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1. Introduction

Whereas for linear convolution equations of Volterra type and also for nonlinear
convolution equations of Volterra-Hammerstein type there is a vast literature
(cf. [7, 9]), quadratic autoconvolution equations of Volterra type have been
studied only in recent times. Exceptions are the well-known integral equations
for the Jacobian theta zero function and for the Mittag-Leffler function dealt
with by F. Bernstein and G. Doetsch in the twenties of the last century by
Laplace transform and Volterra methods [5, 6] (cf. also [12, 14]). The interest
in equations of autoconvolution type now arises on one side from practical
problems of spectroscopy where the autoconvolution equation of the first kind
is treated in context of the theory of incorrectly posed problems (cf. [8]), and on
the other side from identification problems for memory kernels in heat transfer
and viscoelasticity where the memory kernels are determined as solutions to
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nonlinear generalized autoconvolution equations of the second kind with a given
free term (cf. [14] for a short overview). To obtain global in time solutions of
these generalized autoconvolution equations the iteration method with weighted
norms is used which can be applied to other nonlinear Volterra equations of
autoconvolution type, too (cf. [11, 13, 14, 15]).

In the present paper we give a first thorough investigation of nontrivial
solutions to a class of generalized autoconvolution equations of the third kind

k(e)y(a) = / Oy yla—)de, z>0. (L.1)

These equations are natural generalizations of the above-mentioned equations
of Bernstein and Doetsch. A special case is considered in the monograph [3,
p. 167] as an example for quadratic equations of convolution type with infinitely
many solutions. Equation (1.1) has the peculiarity that with any solution y, also
e““yo with arbitrary c is a solution. For k(x) > 0 and a(z) > 0 the equation has
the further property that a solution which is positive for small z (in particular,
a continuous solution with positive value at x = 0) remains positive for all x
(as long as it exists).

In the present paper, we prove existence theorems for nontrivial continuous
solutions of equation (1.1). A suitable ansatz reduces it to an equation with free
term to which a theorem by J. Janno [10] can be applied. In one case we show
that this ansatz is satisfied automatically. Further, applying a general theorem
of [2] we determine asymptotic solutions at infinity to a special class of equations
(1.1). Moreover, we prove the existence of the first and second derivatives of the
continuous solutions to equation (1.1) under adequate smoothness assumptions
on the coefficients k¥ and a. Also holomorphic solutions to equation (1.1) with
holomorphic k£ and a(z) = 1 are studied by Cauchy’s majorant method where
the coefficients of the Taylor series of the solution can be recursively determined
by the coefficients of the Laurent series of the function 1/k. Finally, we deal
with a numerical procedure for solving the equation and show its effectiveness
by calculating approximately a solution of an equation arising from the theory
of nonlinear (rational) difference equations [4]. Thereby some calculations are
carried out by means of the DERIVE system.

Our existence theorems for nontrivial solutions to equation (1.1) can be
compared with certain results for equations of Hammerstein-Volterra type with
power-like nonlinearities (cf. [14]) which were obtained by different iteration
methods. The global existence of solutions to equation (1.1) in spite of the
quadratic nonlinearity here follows from the properties of the autoconvolution
integral (and the vanishing of the coefficient & at zero).

To prove the existence theorems in the following we use a special case of a
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general existence theorem by J. Janno [10] on operator equations of the form
z(z) = f(z) + G[z](z) + L[z, z](x) (1.2)

with a linear operator G and a bilinear operator L in C[0,7], 0 < T < o0,
where C[0, T is equipped with the exponentially weighted norms

— —0oZx — —0oX
lell, = lle==() = mas, le"*2(a)], 0 >0,
equivalent to ||z|| = ||z||o. We state this theorem as

Lemma 1. Let the linear operator G : C[0,T] — C[0,T] and the bilinear
operator L : C[0,T] x C[0,T] — C[0,T] satisfy the inequalities

1GAlle < M(o)|zlle , o200 >0 (1.3)

for any z € C[0,T] with a continuous function M satisfying M (o) — 0 as
o — o0, and

121, z]llo < Nl[zillollz2lls, 0> 00 >0 (1.4)

with a constant N and

2o 2l < { rto)llzl- (19

p2(9) |21l |22l

with continuous functions yg, k = 1,2, satisfying pg(c) = 0 as o — oo for any
pair z1,zo € C[0,T]. Then equation (1.2) has a uniquely determined solution
z € C[0,T].

In the following we choose oy > 1 without loss of generality.

