, V2, V3, V4)
′ has a jump

on Σk for some fixed k ∈ {1, 2, 3, 4}, then for i ∈ {1, 2, 3, 4}, from the differential
equations (2.10), we know that

(∂t + λi∂x)Vi = −1

τ

4∑
j=1

li4r4jVj (2.12)

should be locally bounded everywhere. However, for any i 6= k,Xi := ∂t + λi∂x

is transversal to Σk. We obtain

(∂t + λi∂x) Vi|Σk
= const · [Vi] Σk

δ̃Σk
, (2.13)

where δ̃Σk
is the Dirac measure supported on Σk. Here and afterward we denote

by [Vi]Σk
the jump of Vi on Σk, i.e. at (t∗, x∗) with x∗ = λkt

∗:

[Vi]Σk
(t∗, x∗) := lim

(t,x)→(t∗,x∗)
x>λkt

Vi(t, x)− lim
(t,x)→(t∗,x∗)

x<λkt

Vi(t, x).

From (2.12) and (2.13), one gets

[Vi] Σk
= 0, i 6= k, (2.14)

that is, Vi has no jump on Σk if i 6= k.

Moreover, by (2.10)

(∂t + λk∂x) Vk +
1

τ

4∑
j=1

lk4 r4j Vj = 0,
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which implies

(∂t + λk∂x) [Vk]Σk
+

1

τ
lk4 r4k [Vk]Σk

= 0 (2.15)

by using (2.14) and noting that ∂t + λk∂x is tangential to Σk.

If we can show that

lk4 r4k ≥ C > 0 (2.16)

uniformly as τ > 0, then (2.15) will imply that the jump of Vk on Σk decays
exponentially as τ → 0. Rel. (2.16) will be true for k = 3, 4 uniformly in τ , and
lk4 r4k are of order τ for k = 1, 2. Indeed, from (2.6) and (2.7) we have

l34 r43 =
1

2
+ o(1) (2.17)

as τ → 0. By (2.15), (2.17) we conclude

[V3]Σ3 = [V3]Σ3(0) e − t
τ

l34 r43 −→ 0 (τ → 0), (2.18)

where [V3]Σ3(0) denotes the initial jump of V3, that is, the jump of V3 along Σ3

decays exponentially as τ → 0. Similarly we obtain for V4 along Σ4

[V4]Σ4 = [V4]Σ4(0) e − t
τ

l44 r44 −→ 0 (τ → 0) (2.19)

with

l44 r44 =
1

2
+ o(1). (2.20)

Knowing for classical thermoelasticity that there is in general no smoothing
effect, but that singularities are propagated essentially as far as the pure elastic
part (wave equation for the displacement u) (cp. [6, 9, 12, 5]), we cannot hope
for a similar behavior of the remaining components [V1]Σ1 , [V2]Σ2 . Instead we
obtain, observing

λ1,2 = ∓ α (1− δβ

2κγ
τ) + O (τ 2),

that

l14 r41 =
βδ

2κγ
τ + O (τ 2), l24 r42 =

βδ

2κγ
τ + O (τ 2).

Hence, by (2.15), for k = 1, 2

(∂t + λk∂x) [Vk]Σk
+

(
βδ

2κγ
+ O(τ)

)
[Vk]Σk

= 0

implying

[Vk]Σk
= [Vk]Σk(0) e−

βδ
2κγ

t + O(τ) t, (2.21)
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that is, these jumps will not disappear as τ → 0, but for fixed small τ , are
decaying exponentially as t →∞. Returning from V to the variable

