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A Regularity Result for the Heterogeneous
Evolution Dam Problem

A. Lyaghfouri

Abstract. We consider a non steady-state fluid flow through a heterogeneous porous
medium governed by a nonlinear Darcy law. Under a general condition on the per-
meability, we prove the LP-continuity of the saturation for any p > 1.
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1. Formulation of the problem

We consider a porous medium supplied by several reservoirs of an incompressible
fluid. It is represented by a bounded domain {2 of R™ with locally Lipschitz
boundary 02 = I'y UT'y, where I'; is the impervious part of the boundary, I's is
the part in contact with either air or the fluid reservoirs.

The fluid infiltrates through 2 obeying to the following generalized Darcy
law (see [10, Chapter 3]):

v=—-A(x,V(p+x,)),

where A is a vector function defined in 2 X R™ with values in R", x = (1, ..., z,,),
v is the fluid velocity and p its pressure.

We are concerned with the problem of finding the pressure p and the sat-
uration x of the fluid. For convenience we introduce the following functions :
u = p+x,, g =1—xand ¢ = ¢+x,, where ¢ is a nonnegative Lipschitz function
representing the exterior air or fluid pressure defined on @ with Q = Q x (0,7
and T a positive number.
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Using the mass conservation law, Darcy’s law, the boundary conditions and
the initial data, we obtain the following strong formulation for our problem
(see [4]):

([ u>m,, 0<g<1, glu—m,)=0 in €

div(A(z, Vu) — gA(z,e)) + ¢ =0 in Q
u =1 on Y

g('v O) = go in
(A(z,Vu) — gA(x,e)) - v =0 on ¥
(A(xz,Vu) — gA(z,e)) - v <0 on ¥,

(SF)

\

where go € L®(£2), v is the outward unit normal vector to 02, e = (0,...,0,1) €
R™ and

¥ =T x(0,7) : the impervious part

Yo =T x (0,T) : the pervious part

Y3 =9 N{¢ > 0} : the part covered by fluid

¥4 =34N{¢ =0} : the part where the fluid flows outside 2.

For A, we assume the following with ¢ > 1 and 0 <m < M < oo :

(i) x +— A(z,§) is measurable for all £ € R"

(ii) & — A(z,€) is continuous for a.a. x € 2

(iii) for all £ € R™ and for a.a. z € 2 :
A(,€).£ Zml¢]" and Az, )] < MI¢|"

(iv) for all {,¢ € R" and for a.a. x € Q:
(A(z,8) — A(z,0)(§ =€) =2 0. J

Using the strong formulation, we are led to the following weak formulation with

Ax) = A(z, e):

( Find (u, g) € L9(0,T, W“’(Q)) x L*°(Q) such that :
u>x,, 0<g<1, glu—=z,)=0 ae. inQ
(P) u=1 on s
/Q [(A@;, Vu) — gA(x)) - VE + gft] dz dt + /Q go(x)&(x,0) dz < 0

REE Wh(Q): €=0o0n X3, £>0o0n Yy, &r,T)=0foraa. xe€.

Under the assumptions (1.1), the existence of a solution was proved in [11,
Theorem 3.1] and also in [4, Theorem 5.1] for generalized boundary conditions.
Here we are concerned with the LP-continuity of the function g. We recall that
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it has been proved in [3, Proposition 1.6] in the case where A(z,{) = ¢ that
g € C°([0,T), L*(2)) for all p > 1 (see also [2, Theorem 2.4] for the compressible
case). This result was improved in [11, Theorem 4.5] in the case where A(x) is
a constant vector.

Our objective in this paper is to extend this regularity result to the case
where A € CY(Q) and div(A) > 0. The main idea of the proof is based on a
monotonicity result of g along the orbits of a differential equation. A similar
monotonicity is proved in [5, Theorem 2.1] for the stationary case.