2. The superlinear case

Our main goal is to prove existence of (non-trivial) continuous solutions of the
equation

ke)y(e) = / Oy — &) de, x € 0,T) (2.1)

where 0 < T' < oo. We begin with the case that the solution is superlinear for
small z.
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Theorem 1. Let k € C[0,T], 0 < T < oo with k(z) > 0 in (0,T] and k(0) =0
possessing the finite asymptotic expansion

k(r) = Az + Bx*™ +o(x*™), § >0 as z — 0, (2.2)

where A > 0, B € R. Let further a € C[0,T] with a(0) = 1 possessing the
asymptotic expansion

a(z) =14+ Xz +o(x'), 6, >0 as 2 — 0, (2.3)
where A € R. Then equation (2.1) has a solution y € C[0,T] of the form
y(z) = A+ z'%%(x), & = min(,0,) >0 (2.4)
with z € C[0,T] and
S[AXN—(2+40)B] if =46
2(0)=49 -3 (2+6)B if § <6 (2.5)
% AN if 61 <6 .
The solution y is unique in the class of functions of type (2.4).

Corollary 1. By the remark in the Introduction, there exists a one-parametric
family of solutions y = e“yy, ¢ € R, with yy as the solution (2.4) which are of
the form y(z) = A+ Ajx + 2%z (z), A; € R, 2, € C[0,T].

Proof of Theorem 1. Inserting the ansatz (2.4) into (2.1) we get the equation

z(z) = fo(z) + Golz](z) + L[z, 2](z) (2.6)
for z, where
0@ = gy |4 @@= k) 1)

Gol2)e) = Sy | €740 + (@ = Px(o - Ola(e) de

1 /z g0 (g — )% (&) zg(x — E)a(€) dE . (2.8)

Lol21, 2] (z) = 00k(z) J,
By (2.2) and (2.3) we have

$2+61

2+ 6,

— B $2+5 + O(./L'2+60)

A/Oza({f) d¢ — k(z) = AX
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implying fy € C|0,T] with

211—% —B if §=6

fo(0)=<{ —B if § <6 (2.9)
Zﬁ—gl if 6, <6 .

We split the linear part Gy[z] as follows:

2 T
+do /0 €17%02(8) d + G2 (),

Gol2) (@) = —

where G1[z] = J; + Jy with

2 Az —k

@) / gl e) de

= 22t k(x)
) g (2.10)
Jo(z) = Z0k(z) /0 [§1+502(5) +(z = &) Pz(z — &)]la(§) — 1]d¢,
and write equation (2.6) in the form
o) = o | €O 8 = g(o) (2.11)

where g = g(+, z(+)) is given by

g(z) = folz) + Gi[2l(z) + L[z, 2]() -

For any z € C[0,T] we have G,[z] € C[0,T] with G[z](0) = 0 and L[z, 2] €
C0,T] with Ly[z, z](0) = 0, therefore g € C[0,T] with g(0) = fo(0).

The auxiliary equation (2.11) for known g € C[0,T| has the unique contin-
uous solution

) =gl)+ 5 [ e,

Hence we obtain instead of (2.6) the equivalent equation
z(z) = f(z) + G2 (z) + Lz, 2](2), (2.12)

where

fa) = fla)+ 55 [ fleyeds e clo. (2.13)
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with f(0) = (2 + d0) fo(0), and

0

Glz](z) = Gi[#](z) + % /Ow Giz)()e% " de (2.14)
Llz1, z](z) = Lo[21, 20) () + % /0z Loz1, 22) (€)% d€ . (2.15)

For any z € C[0,T] we have G[z|] € C[0,T] with G[z](0) = 0, and for any
pair 21,2 € C[0,T] we have L[z, 20| € C[0,T] with L[z, 25](0) = 0. Hence
2(0) = f(0) for the solution z of (2.12).

In applying Lemma 1 to equation (2.12) we have to show that the inequal-
ities (1.3) - (1.5) hold. To prove inequality (1.3) for (2.14) we estimate

Gl ) <l Gl + o [ e de IGiLlL
implying
IGEI, < L+ DG (216

Further, in view of (2.2) for the first expression J; in (2.10) we obtain

o 2t ’ 14680 ,—o(z—E&)
e h@)] < Const oo | g mee 0 de o],

1
< Const T° . Izl

ie., [|Ji]lo < Const L ||z||,. Analogously, in view of (2.2) and (2.3) we estimate
the second expression J5 in (2.10)

le 7" Jy(x)| < Const

T
e / [{:24—604—61 +{:1+60x1+61]efa(w75) d¢ ||Z||a
T 0

1
< Const T = ||z, ,
o

ie., ||/o]lo < Const I ||z|,. Hence the inequality (1.3) for G[z] with M (o) =
Const % follows.

