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Cauchy Transform and Rectifiability in
Clifford Analysis

Juan Bory Reyes and Ricardo Abreu Blaya

Abstract. Let Γ be an n-dimensional rectifiable Ahlfors-David regular surface in
Rn+1. Let u be a continuous R0,n-valued function on Γ, where R0,n is the Clifford
algebra associated with Rn. Then we prove that the Cliffordian Cauchy transform

(CΓu)(x) :=
∫

Γ

y − x

An+1|y − x|n+1
n(y)u(y) dHn(y), x /∈ Γ,

has continuous limit values on Γ if and only if the truncated integrals

SΓ, εu(z) :=
∫

Γ\{|y−z|≤ε}

y − z

An+1|y − z|n+1
n(y)(u(y)− u(z)) dHn(y)

converge uniformly on Γ as ε → 0.
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1. Introduction

Given a closed Jordan curve γ in C which bounds a bounded domain ∆+ and
its complement ∆− = C \ (∆+ ∪ γ), the Cauchy transform of a complex valued
function f on γ is defined for z ∈ ∆+ ∪∆− by

(Cγf)(z) :=
1

2π i

∫
γ

f(τ)

τ − z
dτ

and represents a function analytic in C \ γ.
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There are often problems in complex analysis which are reduced to the study
of the boundary behaviour of Cγf , mainly in applications to solving boundary
value problems and singular integral equations.

This paper deals with boundary values properties of a higher dimensional
analogue of the Cauchy transform defined within the Clifford analysis setting.
More precisely, we find a necessary and sufficient condition for the Cauchy trans-
form of a continuous function on a rectifiable surface in Euclidean space to have
continuous boundary values. In such a way, a generalization of a fundamental
result in classical complex function theory is obtained.

Properties of the boundary values of this higher-dimensional Cauchy trans-
form (Cliffordian Cauchy transform) were first examined for compact Liapunov
surfaces by Iftimie [9]. He proved in 1965 that it has Hölder continuous limit va-
lues for any Hölder continuous function, and he established a Plemelj-Sokhotski
type formula. More recently, these results have been extended to Lp-spaces over
the boundaries of Lipschitz domains; see for instances [11, 12].

Our main interest lies in the study of the existence of the boundary values
of the Cliffordian Cauchy transform on n-rectifiable surfaces in Rn+1 which at
same time satisfy the so-called Ahlfors-David regularity condition. Links to
the Ahlfors-David regularity condition and the L2-boundedness of the higher
dimensional singular Cauchy transform may be found in, e.g., [5, 19].

The question on the existence of the continuous extension of the Cliffordian
Cauchy transform is optimally answered by means of Theorem 6 below. The
basic idea for our proof goes back to the one introduced by Salaev and Tokov
in [21, Theorem 4] for the complex analysis case.

Recently, in solving various hard boundary value problems in Euclidean
space the Clifford analysis tools have shown to play an important role. For
instance, in [22] Clifford analysis is used to solve a water wave problem in three
dimensions.

2. Clifford algebras and monogenic functions

The real Clifford algebra associated with Rn endowed with the Euclidean metric
is the minimal enlargement of Rn to a real linear associative algebra R0,n with
identity such that x2 = −|x|2, for any x ∈ Rn.

It thus follows that if {ej}n
j=1 is the standard basis of Rn, then we must have

that eiej +ejei = −2δij. Every element a ∈ R0,n is of the form a =
∑

A⊆N aAeA,
N = {1, . . . , n}, aA ∈ R, where e∅ = e0 = 1, e{j} = ej, and eA = eβ1 · · · eβk

for
A = {β1, . . . , βk} where βj ∈ {1, . . . , n} and β1 < · · · < βk. The conjugation is
defined by a :=

∑
A aAeA, where

eA := (−1)keik · · · ei2ei1 , if eA = ei1ei2 · · · eik .
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Put R(k)
0,n = spanR(eA : |A| = k). Then clearly R(k)

0,n is a subspace of R0,n – the
space of so-called k-vectors – and

R0,n =
n∑

k=0

⊕R(k)
0,n.