We recall the following results from [11].
Proposition 1.1. For each solution (u, g) of (P), we have
uwe L=(Q), geC(0,T],W 1 (Q)) (1.2)
div(A(z, Vu) — gA(z)) + g =0 in D'(Q). (1.3)
Moreover if div(A(z)) >0 in D'(Q), we obtain

div(gA(z)) — g = div(A(z,Vu)) >0 in D'(Q). (1.4)

2. A monotonicity property of g

From now on, we assume that
A=A e) = (a1, ...,a,) € CH(Q,R™). (2.1)
div(A(z)) >0 in C(Q). (2.2)
From (1.1) iii), we have
m < an(z) <M, la(x)| <M VreQ Vi=1,..,n. (2.3)

Using (2.1), it is easy to see that there exists a C'' extension of A to R" denoted
also by A and satisfying (2.3) in R", with possibly different constants that we
still denote by m and M.

Let hy € R such that € is located above the hyperplane x,, = hy with empty
intersection. We consider for each w € R"™! the differential system

,CE/(S,UJ> = A($(57w))
(B(w)) { z(0,w) = (w, ho).

Then we have
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Proposition 2.1. There ezists a unique mazimal solution z(-,w) of (E(w))
defined on (—o0,00). Moreover x is of class C* with respect to w, C* with
respect to s, and we have

lim z,(s,w) = +oo. (2.4)

s—+oo

Proof. By the classical theory of ordinary differential equations there exists a
unique maximal solution z(-,w) of (E(w)) defined on (a(w), a4 (w)). Moreover
since A is of class C', z is of class C! with respect to w and C? with respect
to s.

Assume for example that a_(w) > —oo. Since A € L*(R"), z(-,w) is
uniformly Lipschitz continuous in R™ and therefore lim, ., () z(s,w) exists
and is finite. It follows that we can extend x(-,w) to the left of o_(w) which is
impossible. Similarly we obtain a contradiction if ay (w) < oo.

Moreover since
Tn(5,0) = ho + / an (2 (0, ))dor
0

and a,, satisfies (2.3), we obtain hy + ms < z,(s,w) < hg + Ms if s > 0 and
ho + Ms < x,(s,w) < hg+ms if s < 0 which leads to (2.4). |

We consider the mappings 7 : R" — R"” and S : R” — R" defined by
T(s,0) = a(s,w) and S(s,w) = (w, L(s,w)) = (w,7),

where L(s,w) = /05 |A(z(0,w))|do = /OS |7'(0,w)|do

represents the arc length of the curve z(-,w) from the point (w, hy) to the point
x(s,w). Then we have

Theorem 2.2. 7 and S are C'-diffeomorphisms from R™ into R™. Moreover
TS(s,w) = (=1)""A(z(s,w))| #0
Y(s,w) =TT (s,w) = (—1)"Ma,(w, hy) - exp(/ (divA)(z(o, w))da);é 0,
0
where J denotes the Jacobian.

Proof. Since z is C' and |A(xz(s,w))] > m > 0, clearly 7 and S are C*
mappings.
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Case: JS(s,w) = (—=1)""A(z(s,w))|.

We have
0 1 0 0
0 0 1 0 0
0
TS(s,w) = '
‘ ) . : 1 0
0 0 L 0 1
oL 0L oL oL
|A(z(s,w))| Bwy O Own_9  Ow,_1

which leads to JS(s,w) = (—1)""HA(x(s,w))| # 0.
Case: S(R") =R™

Let 2o = (wo, 70) € R with wy = (wo1, ..., won_1) € R ! and 75 € R. We have
9L (s,wy) = |A(z(s,wo))| > 0. So L(.,wp) is an increasing function on (—oo, 00).

Moreover by (2.3) we have
ms < L(s,wp) < Ms if s >0 and Ms < L(s,wy) <ms if s <O0.

So limg 1, L(s,wy) = +00 and therefore L(.,wy) is one to one from R to R.
We deduce that there exists a unique sy € R such that L(sg,wp) = 7o.
Hence we have proved that S(sg,wo) = (wo, L(S0, wo)) = (wo, To) = Zo.
Case: 7(R") =R"
Let zy € R™. Let z be the unique maximal solution of the following differential

system

Z(s) = A(z(s))

2(0) = .
As for the equation (E (w)), one can verify that the solution z is defined on
(—00,00) and that lims 4. 2,(s) = £oo. Moreover 2/ (s) = a,(2(s)) > 0. It
follows that z, is one to one from R to R. So there exists a unique sy € R such
that Zn(So) = ho.

