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Global Nonexistence
for a Quasilinear Evolution Equation
with a Generalized Lewis Function

Yong Zhou

Abstract. In this work we consider the following quasilinear parabolic equation

a(x, t)ut − div
(
|∇u|m−2∇u

)
= f(u),

where a(x, t) ≥ 0 is a generalized Lewis function. The main result is that the solution
blows up in finite time if the initial datum u(x, 0) possesses suitable positive energy.
Moreover, we have a precise estimate for the lifespan of the solution in this case.
Blowup of solutions with vanishing initial energy is considered also.
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1. Introduction

We consider the following initial boundary value problem with generalized Lewis
function a(x, t) which depends on both spacial variable and time:

a(x, t)ut − div
(
|∇u|m−2∇u

)
= f(u) x ∈ Ω, t > 0

u(x, t) = 0 x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x) x ∈ Ω,

(1)

where m ≥ 2 (m = 2, then div (|∇u|m−2∇u) = ∆u) , f is a continuous function,
and Ω is a bounded domain of Rn, n ≥ 1, with smooth boundary ∂Ω.

Very recently, Tan [6] considered Problem (1) for m = 2, a(x, t) = a(x) ≥ 0
and f(u) = |u|p with p = 2∗ − 1 = (n + 2)/(n − 2) (one can find a review of
previous results in [6] and references therein, which are not list in this paper
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just for concision). He proved that the solution to problem (1) blows up in finite
time if u0 ∈ H1

0 (Ω) satisfies the following initial conditions:

1

2

∫
Ω

|∇u0(x)|2 dx−
1

2∗

∫
Ω

|u0(x)|2
∗
dx <

1

n
S

n
2∫

Ω

|u0(x)|2
∗
dx > S

n
2 ,

(2)

where

S = inf
u∈H1

0

‖∇u‖2
L2

‖u‖2
L2∗

.

In this paper, we generalize Tan’s result extensively. First, m ≥ 2, f is a
general source term and a(x, t) ≥ 0, almost every in Ω, is a generalized Lewis
function. Second, we replace ’<’ by ’≤’ in (2) (see (5) below for our case).
Moreover, the lifespan of the solution can be bounded precisely.

The main theorem reads as follows.

Theorem 1. Assume that a(x, t) is a positive function which belongs to the
space W 1,∞(0,∞;L∞(Ω)) and that at(x, t) ≤ 0 a.e. for t ≥ 0. Let

|f(u)| ≤ C0|u|p−1, p F (u) ≤ u f(u), (3)

where C0 > 0, p > m ≥ 2 and

F (u) =

∫ u

0

f(s)ds, p ≤ nm

n−m
for n > m.

If u0 ∈ W 1,m
0 (Ω) satisfies

‖u0‖Lp > λ0 ≡ (C0B
m
0 )

−1
p−m (4)

and has positive energy

E(0) =
1

m

∫
Ω

|∇u0(x)|m dx−
∫

Ω

F (u0(x)) dx

≤ E0 ≡
(

1

m
− 1

p

) (
C0B

p
0

)− m
p−m ,

(5)

where B0 is the optimal constant of Sobolev embedding

‖v‖Lp ≤ B0‖∇v‖Lm (6)

for v ∈ W 1,m
0 (Ω). Then no global solutions of Problem (1) can exist for u0 6≡ 0.

Moreover, if E(0) < E0, then the lifespan T ∗ of the solution to Problem (1) can
be bounded above as

T ∗ ≤
8‖

√
a0(x)u0(x)‖2

L2

(p− 2)2(E0 − E(0))
,

where a(x, 0) is denoted by a0(x).
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Remark 1. One can prove that the set of functions u0 ∈ W 1,m
0 (Ω) satisfying

1

m

∫
Ω

|∇u0(x)|m dx−
∫

Ω

F (u0(x)) dx <

(
1

m
− 1

p

) (
C0B

p
0

)− m
p−m

‖u0‖Lp =
(
C0B

m
0

)− 1
p−m

is empty. In fact, one can compute directly (see (10) below) that

1

m

∫
Ω

|∇u0(x)|m dx−
∫

Ω

F (u0(x)) dx ≥
(

1

m
− 1

p

) (
C0B

p
0

)− m
p−m

as ‖u0‖Lp = (C0B
m
0 )−

1
p−m .