To prove the inequalities (1.4) and (1.5) for (2.15), analogously to (2.16),
we again have

2
1L[z1; ze]lle < (1+ 5—0)||Lo[21,22]||a- (2.17)
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Further, since a is a bounded function we obtain from (2.8)

1 T
$2+50 A 61+50($ B 6)1_'—60 dg ||z1”0||22||0

< Const T 21|01 22]l5

le™9" Lo[21, 22](z)| < Const

ie., ||[Lo[z1, 22]|lo < Nol|z1l|s]|22]|s» and by (2.17) we have inequality (1.4) with
N = (1+ £)No. Moreover,

B 1 /" -
e 7 Lo[21, 22](z)| < Const xmo/o £ (z — €)% 7 dE || 21|22l

1
< Const T5°g||Z1||||Z2||a ;

and analogously with z; and z, interchanged. I.e., the inequality (1.5) is fulfilled
with functions sz = Const . Finally, from 2(0) = f(0) = 5 (2 + &) fo(0) and
(2.9) the relations (2.5) follow. Theorem 1 is proved. |

3. The sublinear case

We continue with the case that the solution is sublinear for small z.

Theorem 2. Let k € C[0,T], 0 < T < oo with k(z) > 0 in (0,7] and k(0) =0
possessing the asymptotic expansion

k(z) = Az + Bz + o(z"™), § >0 as 2 — 0, (3.1)

where A > 0, B € R. Let further a € C[0,T] with a(0) = 1 possessing the
asymptotic expansion

a(z) =14+ Az +o(z™), §, >0 as = — 0, (3.2)

where X\ € R. Let 6y = min(d, 1) satisfy the inequality % < dp < 1.
Then equation (2.1) has a one-parametric family of solutions y. € C[0,T],
c € R, of the form

Ye(z) = A+ 1%2,(2) (3.3)
with z. € C[0,T] and the value
= [(1+8)B—-A\ if §=6
2(0) = { 0 B if <6, (3.4)
if 61 <6,

which s independent of c. The solutions y. are unique in the class of functions
of type (3.3).
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As parameter ¢ € R one can take the free parameter C' in the solution of
equation (3.7) or the parameter in a representation of the family of solutions
y = e““yo with a particular solution yjq.

Proof. The proof goes along the lines of the above proof of Theorem 1. Again
we obtain an equation for z = z. of the form

(0) -~ e [ €9 = fuls) + u(o), 55)
where
o) = g |4 [ @ -] € cony o
and

9o(z) = G1[2](x) + Lolz, 2] (x)

with analogous expressions (G; and Lg as in the proof of Theorem 1, where only
&o is replaced by & — 1. For z € C[0,T] we have g, € C[0,T] with go = O(z%)
as x — 0. Observing % < p < 1 the general continuous solution of equation
(3.5) can be given by the expression

z(z) = Cz' % + fo(z) + go(x) — 2z ! fo_(@ dé + 2z1~% " 90(¢)

- 52—(50 0 52—50

with arbitrary C' € R. This means, equation (3.5) is equivalent to the family of
equations

dg

z(x) = f(x) + G[z|(z) + L[z, z|(z), (3.7)
where
fla) = o8+ o) — 200 [ B ag e cpomy,

and G and L are defined as in the proof of Theorem 1, also with Jy — 1 instead
of dy. Using now the inequality

r 1 1
—Ndn = Z[1 — 7% < = e
| ean= i e < o)
for o =1 -9y and for an o = o with g € (0,1) and o + 26y > 2, respectively,

we can show that

|G[A]lle < Const 1]l

O—l—ao
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and analogously for L[z1, 25| so that the inequalities (1.3) — (1.5) for G[z] and
Lz, zo] are satisfied. Therefore the existence of a family of solutions y. of the
form (3.3) with ¢ = C' to equation (2.1) is proved. By the uniqueness assertion
in the theorem in [10] it can also be written as y. = e“yy, ¢ € R, with a
particular solution yy of the equation. The joint value (3.4) of all z. at zero
easily follows as in the proof of Theorem 1. Theorem 2 is proved. |

Remark 1. The existence of continuous solutions to equation (2.1) in the case
0<dy < % in Theorem 2 is an open problem.

4. The logarithmic case

The last existence theorem deals with the limit case 6 = §; = 0 in Theorem
1 and § = 6; = 1 in Theorem 2, respectively. Here, the solution contains a
logarithmic term for small x, in general.