Now if we set wo = (21(50), -, 2n—1(50)), We obtain z(sg) = (wy, ho). Finally,
it is easy to check that z(s,wy) = z(s+ s¢) and that T (—sop,wp) = x(—S¢,wp) =
2(0) = x.

Case: Y(s,w) =TT (s,w) = (=1)""a,(w, ho)-exp ( [; (divA)(z(o,w))do).
We need the following Lemma (see [13, Lemma 2.7] for the proof).

Lemma 2.3. Let U be an open set of R", f € C*(U,R") and v € C*(R™,R").

Then we have

(div(v))(f(2))T f(x) = div(Dy(v))(z) Ve el, (2.5)
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where D¢(v) = (Ds(v);) and D¢(v); is the determinant of the matriz obtained
from Df by replacing the 7 column by v(f).

Let 6 > 0, ps a mollifier and A5 = ps * A. For each w € R*"!, let zs(-,w)
be the solution of the differential equation

{ (s, w) = A(zs(s,w))
x5(0,w) = (w, hy).
We denote by 75 the diffeomorphism defined in the same way as 7.
Since As and 75 are C* functions, we can apply (2.5) with U = R", f = T
and v = As. We obtain
(div(As))(Z5(s,w))Y5(s,w) = div(Dz;(As))(s,w) V(s,w) e R" (2.6)

where Y5 = J7;.

Using the notations of Lemma 2.3, we claim that Dz;(As); = J75(s,w) and
that Dz, (As); = 0 for all j > 2. Indeed, Dr;(As); is the determinant of the
matrix M; obtained from D7s(s,w) by replacing the j™ column by

As(T3(5,) = Aas(5,) = 3(5,) = (s,

which is the 1% column of D7s(s,w). It follows that the matrix M; and
D7T5(s,w) are identical. This leads to Dz (As)1 = JZ5(s,w).

For j > 2, the 1 and j" columns of M; are exactly the same and therefore
D1, (As); = 0 for all j > 2. Hence (2.6) becomes

(@i (AD)(To(s,)) o5, 0) = - (Dr(A9 ) (s.) = S2(s,) V(s,) €R”
which leads to

Vi) = Vi) exo [ (divAp)ws(o.w))de)  V(s.w) € R
Letting 0 go to zero, we obtain

Y (5,w) = Y/(0,w) exp( /0 S(divA)(x(a,w))da> V(s,w) € R™.

Moreover we have

al(w,ho) 1 0 O
a2<w,h0) 0 1 0 0
0
Y (0,w) = ‘ Co = (=) ay (w, hy) # 0.
.0
. o . . . .01
an(w,hg) 0. . . . . 00




A Regularity Result 155

Thus the result follows. |

Remark 2.4. Let D = 771(Q). Then D is a domain of R" and 7 : D —
and S : D — S(D) are C'-diffeomorphisms.

The following monotonicity result generalizes the fact that g, —¢g; > 0 in
D'(Q) when A(z,£) = £ (see [2], [3]). It will play a major role in the proof of
the continuity of g.

Theorem 2.5. Let (u,g) be a solution of problem (P), Mw,7) = |A(T o
S Hw, )| and f(w,7,t) = g(T o S Hw,7),t) - |[Y 0o S7Hw,7)|. Then we
have

fr=Afi; >0 in D'(S(D)x(0,T)). (2.7)
Proof. Let ¢ € D(S(D) x (0,7)), ¢ > 0. Then ¢(z,t) = ¢(So T L(z),t) €
Cy(T(D) x (0,T)) = C5(2x (0,T)), ¢ > 0 and by (1.4) and (2.2), we have

/ gA(z) - Vo — gopdudt <0
Qx(0,7)

which can be written as

/ [oa. DA V(6 1) 0 S0 T7)
Qx(0,7)

— g(z,t)ps(S o T H(z),t)|dx dt < 0.