Since the local existence of solution u(x, t) ∈ C([0, T ];W 1,m
0 (Ω)) to Prob-

lem (1) is well-known, we do not repeat it, for concision.

2. Proof of the main theorem

The method used here is not new but classical concavity method (see [2, 3, 4]).
However, our argument is slightly different from previous arguments and it is
more concise, in the author’s opinion.

In order to prove the main theorem, we recall the following lemma in [1,
Lemma 2.1].

Lemma 1. Suppose that a positive, twice differential function ψ(t) satisfies for
t ≥ 0 the inequality

ψ′′ψ − (1 + α)(ψ′)2 ≥ 0,

where α > 0. If ψ(0) > 0, ψ′(0) > 0, then

ψ →∞ as t→ t1 ≤ t2 =
ψ(0)

αψ′(0)
.

The corresponding energy to Problem (1) is given by

E(t) =
1

m

∫
Ω

|∇u(x, t)|m dx−
∫

Ω

F (u(x, t)) dx, (7)

and one can find that E(t) ≤ E(0) easily from

dE(t)

dt
= −

∫
Ω

a(x, t)u2
t (x, t) dx ≤ 0. (8)

The second lemma is a delicate estimate for the solution.
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Lemma 2. Suppose ‖u0‖Lp > λ0 and E(0) < E0. Then

‖u(x, t)‖Lp > λ0 and ‖∇u(x, t)‖Lm >
(
C0B

p
0

)− 1
p−m (9)

for all t ≥ 0.

Proof. Thanks to (3) and (6), one has for any t ≥ 0

E(t) =
1

m

∫
Ω

|∇u(x, t)|m dx−
∫

Ω

F (u(x, t)) dx

≥ 1

mBm
0

‖u(·, t)‖m
Lp −

C0

p
‖u(·, t)‖p

Lp .

Now if we let

g(s) =
1

mBm
0

sm − C0

p
sp, s ≥ 0,

then

g(s) is strictly increasing on [0, λ0)

g(s) takes its maximum value E0 at λ0

g(s) is strictly decreasing on (λ0,∞).

 (10)

Since E0 > E(0) ≥ E(t) ≥ g (‖u(·, t)‖Lp) for all time t ≥ 0, it follows from (10)
that there is no time t∗ such that ‖u(·, t∗)‖Lp = λ0. Then by the continuity
of ‖u(·, t)‖Lp-norm with respect to time variable and the initial condition that
E(0) < E0 and ‖u0‖Lp > λ0, one has

‖u(·, t)‖Lp > λ0 = (C0B
m
0 )−

1
p−m ,

for all time t ≥ 0, and consequently

‖∇u(·, t)‖Lm ≥ B−1
0 ‖u(·, t)‖Lp > B−1

0 λ0 = (C0B
p
0)
− 1

p−m .

This finishes the proof.

After the above preparation, we go to the proof of the main theorem.

Proof of Theorem 1. We consider two cases.

Case 1: E(0) < E0. The goal is to construct a suitable function ψ which
satisfies the conditions in Lemma 1. Following the arguments of [5, Theorem
1.1] (see [8] also), it is not difficult to find the following one is suitable for our
purpose,

ψ(t) =

∫ t

0

∫
Ω

a(x, τ)u2(x, τ) dx dτ +

∫ t

0

∫
Ω

(τ − t)at(x, τ)u
2(x, τ) dx dτ

+ (T0 − t)

∫
Ω

a0(x)u
2
0(x) dx+ β(t+ t0)

2, t < T0,

(11)
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where t0, T0 and β are positive constants to be determined later. Then using
equation (1) and integration by parts, one obtains

ψ′(t) =

∫
Ω

a(x, t)u2(x, t) dx−
∫ t

0

∫
Ω

at(x, τ)u
2(x, τ) dx dτ

−
∫

Ω

a0(x)u
2
0(x) dx+ 2β(t+ t0)