The projection operator of R0,n on R(k)
0,n is denoted by [ · ]k, and R and Rn will

be identified with R(0)
0,n and R(1)

0,n, respectively.

In what follows, an element x = (x0, x1, . . . , xn) will be identified with

x = x0 +
n∑

j=1

xjej ∈ R(0)
0,n ⊕ R(1)

0,n.

Elements of R(0)
0,n ⊕ R(1)

0,n are often called paravectors. Notice that for x ∈ Rn+1,
we thus have that

x x = x x = |x|2.

By means of the conjugation, R0,n may be endowed with the natural Euclidean
norm |a|2 = [aa]0. An algebra norm is defined by taking |a|20 = 2n|a|2.

We consider functions u defined in some subset Ω of Rn+1 and taking values
in R0,n:

u(x) =
∑

A

uA(x)eA,

where uA are R-valued functions. We say that u belongs to some classical class
of function on Ω if each of its components uA belongs to that class.

In [4] (see also [7]) a theory of monogenic functions with values in Clifford
algebras is considered which generalizes in a natural way the theory of analytic
functions of one complex variable to the (n + 1)-dimensional Euclidean space.
Monogenic functions are null solutions of the generalized Cauchy Riemann ope-
rator in Rn+1:

∂x :=
n∑

i=0

ei
∂

∂xi

.

It is a first order elliptic operator whose fundamental solution is given by

e(x) =
1

An+1

x

|x|n+1
,

where An+1 is the area of the unit sphere in Rn+1. If Ω is open in Rn+1 and
u ∈ C1(Ω), then u is said to be left (resp. right) monogenic in Ω if ∂x u = 0
(resp. u ∂x = 0) in Ω. Notice that the fundamental solution e is both left and
right monogenic in Rn+1 \ {0}.
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Other basic examples of monogenic functions are obtained by means of
the Cliffordian Cauchy transform. Assume that Ω+ is a bounded domain in
Rn+1 with a sufficiently smooth boundary Γ := ∂Ω+. Then for each continuous
function u in Γ, its Cliffordian Cauchy transform CΓu is formally defined by

CΓu(x) :=

∫
Γ

e(y − x)n(y)u(y) dHn(y), x ∈ Rn+1 \ Γ,

where Hn denotes the n-dimensional Hausdorff measure (the definition of the
Hausdorff measure can be found in, e.g., [6, p. 3], [8, p. 171] and [10, p. 60])
and n(y) is the outward pointing unit normal vector at y ∈ Γ. Clearly CΓu is
monogenic in Rn+1 \ Γ.

Besides the Cauchy transform we also consider its singular version, the
principal value singular integral operator SΓu(z) := limε→0 SΓ, εu(z), where SΓ, ε

denotes the truncated integral defined by

SΓ, εu(z) :=

∫
Γ\{|y−z|≤ε}

e(y − z)n(y)(u(y)− u(z)) dHn(y), z ∈ Γ.

Actually, the a priori smoothness assumption for Γ is not necessary. For in-
stance, there is a very general notion of the unit normal n(y) introduced by
Federer [8, Chapter three] such that the Stokes’s Theorem still holds for bound-
aries with Hn(Γ) < +∞. It is exactly this version of Stokes’s Theorem we
need to establish basic formulas in Clifford analysis such as Cauchy’s Theorem,
Cauchy’s integral, etc (see [1, 2]).

3. Rectifiable and regular sets in Rn+1

In what follows m will be a fixed integer such that 1 ≤ m ≤ n. We denote by
α(m) the volume of the m-dimensional unit ball.

If E ⊂ Rn+1 is an Hm-measurable set and 0 < Hm(E) < +∞ we say that E
is an m-set. The geometric condition 0 < Hm(E) < +∞ is a natural condition
without any quantitative estimates on the size of the set E. In particular, if
E is a compact connected set with H1(E) < +∞, then E is contained in a
rectifiable curve of length at most 2H1(E) (see [20, p. 875]). In that case, E
can be parametrized nicely by a Lipschitz function. Notice however that for
m-dimensional subsets of Rn+1 (m > 1) one cannot, in general, find such a nice
parametrization.