(2.8)

Using the change of variables S o 7 '(x) = (w, 7), we obtain
/ g(x, )¢ (S o T (z), t)dx
Q
B / 9(T 087 (w,7),1)
S(D)
) ¢t(w77—7 t) ’ |j(T o S_l)(W,T” dw dt
:/ 9(T oS Hw,7),t) - dy(w,T,1)
S(D)
AITT (87w, m)| - TS H(w,7)| dwdr

= [ JAToS ) ToS w1

. |Y(S_1(w,7'))| o (w, T, t) dw dT

(2.9)

= / Mw, ) - flw,7,t) - pp(w, 7, 1) dw dT
S(D)
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Using the change of variables 7 (s,w) = x, we get

/Qg(:c,t)A(m) V(p(,t)oSoT V) dx

:/ngsw) DA(T (5, w))
V(1) 0 S 0T V) 0 T(s,w) - ¥ (s,w)| ds duw
I

= [ o(T(5.0).0 V()] 5 (61 (5., 1) dsdo

(2.10)

since

—(qb(S(s,w),t)) 885 (¢(SOT o7 (s,w), ))
oT

= (V(¢(-,t)oSoT ") o T(s,w))%(s,w)
= A(T(5,0)) - (V(8(8) 0 S 0 T1) 0 T(s,).

Using the change of variables S™'(w, 7) = (s,w) in (2.10), we obtain

/Dg(T(s,w),t) Y (s,w)] - %(gb(S(s,w),t)) ds dw
= / g(T oS Hw,7),t)-|Y o S Hw, 7)|
S(D)

0
(528 1) 0 8))(
(83 >a (2.11)
_ S(D)f(w,T, t) - (a—(qﬁ(-,t) 03)) (87w, 7))
)

AT 0 8™ (w, ) ™ dw dr

S Hw, 7)) |TS Hw,7)|dwdr
s

/ flw,7,t) - wrt)dwdT

L (0110 8) (87w, 7)) = (V6(,1) 0 8) (57, 7)) - (87w, 7))
=Vo(w,T,t)- %: (S w, 7))
= 2w, AT 057w, 7)

= AT o S Hw,7))|- %(w,ﬂ t):
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Taking into account (2.8) - (2.11), we obtain

0 [9J0)
w, T, t) - — — ANw,7) - f(w,7,t) - — | dwdrdt <0,
Lo (Fm ) 57 = M) 7.0 50)

which is (2.7). |

As a consequence of Theorem 2.5, we have the following monotonicity re-
sults.

Theorem 2.6. Let (u,g) be a solution of problem (P),

min(m, 1)
4

Then for each € > 0 small enough, for all k € J., and for a.a. (w,7) € C,, we
have

C:=8(D), J, = [o, e}, C. = {(w,7) € C/d((w,7),0C) > €}.

T

f(w,T —k,t+ /_ A(w,a)da) < flw,,t) Vte[0,T — ¢ (2.12)

f(w,7+k,t—/7+kx(w,a)da) > flw,mt) VieleT]. (2.13)

To prove Theorem 2.6 we need the following two lemmas.

Lemma 2.7. Let (u, g) be a solution of problem (P),

P6 = C€ X (O,T— 6), 79k(w77_7t) = <U),7' - k7t+/ )\(W,O’) dO’)
T—k

Then for each & € D(P.), £ > 0, the function

F(k):/ f(ﬁk(w,T,t))g(w,T,t)dwdrdt

€

s nonincreasing on the interval J..

Proof. Let Py = C x (0,7). We claim that

Up(Pe) C P% cPy Vkel..

Indeed we first have
3
Pa = Cae x (0,7 — ZE) c Cx(0,T) = P,

Next if k = 0, we have U;(P,) = P, C P%. Let now k € J., with £ > 0, and let
(w,7,t) € Vi(Pc). There exists (w,v,s) € P such that (w,7,t) = Jg(w, v, s).
Since (w,v) € C¢, we have

e <d((w,v),0C) < d((w,v), (w,7)) +d((w,7),0C) =k + d((w, ),0C).
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Since k < % e, we deduce that

d((w,’]’>780) >€—/€26—§:_

and then (w,7) € Clse.