Theorem 3. Let k € C[0,T], 0 < T < oo with k(x) > 0 in (0,T] and k(0) =0
possessing the exrpansion

k(z) = Az + Bz* + C(x) (A>0), (4.1)

where B € R, C(z)
a € C[0,T] with a(0)

= o(x?) as x — 0 with fOT |c$(§)| dx < oo. Let further
= 1 possessing the expansion

a(z) =14 Bz + v(z), (4.2)

where § € R, y(z) = o(x) as x — 0 with fOT ‘7;—?‘ dx < oo. Then equation (2.1)
has a solution y € C[0,T] of the form

y(x) = A+ prhnx +z2(x), p=Ap—-2B (4.3)

with z € C[0,T] and z(0) = 0. The solution y is unique in the class of functions
of type (4.3).

Corollary 2. There exists a one-parametric family of solutions y = ey, ¢ € R
with yo as the solution (4.3) which have the form

ylx) = A+ prlnz +zx2(x), 2z €C[0,T].
Proof of Theorem 3. Inserting (4.3) into (2.1) we get the equation

2(z) = fo() + Gol2](x) + Lo[z, 2](x) (4.4)
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for z, where

(o) = {4 [ el de+ au [ eme ateyae

[ (@ = nio — €)a(e) de (45)

T2 /0 €0 — ©)IngIn(z — Eale) de — k(z)[A + o lnx]}
and
(¢ — &) In(x - £)]2(€)
+ ( — A+ puEInglz(z — €)}a(e) de

Lolzr, 2]( / £(z ()2l — £) de. (4.6)
By (4.1) and (4.2) we have
o k(@) folz) = "; P lng — Auf %3 _AC(z) - pClz)zinz
& [" 2y ds+ an [ 11©) + (o - Olemeds
w1 [ el = nginta - ale)de

from which f, € C[0,T] with fo(0) = 0 and [,/ L gz < oo follow.
We split up

Golelw) = % [ €#(6)de + Galel(a)
where
Gl = 2 Ax / e
:rkf(la:)/ [€2(8) + (z = Oz(z — &la(€) — 1] d¢ (4.7)
xk/fx / £(z = &)[In(z = &z(§) +In& 2(z — &)]a(§) d€
and write equation (4.4) in the form
o) - [ €2 de = g(a) 19)
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where g = g(-, 2(+)) is given by

9(x) = fo(z) + G1[2](z) + L[z, 2](z) .

Observing (4.1) and (4.2), we estimate in (4.7)

i) < const{ [ [E4 & ] polae+ % [Teto - 91zt - e)lag

+ 2 [ €lo - Ol - 1] + Iméllz(a - )] e |
< Const z[1 + |Inz|]|2]|-

This estimate implies G1[z] € C[0,T] for any z € C[0,T] with G;[z](0) = 0 and

foT IGl[;M dz < oo. Further, from

Ll @) < Const = [ o= (€)1t - O] de

< Const z [|2]|?

follow the assertions Lg[z, z] € C[0,T] for any z € C[0,T] with L[z, 2](0) = 0
and fOT ILo[zzw dr < oco. Therefore, we also have g € C[0,T] with g(0) = 0

and fOT @ dx < oo. Then equation (4.4) with z(0) = 0 is equivalent to the
equation

z(z) = f(x) + G[z|(z) + L[z, z](x), (4.9)

where
F() = fola) +2 / % & € C[0,7]

with f(0) = 0 and

Glelw) = Gulel(a) +2 [ Gal)©) (4.10)
de

£
Again, for any z € C[0,T] we have G[z] € C[0,T] with G[z](0) = 0, and for

any pair z1, ze € C[0,T] we have L[z, 29] € C[0,T] with L[z1, 22](0) = 0. Hence
z(0) = f(0) = 0 for the solution z of (4.9).