The m-dimensional Hausdorff upper and lower density of E ⊂ Rn+1 at the
point a ∈ Rn+1 are defined by

Θ
m

(E, a) = lim sup
r↘0

α(m)−1(r)−mHm(E ∩B(a, r))

Θm(E, a) = lim inf
r↘0

α(m)−1(r)−mHm(E ∩B(a, r)),
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where B(a, r) := {x ∈ Rn : |x − a| ≤ r}. When the upper and lower densities
are equal, their common value is the m-dimensional density at a:

Θm(E, a) := lim
r↘0

α(m)−1(r)−mHm(E ∩B(a, r)).

Furthermore, if the density is equal to one, then a is called an m-regular point.
Otherwise, a is called an m-irregular point. An m-set is said to be m-regular if
Hm-almost all its points are m-regular (see [14, p. 264])

The following basic density estimates for Hm hold (see [8, Section 2.10.19,
p. 181] and [10, Section 2.3, pp. 71 – 75]):

Theorem 1. Let E ⊂ Rn+1 be Hm-measurable with Hm(E) < +∞. Then

Θ
m

(E, x) ≤ 1 for Hm almost all x ∈ E

Θm(E, x) = 0 for Hm almost all x ∈ Rn \ E.

Among m-sets, rectifiable sets in the sense of Federer [8, p. 251] form es-
sentially the largest class wherein many basic geometric properties of smooth
surfaces have reasonable analogues. Such properties are, for example, the exis-
tence of tangent planes (defined in a measure-theoretic way), parametrization
by Lipschitz maps (or rather covering with Lipschitz surfaces) and the analogue
of Lebesgue’s density point Theorem.

Definition 1. An m-set E ⊂ Rn+1 is said to be m-rectifiable if it is the Lipschitz
image of some bounded subset of Rm.

The above definition is a special case of the more general Federer’s definition
of (Hm, m)-rectifiability (see [8, p. 251]). An m-set E is said to be (Hm, m)-
rectifiable if it is the union of an Hm-zero set and countably many Lipschitz
images of subsets of Rm. The notion of (Hm, m)-rectifiability is surprisingly
stable in the sense that many other conditions give an equivalent definition.
For instance, instead of Lipschitz images one can chose C1-submanifolds or
Lipschitz graphs. Notice that rectifiability expresses a qualitative condition
about the set (see also [6]).

Obviously, rectifiability generalizes the notion of smooth submanifolds. It
is well known that each (Hm, m)-rectifiable set is m-regular (see [8, Theo-
rem 3.2.19, pp. 256]). However, it is not obvious that each m-regular set is
in fact (Hm, m)-rectifiable. In 1975 P. Mattila [14, Theorem 2.1, p. 264] proved
the following theorem.

Theorem 2. If E ⊂ Rn+1 and Θm(E, x) = 1 for Hm almost every x ∈ E (i.e.
E is m-regular), then E is (Hm, m)-rectifiable.
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Theorem 2 was proved by Marstrand [15, Theorem 3, p. 94] in the special
case n = 2, m = 2. Moreover David Preiss (see [18] and [6, p. 5]) proved,
introducing the concept of tangent measures, a much stronger conjecture which
had been open for a long time.

Theorem 3. Whenever the m-dimensional density of E exists as a positive
finite number for Hm almost every x ∈ E, then E is (Hm, m)-rectifiable.