U = (ut + αux, ut − αux, θ, q)′ = RV =
4∑

j=1

Vj rj,

we obtain for (u, θ), using (2.18), (2.19), (2.21),

ut + α ux = V1 +
λ2 − α

λ2 + α
V2 +

β

λ3 + α
V3 +

β

λ4 + α
V4

= V1 + O(τ)V2 + O(
√

τ)V3 + O(
√

τ)V4

(2.22)

showing a persistent jump in V1 as τ → 0, similarly for

ut − α ux =
λ1 + α

λ1 − α
V1 + V2 +

β

λ3 − α
V3 +

β

λ4 − α
V4

= O (τ) V1 + V2 + O (
√

τ)V3 + O (
√

τ)V4

(2.23)

and

θ =
λ1 + α

β
V1 +

λ2 − α

β
V2 + V3 + V4

= O (τ) V1 + O (τ) V2 + V3 + V4,

(2.24)

that is, the jumps of ut ± αux persist while the jump in the temperature θ
disappears as τ → 0, which is the ”final” parabolic effect being present.

Finally, we shall demonstrate that jumps in the first spatial derivative
of θ will persist on Σ1 and Σ2. For this, we need to study the behavior of
[∂xVk]Σj

(k = 1, . . . , 4; j = 1, 2).

The differential equation (2.10) yields

(
∂t + λk∂x

)
Vk +

1

τ

4∑
j=1

lk4 r4j Vj = 0, k = 1, 2, 3, 4. (2.25)

Observing (2.14) we conclude[
(∂t + λk∂x) Vk

]
Σj

+
1

τ
lk4 r4j [Vj]Σj

= 0, j 6= k (2.26)

by noting that [Vk]Σj
= 0 and ∂t + λj∂x tangential to Σj imply

[(∂t + λj∂x)Vk]Σj
= 0, j 6= k. (2.27)
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Since ∂t + λk∂x is transversal to Σj (j 6= k) we can obtain [∇(t,x)Vk]Σj
(j 6= k)

from [(∂t + λk ∂x)Vk]Σj
.

In detail, for the case (k, j) = (1, 2), we have[
(∂t + λ1∂x) V1

]
Σ2

+
1

τ

(
1 + O(τ)

)2κγ(λ1 + α)(λ2 − α)

λ1λ2τβδ
[V2]Σ2 = 0

hence [
(∂t + λ1∂x) V1

]
Σ2

+
( βδ

2κγ
+ O(τ)

)
[V2]Σ2 = 0

which implies, using (2.21),[
(∂t + λ1∂x) V1

]
Σ2

= − βδ

2κγ
[V2]Σ2(0) e−

βδ
2κγ

t + O(τ). (2.28)

Similarly, we obtain[
(∂t + λ2∂x) V2

]
Σ1

= − βδ

2κγ
[V1]Σ1(0) e−

βδ
2κγ

t + O(τ) (2.29)[
(∂t + λ3∂x) V3

]
Σj

= − δ

4
√

γκτ

(
1 + O(τ)

)
[Vj]Σj

, j = 1, 2 (2.30)[
(∂t + λ4∂x) V4

]
Σj

=
δ

4
√

κγτ

(
1 + O(τ)

)
[Vj]Σj

, j = 1, 2. (2.31)

Combining (2.30) and (2.27) for the case (k, j) = (3, 1), it follows

[∂xV3]Σ1 =
δ

4κγ

(
1 + O(τ)

)
[V1]Σ1 . (2.32)

Similarly, we get

[∂xV4]Σ1 =
δ

4κγ

(
1 + O(τ)

)
[V1]Σ1 (2.33)

[∂xV2]Σ1 = −
(

βδ

4ακγ
+ O(τ)

)
[V1]Σ1 . (2.34)

Observing (2.27) we obtain

[∂tV3]Σ1 =
δα

4κγ

(
1 + O(τ)

)
[V1]Σ1 (2.35)

[∂tV4]Σ1 =
δα

4κγ

(
1 + O(τ)

)
[V1]Σ1 (2.36)

[∂tV2]Σ1 = −
(

βδ

4κγ
+ O(τ)

)
[V1]Σ1 . (2.37)
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In order to estimate [∇(t,x)V1]Σ1 we notice that (λ1∂t − ∂x) is transversal to Σ1,
hence, applied to (2.25) for k = 1, we get