= 2

∫ t

0

∫
Ω

a(x, τ)u(x, τ)ut(x, τ) dx dτ + 2β(t+ t0)

(12)

ψ′′(t) = 2

∫
Ω

a(x, t)u(x, t)ut(x, t) dx+ 2β. (13)

Then, due to (3) and (9)

ψ′′(t) = 2

∫
Ω

−|∇u(x, t)|m dx+ 2

∫
Ω

u(x, t)f(u(x, t)) dx+ 2β

≥ 2
( p

m
− 1

) ∫
Ω

|∇u(x, t)|m dx− 2pE(t) + 2β

= 2
( p

m
− 1

) ∫
Ω

|∇u(x, t)|m dx− 2pE(0)

+ 2β + 2p

∫ t

0

∫
Ω

a(x, τ)(ut(x, τ))
2 dx dτ

≥ 2
( p

m
− 1

)
(C0B

p
0)

−m
p−m − 2pE(0)

+ 2β + 2p

∫ t

0

∫
Ω

a(x, τ)(ut(x, τ))
2 dx dτ

= 2p(E0 − E(0)) + 2β + 2p

∫ t

0

∫
Ω

a(x, τ)(ut(x, τ))
2 dx dτ.

Now, let β = 2(E0 − E(0)) > 0, and note that p > 2, then

ψ′′(t) ≥ (p+ 2)β + (p+ 2)

∫ t

0

∫
Ω

a(x, τ)(ut(x, τ))
2 dx dτ. (14)

From (11) (12), (13) and (14), we have
ψ(0) = T0

∫
Ω

a0(x)u
2
0(x) dx+ βt20 > 0

ψ′(0) = 2βt0 > 0

ψ′′(t) ≥ (p+ 2)β > 0 for all t ≥ 0.
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Therefore ψ and ψ′ are both positive. Since at(x, t) ≤ 0, for all x ∈ Ω and t ≥ 0,
by the construction of ψ, it is clearly that

ψ(t) ≥
∫ t

0

∫
Ω

a(x, τ)u2(x, τ) dx dτ + β(t+ t0)
2. (15)

Thus for all (ξ, η) ∈ R2, from (11), (12), (13), (14) and (15) follows

ψ(t)ξ2 + ψ′(t)ξη +
ψ′′(t)

p+ 2
η2

≥
(∫ t

0

∫
Ω

a(x, τ)|u(x, τ)|2 dx dτ + β(t+ t0)
2

)
ξ2

+ 2ξη

∫ t

0

∫
Ω

a(x, τ)u(x, τ)ut(x, τ) dx dτ + 2β(t+ t0)ξη

+ βη2 + η2

∫ t

0

∫
Ω

a(x, τ)(ut(x, τ))
2 dx dτ

≥ 0,

which implies that

ψ(t)
ψ′′(t)

p+ 2
−

(
ψ′(t)

2

)2

≥ 0,

that is

ψ(t)ψ′′(t)− p+ 2

4

(
ψ′(t)

)2 ≥ 0.

Then using Lemma 1, one obtains that ψ(t) goes to ∞ as t tends to

2(T0‖
√
a0u0‖2

L2 + βt20)

(p− 2)βt0
.

The remaining thing is to choose suitable t0 and T0. Let t0 be any number
which depends only on p, E0 − E(0) and ‖u0‖L2 as

t0 >
‖√a0u0‖2

L2

(p− 2)(E0 − E(0))
.

Fix t0, then T0 can be chosen as

T0 =
2(T0‖

√
a0u0‖2

L2 + βt20)

(p− 2)βt0
=

2(E0 − E(0))t20
(p− 2)(E0 − E(0))t0 − ‖

√
a0u0‖2

L2

.
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Therefore the lifespan of the solution u(x, t) is bounded by

T ∗ < inf
t≥t0

2(E0 − E(0))t2

(p− 2)(E0 − E(0))t− ‖√a0u0‖2
L2

=
8‖√a0u0‖2

L2

(p− 2)2(E0 − E(0))
.

This finishes the proof for Case 1.

Case 2: E(0) = E0. For this case, actually we consider the following claim.

Claim.There exists t̄ > 0 such that E(t̄) < E0.