Another kind of regular sets which recently has been intensively studied, is
the class of so-called Ahlfors-David regular sets of dimension m (ADm-regular
sets). To be more precise, an m-dimensional closed subset E of Rn+1 is said to
be ADm-regular if there exists a constant C > 0 such that for all x ∈ E and
0 < r < diam(E)

C−1rm ≤ Hm(E ∩B(x, r)) ≤ C rm. (1)

Such sets are frequently also called regular (see [6, Definition 1.13, p. 9]), which
may cause some confusion with the previously defined notion of regularity. If
the set E is m-regular in this paper’s sense, then the m-dimensional Hausdorff
density exists and it is equal to one for almost all points in E. However, the
ADm-regularity condition does not imply the existence of the density at any
point of the set, although it implies a uniform positive and finite bound on E
for the upper and lower density. Many curves as well as countable unions of
curves and surfaces are ADm-regular.

As follows directly from Rademacher’s theorem (see [10, p. 81]) for an n-
rectifiable surface Γ ⊂ Rn+1 there are conventional tangent plane to Γ at z for
almost every z ∈ Γ. This fact allows us to study the behavior of the Cauchy
transform near the boundary in almost all of its points, what is carried out in
Section 4. If we desire to study the limit values of the Cauchy transform in every
z ∈ Γ, then it is necessary to assume also a global condition that guarantees an
uniform bound for some truncated integrals; as will be seen in the Section 5,
this is achieved precisely under the Ahlfors-David regularity condition.

We notice that the combination of these two conditions (n-rectifiability and
Ahlfors-David regularity) produces a very wide class of surfaces that contains
the classes of surfaces classically considered in the literature: Liapunov surfaces,
smooth surfaces and Lipschitz surfaces. Finally we also note that Ahlfors-David
regular sets are not always n-rectifiable (see [13, Example 2 on p. 798]), but if
γ is a closed Jordan curve in the complex plane which is AD1-regular, then it
is automatically 1-rectifiable.

4. The Cauchy transform on n-rectifiable surfaces

Throughout this section, Ω+ will be a bounded oriented connected open subset
of Rn+1 whose boundary is a compact topological surface. In this section we
study the Cliffordian Cauchy transform on such domains in Rn+1.
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Relying upon the theory of the Calderon-Zygmund operator, pioneering
work about the existence of the non-tangential limit values of the Cauchy trans-
form for Lipschitz surfaces has been done in [16, 17].

Theorem 4. Let Ω+ ⊂ Rn+1 have Lipschitz boundary Σ. Then for any u ∈
Lp(Σ), 1 < p < +∞, the non-tangential limit values (CΣu)+ and (CΣu)− of the
Cauchy transform CΣu on Σ exist at almost every z ∈ Σ, and

(CΣu)+(z) = p.v.

∫
Σ

e(y − z)n(y)u(y) dHn(y) +
1

2
u(z)

(CΣu)−(z) = p.v.

∫
Σ

e(y − z)n(y)u(y) dHn(y)− 1

2
u(z).

Taking into account that any n-rectifiable surface Γ can be covered by a
countable family of Lipschitz surfaces, except for a set of n-dimensional Haus-
dorff measure zero, it is clear that Theorem 4 still holds when Ω+ is bounded
by an n-rectifiable surface Γ.

We note that in the case of continuous functions u on Γ, a simpler proof of
the above Theorem can be derived using different techniques. The aim of this
section is to give a brief description of it. To this end, let us first introduce
some notations and lemmas.

Let z ∈ Γ and 0 < r ≤ d, where d := diam(Γ). Then the function ϑn
z (r) is

defined by
ϑn

z (r) := Hn(Γ ∩ {x ∈ Rn+1 : |x− z| ≤ r}).
Notice that, as Hn(Γ) < +∞, ϑn

z is a bounded and non-decreasing function on
(0, d].

For an R0,n-valued continuous function u on Γ (u ∈ C(Γ)) the modulus of
continuity ωu of u is defined by

ωu(τ) := τ sup
t≥τ

t−1 sup
x,y∈Γ,|x−y|≤t

|u(x)− u(y)|.

This function is much appropiate to describe smoothness properties of CΓu.

Lemma 1. Let u ∈ C(Γ), Hn(Γ) < +∞ and z ∈ Γ.