Lz, 2)(2) = Loz, 2](x) + 2 /0 " Lolr, 2](6) (4.11)
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We prove the inequalities (1.3) — (1.5) for G[z] and L[z, 25]. At first by
(4.1) and (4.2) we estimate in (4.7), observing o > 1,

oG] < Const femor [1]E 6 £+ 2 k1 de

x

&)l in(z — &)[12(6)] + €] |2(z — &) ds}
< Const ||z||» [/Ow —o@=8 g¢ + /Ox e 7@ 9| In(z — &) df]

1
< Const — [1 4+ Ino]||z||s -
o

Further,

e | mGM@%‘

T 3
< Const e~ / % / 1+ [1n(¢ — ) )}2(n)|dn de

T zq 3
< Const ||z||, [/ ozt d§—|—/ —e”(””g)/ e " 1Inn|dn d§]
0 0o § 0

1
< Const —[1 +Ind]||z||s -
o

Hence by (4.10) we have

1
|G[2]||ls < Const p 1+ Ino]|z|s,

and (1.3) is proved.
To prove (1.4) and (1.5) we estimate in (4.6)

1 xT
e Lola1, 22)(@)] < Const / £(x — €) de |2lo |2l
0

< Const z||z1||o]|22|l5
and

1 T
e 7" Lofs1, )(s)| < Const / £(x — &)e ot de |zl

1
< Const p |z1 ||| 22| -
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Further,

e 7" /OILO[Zl,Zﬂ('f)%‘
T 13
< Const e~ / gi / n(€ — )21 (n)]|2a( — m)|dap de

z 13
< Const e_”/o %/0 \z1(n)|[22(€ — n)|dn d€

< Const x|z [|o|22l»

and

/ Lo[zl,z21(5>—5\s00nst Lot / e=odn dé |21 ]|l
: ¢ ) € .

1
< Const —|[z]l[l2lo -

By (4.11) we obtain
[1L[z1, 2]l < Const |[z1]o |22l

1
IL{21, zellle < Const —lz1 |l z2llo

and analogously with z; and z, interchanged. This proves (1.4) and (1.5).
Theorem 3 is proved. [

5. Asymptotic behaviour at zero
It remains the question whether there exist further solutions than those deter-

mined before. Concerning Theorem 1 we shall show that this does not come
true, where we begin with a special case.

Theorem 4. Let the conditions of Theorem 1 be satisfied witha =1 and § < 1.
Then every continuous solution of

k(a)y(a) = / “y(a— E)y(E) de (5.1)

which does not vanish, identically, has the asymptotic expansion
2
y(r) = A+ Br — (1 - 5) Bz + o(z') (x — +0) (5.2)

with a certain (.
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Proof. By means of the substitution & = zt, equation (5.1) turns into

Lh@(@) = [ v(e(1 = O)uat)dr

and for a continuous solution we obtain as x — 0 the relation Ay(0) = y*(0),
i.e., either y(0) = 0 or y(0) = A. In the first case we choose ¢ > 0 so small that
m = maxo<z<. |Y(2)| < ko with kg = ming<,<r 2k(z). Then, for 0 < z < ¢,
(5.1) implies the inequality
m2

ly| < e
which is a contradiction to the definition of m when m > 0. Hence, y vanishes
identically for 0 < z < ¢ and, according to (5.1), also for 0 < x < T.

In the second case y(0) = A we put y(z) = A+ ¢(z) and obtain from (5.1)
and k(r) = (A + B(z))x with B(z) = Bx'*? + o(z'?) that

o@) =2 [ ple)de = g(o X
with
1 v 1
o) = 4 [ e - 0e@de- B (14 0@) . )

We exclude the trivial case that ¢ vanishes identically which belongs to the case
B(z) = 0. Equation (5.3) is a special case of (3.5) with dy = 0, so that (5.3) is
equivalent to

g(t)
t2

T
o(r) = ar + g(x) — 23:/
T

with an arbitrary o € R. We introduce the increasing function

() = max |p(t)|

0<t<z

dt (5.5)

so that L e
2 [ ete- o0t de < v

and g(z) = O(¥?(x))+O(x'*°) . Moreover, we introduce the auxiliary functions

_ [T

o di

f(z)

T

and h(z) = z f(x) which are nonnegative and continuously differentiable. Hence,
(5.5) implies

p(z) = O(z) + O(¥*(z)) + O(h(z)). (5.6)
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Since

I ERHC)
h(z) = /1 o de

converges to 1*(0) = 0 as x — 0, we have h(0) = h(T) = 0 and, according to
Rolle’s theorem, there exists a zero of b’ in (0,7"). Let the derivative A'/(z) =
f(z) — 24*(x) have two zeros B'(z1) = h'(z2) = 0 with 0 < 21 < 25 <T. Then

) ﬂgt) dt = f(z1) — f(z2) = Vi) - o), )