0 =
[
(∂t + λ1∂x)(λ1∂t − ∂x) V1 +

1

τ

4∑
j=1

l14 r4j(λ1∂t − ∂x) Vj

]
Σ1

implying

(∂t + λ1∂x)
[
(λ1∂t − ∂x)V1

]
Σ1

+
1

τ
l14 r41

[
(λ1∂t − ∂x) V1

]
Σ1

= −1

τ

4∑
j=2

l14 r4j

[
(λ1∂t − ∂x) Vj

]
Σ1

.
(2.38)

Substituting (2.32) – (2.37) into (2.38) it follows

(∂t + λ1 ∂x)
[
(λ1∂t − ∂x) V1

]
Σ1

+
βδ

2κγ

(
1 + O(τ)

)[
(λ1∂t − ∂x)

]
Σ1

= −β2δ2(α2 + 1)

8κ2γ2α

(
1 + O(

√
τ)

)[
V1

]
Σ1

.

This implies, using (2.21),[
(λ1∂t − ∂x) V1

]
Σ1

=
[
(λ1∂t − ∂x) V1

]
Σ1(0)

e−
βδ
2κγ

(
1+O(τ)

)
t

− β2δ2(α2 + 1)

8κ2γ2α

(
1 + O(

√
τ)

) t∫
0

e−
βδ
2κγ

(
1+O(τ)

)
(t−s)

[
V1

]
Σ1(s)

ds

=
[
(λ1∂t − ∂x) V1

]
Σ1(0)

e−
βδ
2κγ

(
1+O(τ)

)
t

− β2δ2(α2 + 1)

8κ2γ2α

(
1 + O(

√
τ)

)
te−

βδ
2κγ

(
1+O(τ)

)
t
[
V1

]
Σ1(0)

(2.39)

which decays exponentially for fixed τ as t → ∞. On the other hand, from
(2.14) and the equation

(∂t + λ1 ∂x)V1 = −1

τ

4∑
j=1

l14 r4j Vj

we get[
(∂t + λ1∂x) V1

]
Σ1

= −1

τ
l14 r41

[
V1

]
Σ1

= − βδ

2κγ

(
1 + O(τ)

)[
V1

]
Σ1

. (2.40)
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Combining (2.40) with (2.39) we get

(λ2
1 + 1)[∂xV1]Σ1 = λ1

[
(∂t + λ1 ∂x)V1

]
Σ1

−
[
(λ1∂t − ∂x) V1

]
Σ1

or

[∂xV1]Σ1 =
βδα

2κγ(α2 + 1)

(
1 + O(τ)

)[
V1

]
Σ1

+
β2δ2

8κ2γ2α

(
1 + O(

√
τ)

)
te−

βδ
2κγ

(
1+O(τ)

)
t
[
V1

]
Σ1(0)

− 1

α2 + 1

[
(λ1∂t − ∂x) V1

]
Σ1(0)

e−
βδ
2κγ

(
1+O(τ)

)
t.

(2.41)

Therefore, by using (2.24), (2.32), (2.33), (2.34) and (2.41) we conclude

[∂x θ]Σ1 =
[
O(τ)∂xV1 + O(τ)∂xV2 + ∂xV3 + ∂xV4

]
Σ1

=
δ

2κγ

(
1 + O(τ)

)[
V1

]
Σ1

+ O(τ)

τ→0−→ δ

2κγ
lim
τ→0

[
V1

]
Σ1

,

(2.42)

that is, the jump in ∂x θ will not disappear in general.

Summarizing, essentially (2.14), (2.18) – (2.24), (2.42), we have proved the
following theorem.