(1) For x ∈ Ω+ with |x− z| = ε

2
we have

|CΓu(x)− SΓ, εu(z)− u(z)| ≤ C

(
ϑn

z (ε)

dist(x, Γ)n
ωu(ε) + ε

∫ d

ε

ωu(τ)

τn+1
dϑn

z (τ)

)
.

(2) For x ∈ Ω− with |x− z| = ε

2
we have

|CΓu(x)− SΓ, εu(z)| ≤ C

(
ϑn

z (ε)

dist(x, Γ)n
ωu(ε) + ε

∫ d

ε

ωu(τ)

τn+1
dϑn

z (τ)

)
.
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Proof. The proof follows from a repetition of the arguments corresponding for
the complex analysis case (compare with [21, Lemma 1]; see also [3] for the
quaternionic version). The idea is to use the decomposition

CΓu(x)− SΓ, εu(z)− u(z)

=

∫
Γ∩{|y−z|≤ε}

e(y − x)n(y)(u(y)− u(z)) dHn(y)

+

∫
Γ\{|y−z|≤ε}

(e(y − x)− e(y − z))n(y)(u(y)− u(z)) dHn(y),

and then, to estimate each one of the integrals appearing in the right hand side
of the above equality. For the first estimation the procedure is obvious, for the
second one it is necessary to use Lemma 2.1 in [2].

From now on, we assume that Ω+ is a bounded open domain in Rn+1 with n-
rectifiable boundary Γ. Therefore, as at almost all points z ∈ Γ the conventional
tangent plane exists, we can consider a right circular cone Vφ(z) with vertex at
z such that its axis coincides with the normal vector to Γ at z and its angle φ
between the axis and the generator of the cone being less than π

2
.

For any 0 < φ < π
2

there is a sufficiently small positive number εφ such that
for ε < εφ we have

Vφ(z) ∩ {|x− z| < ε} ∩ Γ = {z}.
When approaching x to z non-tangentially inside Vφ(z) it is possible to find a
constant C(z) independent of x, such that |x − z| ≤ C(z) dist(x, Γ). Further-
more, according to Theorem 1, for Hn-almost every z ∈ Γ, there is a constant
C′(z) such that ϑn

z (r) ≤ C′(z) rn for every r ∈ (0, d].

Combining the above remarks, it follows easily that the right hand side of
the estimate (1) in Lemma 1 tend to zero for Hn-almost every z ∈ Γ after
replacing ϑn

z (r) by rn and letting x tend to z non-tangentially.

By virtue of Lemma 1, the following formal version of our main result (see
Theorem 6) may be obtained.

Theorem 5. Let Γ be n-rectifiable and let u ∈ C(Γ). Then:

(1) If the Cauchy transform CΓu(x) has non-tangential limit values from Ω+ or
Ω− almost everywhere on Γ, then the principal value integral SΓu(z) exists
for Hn-almost every z ∈ Γ and the following Plemelj-Sokhotski formulae
hold:

(CΓu)+(z) = SΓu(z) + u(z), (CΓu)−(z) = SΓu(z) (2)

(2) Conversely, if SΓu(z) = limε→0 SΓ, εu(z) exists for Hn-almost every z ∈ Γ,
then the Cauchy transform CΓu(x) has non-tangential limit values (CΓu)+

and (CΓu)− Hn-almost everywhere in Γ and the Plemelj-Sokhotski formu-
lae (2) hold.
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5. The Cauchy transform on rectifiable
ADn-regular surfaces

In this section (see Theorem 6) it will be proved that for u ∈ C(Γ), CΓu has
continuous boundary values if and only if SΓ,εu converges uniformly to SΓu as
ε → 0.

Let us start with two lemmas.

Lemma 2. Let Hn(Γ) < +∞, z ∈ Γ and r ∈ (0, d].

(1) If u+ ∈ C(Ω+ ∪ Γ) is monogenic in Ω+, then

|SΓ, ru
+(z)| ≤ C max

x∈Ω+∪Γ, |x−z|=r
|u+(x)− u+(z)|.