It remains to show that ¢ € (0,7 — 3¢). We have t = s+ [, AMw, 0)do
since £ > 0. On the other hand one has s < T'—¢€ and by (1.1) iii) A(w,0) <

min(m,1)

T €, we have

Therefore, since k <
v k 1
t=s+ Mw,0)do <T—€e+—<T—-€e+—-—e=T——.
v—k m m
It follows that

F(k) = /,9 o) FOu(w, 7, 0)E(w, 7 t) dwdr dt Yk € J.. (2.14)

Moreover, ¥ is differentiable with J9¢(w, 7,t) = 1. Therefore we obtain from
(2.14) by using the change of variables ¥y (w, 7,t) = (w, v, 5)

F(k) = fw, v, s)ﬁ(ﬁgl(w, v, 3)) dwdv ds
P,
N vk (2.15)
= flw, v, 3)£(w,y+ k,s —/ )\(w,a)da) dw dv ds.
Pa, v
From (2.15), we deduce that F' is differentiable with
/ _ 65 85 -1
F'(k) = . f(w, V,S){E — AMNw, v+ k)g} <19k (w,v, s)) dw dv ds
_ 9¢ 9¢
= o f(w,l/,s){a—)\(w,y)g}(w,v,s)dwdyds,

where ((w,v,s) = f(ﬁ;l(w, 1/,3)) = f(w,y + k,s — fywk /\(w,a)da). Now it is
not difficult to verify that for each k € J., we have ¢ € Cg(P<) and ¢ > 0. It
follows then from Theorem 2.5 that F'(k) <0 for all k € J.. |

Lemma 2.8. Let (u,g) be a solution of problem (P), and

T+k
Re = Ce X (€7T>7 @k(w77—7 t) = <w7 T+ kv t_/ )\(W,O’)dO’).

Then for each & € D(R,), £ > 0, the function

G(k):/ f(w,T—l—k:,t—/:JrkA(w,a)da)f(w,r,t)dwdrdt

€

s nondecreasing on the interval J,.
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Proof. As in the previous lemma one can verify that
Or(R,) C Rs C By Vk e J. .

This leads to

G(k) = /@ () F(O(w, 7, 1)E(w, 7, 1) dw dr dt. (2.16)

Moreover O, = 19,:1, and therefore we obtain from (2.16) by using the change
of variables O (w, 7,t) = (w, v, s)

G(k) = flw, v, s)ﬁ(ﬁ“w,u,s)) dw dv ds
R3e
i ) (2.17)
= f(w,v, s)f(w, v—Fk,s+ / AMw, a)do*) dw dv ds.
R3e v—k
Ky
From (2.17), we deduce that G is differentiable with
o %3 o€
G'(k) = fw, v, 8){_E + Mw, v — k:)a} (ﬁk(w, v, s)) dw dv ds

R

[N

= f(w,l/,s){—%+)\(w,v)%}(w,y,s)dwdyds ,

i
where
C((w,v,8) = f(ﬁ‘k(w, v, s)) = §(w, v—Fk, s+ /V )\(w,a)da).
v—k

Finally for each k£ € J., we have ( € C&(Rg) and ¢ > 0. Thus we obtain by
Theorem 2.5 that G'(k) > 0 for all k € J.. |

Proof of Theorem 2.6. Since g € C°([0,T], W~19(Q)), we deduce that
f € C°0,T], W14 (C)) and therefore Theorem 2.6 follows immediately from
Lemma 2.7 and Lemma 2.8. |

3. Continuity of g

The main result of this paper is the following theorem.

Theorem 3.1. Let (u,g) be a solution of problem (P). Then

g€ C([0,T],L(Q))  Vp=>1.
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The proof of Theorem 3.1 is based on Theorem 2.6 and the following lemma.
Lemma 3.2. Let (u,g) be a solution of (P). Then f € C°([0,T], L*(C)).

Proof. First of all we deduce from (1.2) and the fact that ¢ is bounded

Vte (0,T): f(,t+e) 40 f(-,t)  weakly in L*(C) (3.1)
f(-ye) . f(-,0)  weakly in L*(O) (3.2)
fG, T —e) -, f(-,T) weakly in L*(C). (3.3)

Note that it is enough to show that for all ¢t € (0,T)

111% (f(w, Tt +e€) — f(w, 1)) dwdr =0 (3.4)
€E—> C
111(1)1 (f*(w, 7€) = [*(w,7,0)) dwdr =0 (3.5)
=0t Jo
h%l (fQ(w,T,T —6) — fAw,T, T)) dwdr = 0. (3.6)
e—0t Jo

We distinguish several cases.