Theorem 2.1. Let (u, θ, q) be the solution to (2.1) – (2.3) with initial data
satisfying the following: u′0, u1, θ0, q0 are piecewise smooth with a possible jump
at x = 0. Then, along the characteristic curves, we have as τ → 0

[∇(t,x)u]Σ3,4 −→ 0, [θ]Σ3,4 → 0, [∂x θ]Σ3,4 −→ 0

exponentially in τ , and [θ]Σ1,2 = O(τ) for any fixed (t, x). The jumps in the
gradient of u and ∂x θ do not disappear as τ → 0 on Σ1,2, but, for fixed
small τ , they decay exponentially as t →∞. Moreover, the rates of exponential
decay are given explicitly in terms of the coefficients of the differential equations
(2.1) – (2.3).

Remark 2.2. From (2.21), (2.22), (2.23) and (2.42) we see that the jumps on
Σ1,2 in ∇t,xu and ∂xθ decay more rapidly for small heat conduction coefficient
κγ when t → +∞, which is similar to the phenomenon, observed in David Hoff
[3, 4], that for the discontinuous solutions of the compressible Navier-Stokes
equations, the jumps of the fluid density and velocity gradient across the particle
path decay exponentially in time, more rapidly for small viscosities.
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3. The semilinear system (I)

We now turn to the system (1.1) – (1.3) for the special semilinear case where
f and g depend at most on u and θ. Again the initial data are assumed to
be piecewise smooth with possible jumps at x = 0; additionally f and g are
assumed to be smooth and globally Lipschitz in their arguments for simplicity.
These assumptions are not optimal certainly, e.g., the global Lipschitz property
of (f, g) is used in deriving estimates (3.8), (3.9), (3.12) and (3.13) below. When
the initial data satisfy u0 ∈ W 1,∞ and (u1, θ0, q0) ∈ L∞, then it is easy to show
that the solution to the problem (1.1) – (1.3) is bounded locally in time, and
it even can be bounded globally in time when certain growth conditions are
imposed on (f, g). If this is true, then it is not necessary to require (f, g) to be
Lipschitz, obviously.

Denoting by
u± := (∂t ± α∂x)u

and
U := (u, u+, u−, θ, q) ′ ≡ (U0, U1, U2, U3, U4)

′

we obtain the following first order system for U :

∂tU + B1∂xU + B0U = F (U) (3.1)

U(0, x) ≡ U0(x) ≡

{
U−

0 (x), x < 0

U+
0 (x), x > 0 ,

(3.2)

where U0(x) = (u0, u1 + αu′0, u1 − αu′0, θ0, q0)
′,

B1 :=

(
α 0
0 A1

)
, B0 :=


0
0
0
0
0

−1 0 0

A0

0


with A1, A0 being given in (2.4) and

F (U) :=
(
0, f(U0, U3), f(U0, U3), g(U0, U3), 0

)′
.

By r1, ..., r4, l1, ..., l4 we denote the right resp. left eigenvectors to A1 as given
in (2.6), (2.7), but also their natural extension to R5 adding a leading zero:

r1 =
(
0, 1,

λ1 + α

λ1 − α
,

λ1 + α

β
,

κ(λ1 + α)

τβλ1

)′
and so on. If

λ0 := α, r0 := (1, 0, 0, 0, 0)′, l0 := (1, 0, 0, 0, 0),
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then (λ0, λ1, λ2, λ3, λ4) are the eigenvalues of B1 with right and left eigenvectors
(rj, lj), j = 0, 1, 2, 3, 4. Let now

R := (r0, ..., r4), L := (l′0, ..., l
′
4)
′, V := LU,

then

∂tV + Λ̃ ∂xV + B̃0V = F̃ (V ) (3.3)

V (0, x) = V0(x), (3.4)

where

Λ̃ := diag[λ0, ..., λ4], B̃0 :=


0
0
0
0
0

−r11 −r12

Â0

−r13 −r14

 (3.5)

with Â0 from (2.10), and

F̃ (V ) := LF (RV ) = (0, l11f + l12f + l13g, l21f + l22f + l23g,

l31f + l32f + l33g, l41f + l42f + l43g)′.
(3.6)

Denote by Σk := {(t, x)|x − λkt = 0} the characteristic lines, k = 0, 1, 2, 3, 4.
Then Vj does not jump on Σk when j 6= k, which can be obtained as in Section 2.
Moreover, under the assumption that u0 is continuous on R, V0 does not jump
at all which immediately follows from the differential equation in (3.3).