1 t T )

and the second mean value theorem yields

/ U g = v (o) (xil _ %) + (% ) %)

with a certain ¢ satisfying z; < & < z5. From these two relations it follows
¥?(z1) = ¥?(x2) and, by the monotony of 1, 1)(x) = const and therefore f(z) =
%2, i.e., W'(x) = 0 for all z € (x1,x). This means that the derivative A’ has
either exactly one zero or exactly one interval where it vanishes identically. In
view of f(T') = 0 it is A'(x) < 0 in a neighbourhood of T'. Hence, according
to fOT h'(t)dt = 0, there exists a positive number xy such that A'(z) > 0 for
r € (0,m), i.e. that v¥?(x) < h(z) for z € (0,7¢), where xy can be chosen
arbitrarily small. The function h(z) is increasing in [0, o], so that (5.6) implies

Y(z) = O(z) + O(h(z)), i.e.,

¥(z) < ax + bh(x) (5.7)
for two positive constants a, b. Since ¥?(z) = —z?f'(z), it follows —f' <
(a+bf)?, and by integration from z to z,

1 1

- <P —x)<b
at o) avpy <@ —a) b
with fo = f(zo). In view of ~A(0) = 0 we can choose z, so small that b(az, +
bh(zg)) < 1, i.e. that
f < f() + axo(a + bf())
- 1- bd?()(a + bf())

with positive denominator. Hence, f = O(1), and (5.7) yields ¥ (z) = O(x),

i.e., p(r) = O(z) as  — 0. Using this estimate and B(x) = Bz'™ + o(z'"?),

we find from (5.4) that g(x) = —Bx'*? 4 o(2'*?), and (5.5) written in the form
g(t)

o(x) = Pz + g(x) +2x/0 t—th

with 8 = a — QfOT % dt implies (5.2). |
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Remark 2. The solution (2.4) arises from (5.2) for § = 0, since in (2.5) we
have the case § < ¢; with arbitrary large 6;. Conversely, (5.2) arises from the
solution (2.4) by multiplication with e(3/4)%  cf. Corollary 1.
By analogous arguments, formula (5.2) can easily be transferred to the case
0 = 1 where it must read
52

y(x) = A+ Br+ (ﬂ - 3B> 2?2 +o(z®) (z — +0). (5.8)

Finally, also the general case (2.3) can be treated. If we write a(z) = 14b(z)
with b(z) ~ Az'™% then to the right-hand side of (5.4) the term

1 x
1 | 2O+ =) (A+ p(€))dE
T Jo
must be added which is asymptotically equal to %x”‘sl and, after some cal-

culations, we arrive at the asymptotic expansion
y(z) = A+ Bz + 2(0)zt T + o(x1%) (5.9)

with z(0) from (2.5) so far as g < 1. For § = 0 it coincides with (2.4), and for

do = 1 the term %xQ must be added as in (5.8).

6. Asymptotic solutions at infinity

In the case that the hypotheses of the Theorems 1 — 3 are satisfied for arbitrarily
large T' there arises the question concerning the asymptotic behaviour of the
solution as r — oo, where we restrict ourselves to the special case

ke)y(a) = / Tty (e — E)y(e) de, (6.1)

i.e., to the case a(z) = e in (1.1), and we look for so called asymptotic
solutions, cf. [2, p.73], i.e., (in changed notations) for functions y satisfying
only

K(s)y(s) ~ / Cety(s — E)y(e) de (6.2)

as s — oo. The asymptotic representation (6.2) means that the quotient of
both sides converges to 1 (here we have used the variable s since z shall get a
new meaning). It remains an open problem to show that an asymptotic solution
yields the asymptotic representation of a genuine solution. For the investigation
we need the following result from [2, §§20 — 21].
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Theorem 5. Let a, b, x, w be real functions of s with w > 0 and a + w <
x < b—w. Assume that g(s,t) is a real function with the following properties:
For sufficiently large s the second partial derivative gu(s,t) is positive when
a(s) <t < b(s), and it satisfies

gi(s,x) =0 ( g (s, iC)) (6.3)
w\/gu(s, ) = +o0 (6.4)
g (s, x + Yw) ~ gu(s, ) (6.5)

uniformly in ¥ with [9| <1 as s — o0o. Then it holds

b 2
/ 6—g(s,t) dt ~ 6—9(513) (5 — OO) . (66)
a gtt(sa -T)

The asymptotic representation (6.6) is due to Laplace, whereas the condi-
tion gu(s,t) > 0 is due to H. Schubert, cf. [1].

Theorem 6. Assume that k(s) ~ e* as s — oo with a > 0. Let p be the
positive solution of

P =p+1 (6.7)
and define B = 1/Inp and v = /B/(2w). Then the function
Y g—pstns (6.8)

vis) = 5
satisfies (6.2).