(2) If u− ∈ C(Ω− ∪ Γ) is monogenic in Ω− with u−(∞) = 0, then

|SΓ, ru
−(z) + u−(z)| ≤ C max

x∈Ω−∪Γ, |x−z|=r
|u−(x)− u−(z)|.

Proof. The proof proceeds along similar lines as in [3], where the case n = 2
was dealt with, and we omit the details.

Lemma 3. Let Γ be n-rectifiable and let u ∈ C(Γ). If the Cliffordian Cauchy
transform CΓu has continuous limit values (CΓu)± on Γ, then the truncated
integrals SΓ, εu converge uniformly on Γ as ε → 0.

Proof. First note that if the Cauchy transform CΓu has continuous limit values
(CΓu)± on Γ, then in view of Theorem 5 we have

(CΓu)+(z)− (CΓu)−(z) = u(z) for Hn-almost every z ∈ Γ.

The continuity property of the functions (CΓu)± and u implies that the above
equality holds everywhere on Γ. For the sake of brevity we put u+ = (CΓu)+

and u− = (CΓu)−.

Next, we affirm that Sεu → u− uniformly on Γ as ε → 0. In fact, by
Lemma 2, it is straightforward to check that∣∣SΓ, εu(z)− u−(z)

∣∣
≤

∣∣SΓ, εu
+(z)

∣∣ +
∣∣SΓ, εu

−(z) + u−(z)
∣∣

≤ C
(

max
x∈Γ∪Ω+, |x−z|=ε

|u+(x)− u+(z)|+ max
x∈Γ∪Ω−, |x−z|=ε

|u−(x)− u−(z)|
)

Using the uniform continuity property of u+ and u− we obtain the desired
convergences.
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Now we can state and prove our main result.

Theorem 6. Let Γ be an n-rectfiable ADn-regular surface and let u ∈ C(Γ).
Then the following two conditions are equivalent:

(1) CΓu has continuous limit values (CΓu)± on Γ

(2) SΓ, εu → SΓu uniformly on Γ as ε → 0.

Proof. Notice that (1) ⇒ (2) is proved in Lemma 3.

In order to prove that (2) implies (1), we shall prove that

(CΓu)+(z) = SΓu(z) + u(z), (CΓu)−(z) = SΓu(z).

For the sake of brevity we restrict ourselves to the case (CΓu)+.

Fix z ∈ Γ for the moment, and let x ∈ Ω+. There is a point zx ∈ Γ such
that |x− zx| = δ := dist(x, Γ). Then

|(CΓu)(x)− SΓu(z)− u(z)| ≤ |(CΓu)(x)− SΓu(zx)− u(zx)|
+ |SΓu(z)− SΓu(zx)|+ |u(z)− u(zx)|.

Now, split SΓu into two pieces corresponding to the decomposition

Γ =
(
Γ \ {x ∈ Rn+1 : |x− zx| ≤ δ} ∪ (Γ ∩ {x ∈ Rn+1 : |x− zx| ≤ δ}

)
.

Then

|(CΓu)(x)− SΓu(z)− u(z)|

≤ |CΓu(x)− SΓ, δu(zx)− u(zx)|+ ωSΓu(|z − zx|)

+ ωu(|z − zx|) +

∣∣∣∣∫
Γ∩{|x−zx|≤δ}

e(y − zx)n(y)(u(y)− u(zx)) dHn(y)

∣∣∣∣.
We estimate separately each term on the right hand side in the above inequality.
With Lemma 1 estimate (1) at our disposal and the ADn-regularity condition
for Γ, we have that the first summand tends to zero as x → z for every z ∈ Γ.

On the other hand, our assumptions on u, SΓu and SΓ, εu imply that for
every z ∈ Γ the convergence to zero as x → z of the other summands are true
and fairly simple, so altogether we have (CΓu)+(z) = SΓu(z) + u(z), and the
proof is complete.
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