(i): The behavior of [Vk]Σk
for k = 3, 4.

The equation (3.3) yields

(∂t + λk ∂x)[Vk]Σk
+

1

τ
lk4r4k [Vk]Σk

= [F̃k (V )]Σk

which implies

[Vk]Σk
= [Vk]Σk(0)e

− t
τ

lk4r4k +

t∫
0

[F̃k (V )]Σk(s)e
− t−s

τ
lk4r4k ds. (3.7)

On the other hand we have, using the expansions from Section 2,

F̃3(V ) = (l31f + l32f + l33g)(RV )

= (l31f + l32f + l33g)
(
V0,

4∑
j=1

r3jVj

)
=

(1

2
+ O(τ)

)(
g + O(τ

1
2 )f

)(
V0,

2∑
j=1

r3jVj + V4 + V3

)
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which implies ∣∣[F̃3(V )]Σ3(s)

∣∣ ≤ c
∣∣[V3]Σ3(s)

∣∣ (3.8)

for a constant c > 0. Similarly, we have

F̃4(V ) =
(1

2
+ O(τ)

)(
g + O(τ

1
2 )f

)(
V0,

3∑
j=1

r3jVj + V4

)
which implies ∣∣[F̃4(V )]Σ4(s)

∣∣ ≤ c
∣∣[V4]Σ4(s)

∣∣. (3.9)

Substituting (3.8) into (3.7) and using l34r43 = 1
2

+ O(τ) (see Section 2), we
obtain ∣∣[V3]Σ3

∣∣ ≤ ∣∣[V3]Σ3(0)

∣∣e− t
τ

l34r43 + c

t∫
0

∣∣[V3]Σ(s)

∣∣e− t−s
τ

l34r43ds

which implies∣∣[V3]Σ3

∣∣ ≤ ∣∣[V3]Σ3(0)

∣∣e− t
τ

l34r43+ct =
∣∣[V3]Σ3(0)

∣∣e− t
2τ

(1+O(τ))+ct, (3.10)

that is, [V3]Σ3 decays again exponentially fast as τ → 0.

Similarly, we can obtain the exponential decay for [V4]Σ4 :∣∣[V4]Σ4

∣∣ ≤ ∣∣[V4]Σ4(0)

∣∣e− t
2τ

(1+O(τ))+ct. (3.11)

(ii): The behavior of [Vk]Σk
for k = 1, 2.

Equation (3.7) holds again for k = 1, 2, and we have

F̃1(V ) =
(
1 + O(τ)

)(
f − δβ

4κγ
τf +

αβ

κγ
τg

)(
V0,

4∑
j=1

r3jVj

)
,

which implies ∣∣[F̃1(V )]Σ1(s)

∣∣ ≤ c
∣∣r31

∣∣∣∣[V1]Σ1(s)

∣∣ ≤ cτ
∣∣[V1]Σ1(s)

∣∣ (3.12)

Analogously,

F̃2(V ) =
(
1 + O(τ)

)(
f − δβ

4κγ
τf − αβ

κγ
τg

)(
V0,

4∑
j=1

r3jVj

)
and ∣∣[F̃2(V )]Σ2(s)

∣∣ ≤ c
∣∣r32

∣∣∣∣[V2]Σ2(s)

∣∣ ≤ cτ
∣∣[V2]Σ2(s)

∣∣. (3.13)
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Substituting (3.12) and (3.13), respectively, into (3.7) we get, using lk4 r4k =
βδ
2κγ

τ + O(τ 2) for k = 1, 2,∣∣[Vk]Σk

∣∣ ≤ ∣∣[Vk]Σk(0)