Case 1: t € [0,7). Let € > 0 small enough and let k.(w, 7) be defined by
€= f:_ke(w A AMw, 0)do. We would like to show that

lin% (fP(w, T t+€) — f(w,T,1)) dwdr = 0. (3.7)
—~0Jc

We first remark that for e small enough one has
’ / (fw,r,t+e) = fP(w,T,1)) dwdT’
c

< ’/Czﬁ (f2(w,7',t—|—6) — f2(w,7',t)) dwdT’ .

+ \/ (f2w,mt+e) = f2w,7,1) dwdr|
C\Cy e
— ded +]e,2'

Note that since f € L>(P), one has I, < ¢|C'\ Cy, | (here and after we denote
by ¢ any positive constant) and therefore since lir% |C'\ Cy 6| = 0, we obtain

lim 7.5 = 0. (3.9)
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Moreover
I1 < ’/ (fP(w,m,t+€) = f2(w, T + ke, ) dwdT‘
Cyye
- ’/ (Fw, T+ ke t) — f(w, 7, 1)) dw dT‘ (3.10)
Cyye

— 1e3 + Ie,4 .

From (1.1) 7i7) and the definition of A\, we have

V(w,7) € C.

k(w,7)eJspe V(wT) el (3.11)
Indeed it is enough to verify that Me < 220D /& which is equivalent to e <

4
(min(m,l)

2
" ) . We also have for € < #

(W, T +k(w,T)eCr V(w,T) el (3.12)
Indeed let (w,7) € Cy, . Then
2v/e < d((w, 7),00)

<d((w,7), (w, T+ ke)) + d((w, T + ke),0C)
= ke + d((w, 7+ ke),0C).

So

\/E)>O.

d((w, 7+ k),0C) — Ve > Ve — k. > ﬁ—MezﬁM(%—

Moreover for € < (T —t)? we have 0 <t < T — /e. Taking into account (3.11)
and (3.12), we can use (2.12) for € small enough (e < min((%y7 (T—1)%))
to obtain

f(w,7,t+e)—f(w,T—i-ke—kE,t—i-/ Mw, o) do)
T—ke

Sf(“vT‘i‘ke’t)
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for a.a. (w,7) € Cy . After using the fact that

12w, Tt +€) = fHw, T+ ke, V)| < c|f(w, Tt +¢€) — flw, T+ ke, 1),

we get
[e,3§0/ |f(w, 7.t +¢€) — flw, T+ ke, t)| dw dT
Coe
:C/ (f(u),T—i-k’e,t)—f(w77-7t_|_6))dwd7_
Cye
:?/ (fw,7,t) = flw, Tt +¢)) dwdr (3.13)
Cye
+c/ (f(wn'—l—ke,t)—f(w,ﬂt)) dw dr
Cye
= C-[e,5 +CI€76
Now

I 5] < ‘/C(f(w,T,t) —f(w,T,t—i-e))dwdT‘

—1—’/ (f(w,T,t)—f(w,T,t—i—e)) dwdT‘

C\Cy. /e

< ‘/ (f(w,T,t) —f(w,T,t—i—e)) dwdT‘ +c |O\ Cy el
C

It follows from (3.1) - (3.2) that

lim /.5 = 0. (3.14)
Regarding I.g, we use the change of variables (w,7) — G (w,7) = (w,7 +

ke(w,7)) = (W', 7). A simple calculation shows that for € small enough

k.
or

2ANw, 7 — ke(w, 7)) — Mw, 7)

Mw, T — ke(w, 7)) >0

JG(w, 7)) =14+

<w77—> =

which leads to

Mo, 7 — 2k
Ie,ﬁ = / f(wlv T/7t) ;T (w 7 6(w7/7—))/
Ge(Cye) 2AW, " = 2k (w, 7)) — MW, 7" — ke(w, T))

—/ flw,7,t)dwdr.
Cy e

dw' dr’
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Therefore it is clear that since lim, ¢ k.(w,7) = 0 and

iy Cs = iy (o) =€

we have

lir% I.¢=0. (3.15)
In the same way we prove that

lir% I.,=0. (3.16)

Taking into account (3.8) - (3.10) and (3.13) - (3.16), we get (3.7). In particular
we have proved (3.5) which leads to the continuity of f at t = 0.