Proof. By means of the substitution £ = st we write the right-hand side of
(6.2) in the form

3/0 e *y(s(1 —t))y(st)dt.

This integral obtains the form of the integral in (6.6), if we insert (6.8) and
choose

g(s,t) = st + Bstn(st) + Bs(1 —t)In(s(1 — 1)) + %ln(t(l —t)) —2Ilny

so that

s, 1) = s(1+ BInt — FIn(1 1)) + 3 (% _ %)

1 1 1/1 1
gi(s,t) = Bs (;4'1—_75) 3 (t—2+m> .
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The condition gy (s,t) > 0 is satisfied, if we choose a = 1/(28s) and b=1—a

n (6.6). Moreover, we choose x according to 1 + Slnz = Sln(1 — z), i.e.,
v =1/ (e +1), and w = s /3. Then we find

1 1
g(s,z) = PBslns + (ﬁs+ 5) In(l —z) + §lnaz— 2In~y

1-2z
o) = i =)
Bx
gir(s, ) ~ ma

and we see that also the conditions (6.3)-(6.5) are satisfied.
According to (6.6) we have proved

T e 2 |27 —gsins—psin(1-a)
S dtN sins—psin X . 69
/1 7 ﬁs (6.9)

2Bs
In view of the elementary estimate

1

/2% efg(s,t) dt = O(/QB —Bs(1—t)In(s(1—¢)) dt)
0 0 Vi

:0(\}5 ~fs (1= 585) (n s+in(1- W))

— O(e—,@slns) ’

an analogous estimate for the second remainder integral, and according to
B In(1l—z) < 0, the remainders have a smaller order than the right-hand side of
(6.9), and the integral in (6.9) can be taken from 0 to 1. With the choice of g
and 7 as in the theorem it immediately follows that the right-hand side of (6.9)
is asymptotically equal to e**y(s) with (6.8). |

Let us mention that the assumption on k£ in Theorem 6 can easily be modi-

fied in different ways, but we resign from such modifications which require only
standard arguments.

7. Smoothness of solutions in the superlinear case

At first we complement the existence theorems for continuous solutions to equa-
tion (2.1) by statements on the smoothness of the solutions.
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Theorem 7. Let k and a fulfill the assumptions of Theorem 1 and, in addition,
let be k € C'[0,T] with

K(z)=A+B@2+68)z™ +o(x'™) as z—0. (7.1)

Then the solution y of equation (2.1), given by (2.4), is in C[0,T], where
y'(z) = 2%w(z) , & =min(d,8;) >0, (7.2)

with w € C[0,T), and the function z, defined in (2.4) can be represented as

o) = o | EwiEde. &

If, in addition, k € C*[0,T] with (7.1) and
E'(z) = B(1+06)(2+6)x’ + o(z’) as 2 =0, (7.4)
and a € C*0,T] with
d(z) = A1 +6)2" +0o(z”) as 2 —0, (7.5)
then the solution of equation (2.1) is in C%(0,T], where
y"(z) = 2% Yu(z), 6 =min(5,6,) >0, (7.6)

with v € C[0,T], and besides (7.3) there holds the relation

w(e) = o /0 " etye) de. (7.7)

Proof for k € C1. The proof consists of two parts. In the first part we derive
a (linear) integral equation for ¢y’ and a linear integral equation for z. Then
in the second part we prove the statements (7.2) and (7.3) starting from the
equation for the continuous function w in (7.2).

First part. Differentiating equation (2.1) we obtain formally

K(z)y(z) + k(z)y'(z) = A a(z)y(z) + /Oz y(@—Ealz - y'(§)ds,  (7.8)

i.e., the function u = 3’ must satisfy the linear integral equation

1 T
) = @) + s / Ko(z — £)u(é) de, (7.9)
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where

o) = 2D Y0 Kale) = atoyto).

Then the function w = z %y’ fulfills the equation

= Yo(x 1 ’ z — £)%w
w(e) = tole) + s [ Kol = Oeu(e) de.

where g = 27%¢p. In view of (2.2) — (2.4) we have 1y € C[0,T] and
Ko(z) = A+ 2% My(z)
with My € C[0,T]. Writing equation (7.10) in the form

1 T
5 [ e de = v,

w(z) —

where

o@) =l + g [ [P L ehaie)de € o1y,

xdo k(z)
we get
wle) = vlo) + o [ vl dg
wlo) =) + 5 [ [P - 3| e
xao/ /[KO5 ) ;]n‘s"w(n)dnd&
where

(o) = vola) + - [ vl@)dg € ..
0

(7.10)

(7.11)

(7.12)

Equation (7.12) can be shown to have a bounded continuous kernel. Therefore,

for given y € C|[0,T] equation (7.10) has a unique solution in C[0, T].