∣∣e(− βδ
2κγ

+O(τ))t+cτt

τ→0−→ lim
τ→0

∣∣[Vk]Σk(0)

∣∣e− βδ
2κγ

t.
(3.14)

On the other hand, we have from (3.7)

∣∣[Vk]Σk

∣∣ ≥ ∣∣[Vk]Σk(0)

∣∣e− βδ
2κγ

t+O(τ)t − cτ

t∫
0

∣∣[Vk]Σk(s)

∣∣e(− βδ
2κγ

+O(τ))(t−s) ds

for k = 1, 2, which implies∣∣[Vk]Σk

∣∣ ≥ ∣∣[Vk]Σk(0)

∣∣e− βδ
2κγ

t+O(τ)t −
∣∣[Vk]Σk(0)

∣∣e− βδ
2κγ

t+O(τ)t(ecτt − 1)

τ→0−→ lim
τ→0

∣∣[Vk]Σk(0)

∣∣e− βδ
2κγ

t.
(3.15)

Combining (3.14) and (3.15) we conclude

lim
τ→0

∣∣[Vk]Σk

∣∣ = lim
τ→0

∣∣[Vk]Σk(0)

∣∣e− βδ
2κγ

t, k = 1, 2, (3.16)

which means that, when τ → 0, the jumps of [V1]Σ1 and [V2]Σ2 , respectively, per-
sist and decay exponentially as t →∞, more rapidly for small heat conduction
coefficient κγ as noted in Remark 2.2.

Returning to the variables u+, u−, θ, q we have as in Section 2

u+ = V1 + O(τ) V2 + O(
√

τ) V3 + O(
√

τ) V4

u− = O(τ)V1 + V2 + O(
√

τ)V3 + O(
√

τ)V4

θ = O(τ)V1 + O(τ)V2 + V3 + V4

q = − δ

2γ
(1 + O(τ))V1 −

δ

2γ
(1 + O(τ))V2

−
√

κ

γτ
(1 + O(τ))V3 +

√
κ

γτ
(1 + O(τ))V4,

which now implies
[θ]Σk

−→ 0 as τ → 0 (3.17)

exponentially on Σ3,4, of order O(τ) on Σ1,2,

[u±]Σ3,4 → 0 exponentially, as τ → 0 (3.18)

[u+(−)]Σ2(1)
→ 0 of order O(τ) (3.19)

lim
τ→0

[u+(−)]Σ1(2)
= lim

τ→0
[u+(−)]Σ1(2)(0) e−

βδ
2κγ

t is kept. (3.20)
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We also notice
[q]Σ3,4 → 0 exponentially, as τ → 0, (3.21)

but
[q]Σ1,2 is kept as τ → 0. (3.22)

Summarizing essentially (3.17) – (3.22), we have proved

Theorem 3.1. Let (u, θ, q) be the solution to (1.1) – (1.3) where f = f(u, θ),
g = g(u, θ) are smooth and globally Lipschitz in u and θ, with initial data satis-
fying: u′0, u1, θ0, q0 are piecewise smooth with a possible jump at x = 0. Then,
along the characteristic curves, we have as τ → 0, the asymptotic behavior
described in (3.17) – (3.22).

Remark 3.2. Due to the nonlinearity of the system (1.1) – (1.3) with (f, g)
depending on (u, θ), in general one could not obtain the precise behavior of the
jump of ∂xθ on Σk (1 ≤ k ≤ 4) in constrast to the linear case, Theorem 2.1.
However, here we can obtain the asymptotic behavior (3.21), (3.22) of [q]Σk

as
τ → 0, which is expected to have the same behavior as for −κ[θx]Σk

when τ → 0
formally from (1.3).