Case 2: t € (0,7]. Let € > 0 small enough and let k. be defined by
€= fTTJrké(w’T) Mw, ) do. We would like to show that

lg% ; (f(w, Tt —€) — fA(w,7,1)) dwdr = 0. (3.17)

As in the first case we remark that for € small enough one has
‘/ (f2(w77—7t_ 6) - f2<w,7—,t)) deT’
c
< ‘/ (fQ(w,T,t—e)—fQ(w,T,t)) dwdT‘
Caoye

(3.18)
+ ‘ / (f2(w,7,t— €) — fA(w,T, t)) dw dT’
C\Cy e
= lev + 16,8'
We have I.g < c|C'\ Cy | and therefore
lim 1.5 = 0. (3.19)
Moreover
I.7 < ‘/ (fZ(w,T,t—e)—f2(w,7'—k€,t)) dwdT‘
+| / (2,7 = ko t) = 2(w,7,1)) w7, (3:20)
Cy e

= Ico+ Lo
As in the previous case we have

me < ke(w,7) < Me  Y(w,7)eC .
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Then it is not difficult to verify that for € < min((miZﬂ’l))Q, t%), we have

ke(w,7) € J V(w,7) e C
(W, T —ke(w, 7)) €Crp V(w,T) €y .

Therefore we obtain by using (2.13) for € small enough

T+ke
f(w,T,t—e):f(w,T—ke+kE,t—/ Mw, 0)do)
> f(va_ kﬂt)
for a.a. (w,7) € Cy . Using the fact that

|f2(w777t_6) _fz(va_kfatM < C|f<w77-7t_€) _f(waT_kmt)L

we get
IQQSC\/ |f(wa7—at_€)_f(W,T_k’g,t)'d(,UdT
Coe
:C/ (f(%ﬂt—ﬁ)—f(w,T—kﬁ,t))dwdT
Cyye
_C/ (f(w7T7t_€> —f(w,T,t)) dw dt (3.21)
Cyye
e [ (fomn) - flor = kot) dodr
Cye
=clc 11+ cleqo.
We have

[eni| < ‘/C(f(w,T,t—e) — fw, 7, 1)) dwdr‘
*’/C\C (f(w77—7t_6)_f(qu,t))dwdT‘
2ve

< ‘ / (f(w,T,t —€) — f(w,T,t)) dwdT‘ +¢c|C\ Czﬁ|.
c
It follows from (3.1) and (3.3) that
hr% Ie,ll = 0. (322)
Arguing as for I. 4 and I, we prove

1111’6 Ie,l(] = 111’% 16’12 =0. (323)
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Taking into account (3.18) - (3.23), we get (3.17). In particular we have proved
(3.6) which leads to the continuity of f at ¢t =T.

Combining (3.7) and (3.17) for t € (0,7), we obtain the continuity of f at
t € (0,7), and therefore the lemma is proved. [

Proof of Theorem 3.1. Since |Y o §7!| is positive, uniformly bounded and
independent of ¢, we deduce from Lemma 3.2 that

goT o8 = ot e o 1S (D)),

Moreover by using the change of variables 7 o S7 it follows that
g € C([0,T], LA(T(D))) = C°([0, T], L*(2)). (3.24)

Using the imbedding L?*(2) C L?(Q2), we obtain g € C°([0,T], L*(Q)) for p €
[1,2]. Now for p > 2, we obtain the result from

’g((’U?T?t_'_ 6) - g(W,T, t)lp
= |g(w77—a t+ E) - g(w77—7 t)|p_2|g(w7 Tat + 6) - g<w7 T, t)|2
< dg(w, b +¢) = glw, T, 1) N

Remark 3.3. All results of this paper are clearly valid for the evolution dam
problem with leaky boundary conditions ([12]).
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