Suppose Claim 1 is not true which means that E(t) = E0 for all t ≥ 0. Then
by the continuity of ‖u(·, t)‖Lp there exists a tε, small enough, such that

E(t) = E0 and ‖u(x, t)‖Lp > λ0 for all t ∈ [0, tε].

Then we consider the solution of (1) on [0, tε],

0 = E(t)− E0 = −
∫ tε

0

∫
Ω

a(x, t)u2
t (x, s) dxds,

which turns out to be∫
Ω

a(x, t)u(x, t)ut(x, t) dx = 0 a.e. on [0, tε].

And consequently, due to the equation (1),∫
Ω

a(x, t)u(x, t)ut(x, t) dx

= −
∫

Ω

|∇u(x, t)|m dx+

∫
Ω

u(x, t)f(u(x, t)) dx = 0

(16)

a.e. on (0, tε]. On the other hand,

E0 = E(t) =
1

m

∫
Ω

|∇u(x, t)|m dx−
∫

Ω

F (u(x, t)) dx

≥ 1

m

∫
Ω

|∇u(x, t)|m dx− 1

p

∫
Ω

u(x, t)f(u(x, t)) dx

=

(
1

m
− 1

p

) ∫
Ω

|∇u(x, t)|m dx
(
by (16)

)
≥

(
1

m
− 1

p

)
B−m

0 ‖u(x, t)‖m
Lp

>

(
1

m
− 1

p

)
B−m

0 λm
0 = E0,

which is a contradiction.

The proof of Theorem 1 is complete since one can apply the previous case
(Case 1) after shifting the time origin to t̄.
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Remark 2. Although Vitillaro [7] established abstract theorems of global non-
existence for a class of evolution equations (including (1)), the proof of Theo-
rem 1 given here is simpler, clearer and more readable for this concrete model.

If the initial energy is nonpositive, then the solution blows up in finite time
without the restriction (4). More precisely, we have

Theorem 2. Assume that a(x, t) is a positive function which belongs to the
space W 1,∞(0,∞;L∞(Ω)) and the derivative with respect to time at(x, t) ≥ 0 a.e.
for t ≥ 0. If the nonzero initial datum u0 ∈ W 1,m

0 (Ω) satisfies pF (u) ≤ uf(u)
with p > m > 2 and E(0) ≤ 0, then the corresponding solution to (1) blows up
in finite time.

Theorem 2 is analogous to Theorem 1.2 in [6] for m > 2, but here we show
this result by a different argument, which is simpler than all the previous ones.
Moreover, the lifespan of the solution can be given explicitly. For m = 2, one
can prove finite time blowup by the same method as that used for the proof of
Theorem 1.

Proof. Suppose D0 is the optimal constant of Poincaré’s inequality ‖v‖Lm ≤
D0‖∇v‖Lm for v ∈ W 1,m

0 (Ω). For any solution u(x, t), let

ϕ(t) =
1

2

∫
Ω

a(x, t)u2(x, t) dx

then

ϕ′(t) =

∫
Ω

a u ut dx+

∫
Ω

atu
2 dx

≥
∫

Ω

u
(
div(|∇u|m−2∇u) + f(u)

)
dx

= −
∫

Ω

(|∇u|m − uf(u)) dx

≥ −
∫

Ω

(|∇u|m − pF (u)) dx

= − p

m
E(t) +

( p

m
− 1

) ∫
Ω

|∇u|m dx
(
by (7)

)
≥ − p

m
E(0) +

( p

m
− 1

) ∫
Ω

|∇u|m dx
(
by (8)

)
≥

( p

m
− 1

)
|Ω|1−

m
2 D−m

0 ‖u(·, t)‖m
L2

≥
( p

m
− 1

)
|Ω|1−

m
2 D−m

0

(
2

M

)m
2

ϕ
m
2 (t),
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where M ≥ a(x, t). The above inequality tells us that ‖u(·, t)‖L2 →∞ as t goes
to

mDm
0 |Ω|

m
2
−1M

m
2

(m− 2)(p−m)‖
√
a0(x)u0(x)‖m−2

L2

.

This finishes the proof.
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