4. The semilinear case (II)

Finally, we discuss the general semilinear system (1.1) – (1.3) with smooth
functions f and q depending on (ut, ux) as well, and initial data as before.
With the notations from Section 3 for

U = (u, u+, u−, θ, q)′ = (U0, U1, U2, U3, U4)
′

the characteristic eigenvalues λk and curves Σk, k = 0, .., 4, we have

∂tU + B1∂xU + B0U = F (U),

where now F is given by F (U) = (0, f, f, g, 0)′(U0, U1, U2, U3), without loss of
generality taking (u+, u−) instead of (ut, ux).

Similarly, with V = LU

∂tV + Λ̃∂xV + B̃0V = F̃ (V ), (4.1)

where

F̃ (V ) = LF
(
V0,

4∑
k=1

r1kVk,
4∑

k=1

r2kVk,
4∑

k=1

r3kVk

)
.

As in Section 2 one deduces
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• Vj does not jump on Σk if j 6= k

• V0 does not jump at all

• [V3]Σ3 and [V4]Σ4 decay exponentially as τ → 0.

Taking account of the dependency of F̃ (V ) on
∑4

k=1 r1kVk and
∑4

k=1 r2kVk for
the right hand side of (4.1), the estimates (3.12), (3.13) have to be modified in
the present case into ∣∣[F̃1(V )]Σ1(s)

∣∣ ≤ c
∣∣[V1]Σ1(s)

∣∣∣∣[F̃2(V )]Σ2(s)

∣∣ ≤ c
∣∣[V2]Σ2(s)

∣∣,
respectively, which does not allow for estimate (3.16) in general. Hence it
remains open whether the jumps of [V1]Σ1 and [V2]Σ2 persist when τ → 0.

For θ and ∇(t,x)u we obtain

θ = O(τ)V1 + O(τ)V2 + V3 + V4,

hence
[θ]Σk

→ 0 as τ → 0, k = 1, 2, 3, 4 (4.2)

of order O(τ) for k = 1, 2, and exponentially for k = 3, 4. Moreover,

u+ = V1 + O(τ) V2 + O(
√

τ) V3 + O(
√

τ) V4

u− = O(τ)V1 + V2 + O(
√

τ)V3 + O(
√

τ)V4

as before, hence

[∂tu]Σk
, [∂xu]Σk

→ 0 as τ → 0, k = 3, 4, (4.3)

exponentially, that is, possible discontinuities are preserved on Σ1,2 = {(t, x)|
x = ±αt}, which are the final ”hyperbolic” characterizing curves also for clas-
sical thermoelasticity, cp. [9].

Using a Taylor expansion of f and g, we can refine the asymptotics as
follows:∣∣[F̃1(V )]Σ1

∣∣
≤ (1 + O(τ))

(
‖ f ′2‖L∞ +

δβ

4κγ
τ‖f ′3‖L∞ +

δα

2κγ
τ‖f ′4‖L∞

)∣∣[V1]Σ1

∣∣
+

(αβ

κγ
τ + O(τ 2)

)(
‖ g′2‖L∞ +

δβ

4κγ
τ‖g′3‖L∞ +

δα

2κγ
τ‖g′4‖L∞

)∣∣[V1]Σ1

∣∣
(4.4)

where f ′j and g′j denote the derivatives of f and g with respect to their j-th ar-
gument. If f and g are globally Lipschitz continuous in (u+, u−, θ), respectively,
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we conclude from (3.7), (4.4)∣∣[V1]Σ1

∣∣ ≤ ∣∣[V1]Σ1(0)

∣∣e− βδ
2κγ

t+O(τ) t

+
(
‖ f ′2‖L∞ + O(τ)

) t∫
0

∣∣[V1]Σ1(s)

∣∣e(− βδ
2κγ

+O(τ))(t−s) ds
(4.5)

∣∣[V1]Σ1

∣∣ ≥ ∣∣[V1]Σ1(0)

∣∣e− βδ
2κγ

t+O(τ) t

−
(
‖ f ′2‖L∞ + O(τ)

) t∫
0

∣∣[V1]Σ1(s)

∣∣e(− βδ
2κγ

+O(τ))(t−s) ds.
(4.6)

Inequality (4.5) implies∣∣[V1]Σ1

∣∣ ≤ ∣∣[V1]Σ1(0)

∣∣e− βδ
2κγ

t+O(τ) te(‖f ′2‖L∞+O(τ))t

τ→0−→ lim
τ→0

∣∣[V1]Σ1(0)

∣∣e(‖f ′2‖L∞− βδ
2κγ

)t.
(4.7)

Substituting (4.7) into (4.6) it follows∣∣[V1]Σ1

∣∣ ≥ ∣∣[V1]Σ1(0)

∣∣ e−
βδ
2κγ

t+O(τ) t

−
∣∣[V1]Σ1(0)

∣∣ e−
βδ
2κγ

t+O(τ) t
(
e(‖f ′2‖L∞+O(τ))t − 1

)
τ→0−→ lim

τ→0

∣∣[V1]Σ1(0)

∣∣ e−
βδ
2κγ

t(2− e‖f
′
2‖L∞ t).

(4.8)

Similarly, we can deduce

lim
τ→0

∣∣[V2]Σ2

∣∣ ≤ lim
τ→0

∣∣[V2]Σ2(0)

∣∣e(‖f ′3‖L∞− βδ
2κγ

)t (4.9)

lim
τ→0

∣∣[V2]Σ2

∣∣ ≥ lim
τ→0

∣∣[V2]Σ1(0)

∣∣ e−
βδ
2κγ

t(2− e‖f
′
3‖L∞ t). (4.10)

Using again the representations

u+ = (∂t + α∂x)u = V1 + O(τ) V2 + O(
√

τ) V3 + O(
√

τ) V4

u− = (∂t − α∂x)u = O(τ)V1 + V2 + O(
√

τ)V3 + O(
√

τ)V4

θ = O(τ)V1 + O(τ)V2 + V3 + V4

q = − δ

2γ
(1 + O(τ))V1 −

δ

2γ
(1 + O(τ))V2

−
√

κ

γτ
(1 + O(τ))V3 +

√
κ

γτ
(1 + O(τ))V4

we conclude
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Theorem 4.1.

(1) In addition to the assumptions of Theorem 3.1, we also suppose that

f = f(u, ut + αux, ut − αux, θ)

g = g(u, ut + αux, ut − αux, θ)

are smooth in their arguments. Then, for k = 1, 2,

[θ]Σk
→ 0, [q]Σk

→ 0

[∂tu]Σk
→ 0, [∂xu]Σk

→ 0

exponentially as τ → 0 for k = 3, 4, and as τ → 0,

[θ]Σk
= O(τ).

(2) Additionally, if f and g are globally Lipschitz in their last three arguments,
then ut + αux and ut − αux have jumps on Σ1 and Σ2 respectively. The
jumps of ut + αux and ut − αux on Σ2 and Σ1, respectively, vanish of
order O(τ) at least when τ → 0, and [q]Σk

is kept as τ → 0 for k = 1, 2.
Moreover, we have that

(i) if f is independent of ut + αux (ut − αux resp.), then the jump of
ut +αux (ut−αux resp.) will persist for all t > 0 with the same rate
as in the linear case (see Section 2).

(ii) if f depends on u+ = ut + αux (u− = ut − αux resp.), and satisfies
‖ ∂f

∂u+
‖L∞ < βδ

2κγ
(‖ ∂f

∂u−
‖L∞ < βδ

2κγ
resp.), then the jump of ut + αux

(ut − αux resp.) decays exponentially when t →∞.

Remark 4.2. For smooth data the convergence of the solutions (u, θ, q) ≡
(uτ , θτ , qτ ) of (1.1) – (1.3) with f = g = 0 to the solutions of the corresponding
classical thermoelastic system (u0, θ0, q0) = (u0, θ0,−κθ0

x) has been proved in [7],
provided q0 = −κθ0,x. The same remains open for the discontinuous solutions
discussed here.
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