The function z, defined in (2.4), is the unique continuous solution of the
quadratic integral equation (2.6). Hence the linear Volterra integral equation

Z(z) = fo(z) + GolZ](x) + Lolz, Z](x)

(7.13)

has the solution Z = z. Equation (7.13) can be written as a Volterra equa-
tion with bounded continuous kernel so that it is uniquely solvable in C0, 7.
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Therefore, Z = z is the unique continuous solution of (7.13). And it is the
unique continuous solution of the augmented linear Volterra equation

Z(x) = fo(x) + Go[Z](x) + Lo[z, Z](x) + Ho[Z](x) (7.14)
with the additional linear term Hy|Z] = H[Z — z], where

HIZI) = s || (6 - Aal@)E 20 e

has a bounded continuous kernel.

Second part. We newly define w as the unique continuous solution of
equation (7.10) for the given solution y € C[0,T] of equation (2.1) which exists
by Theorem 1. Equation (7.10) for w is equivalent to equation (7.9) for u =
r%w. In turn, by (7.8) this is equivalent to the equation

K(@)y(z) + k()u(z) = A a(@)y(z) + / “y©a©ue—o)de.  (1.15)

Integrating this equation, we obtain

/0 K (©)y () - k(E)u(e)) dé = A / " a(€)y(e) de+ / ’ / " u(€—n) dé y(n)aln)dn,

where we changed the order of integration in the iterated integral. Introducing
the primitive function U (x f o (&) d€ of u and integrating the second integral
on the left-hand side by parts we get

k@)U (@) — /jk’(&) (6)dé = A / ) de / K (e
+/02U(x_® (€)a(€) de -

Inserting here the expression (2.4) for y and introducing the function Z =
o~ (H%) after some calculations we arrive at equation (7.14) for Z. By unique-
ness of the solution z of this equation we have z = Z, i.e., the function z can
be represented in the form

(o) = g | €Pwie) de

with the above defined unique continuous solution w of equation (7.10), and
the solution (2.4) of (2.1) in the form

y(x) = A+ /0 " hou(e) de |

Obviously, the last function is in C'[0, 7] and relation (7.2) with (7.3) holds.
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Proof of the additional statement for k € C?. In view of (7.9) the first
derivative y' is given by

V(@) = olo) + i [ ale—la— e de (7.16)
where again
¢ Aa(z) — K'(x)
p(r) = ) y(z) -

Since the right-hand side of (7.16) is continuously differentiable in (0,7], the
left-hand side y' has the continuous derivative 3" in (0,7’]. Differentiating (7.8),
we get the formula

V(@)=

o)
+ / (ol = &)y (z = ) +d'(z — Oy — Iy (€) d€ |

{y(fv)[A d(z) — K" (z)] + ¢/ (z)[A a(z) + A — 2K (2)]
(7.17)

Observing the assumptions (2.2), (2.3), (7.1), (7.4), (7.5) and (2.4), (7.2), from
(7.17) we easily infer that

1
y'(x) = - [A(1 +6,)2" — B(1 4 6)(2 + 0)z°] + o(z%™") as £ — 0,
i.e., y” has the representation (7.6). Finally, from (7.2) and (7.6) relation (7.7)
follows. Theorem 7 is proved. |

Remark 3. From the relation (7.17) for y” under adequate smoothness as-
sumptions on k and a we can successively obtain the existence of derivatives of
higher order of y as long as the occurring integrals in differentiating (7.17) will
exist.

8. Smoothness of solutions in the logarithmic case

We continue the investigation of the smoothness of the solution dealing now
with the important logarithmic case.

Theorem 8. Let k and a fulfill the assumptions of Theorem 3, and, in addition,
let be k € C[0,T] with

k'(z) = A+ 2Bz + D(x) (8.1)

where D = o(z) as x — 0 and fOT“;(—fn dx < oo. Then the solution y of

equation (2.1) given by (4.3) with 2(0) = 0 s in C1(0,T], where

y'(z) = p In z 4+ w(z) (8.2)
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with p from (4.3), w € C[0,T], and there holds the relation

o) =t / " w(e) de (8.3)

with w(0) = .
If, in addition, k € C?[0,T) with (8.1) and

K'(x) = 2B + E(z), (8.4)
where E = o(1) as x — 0 and fo p E@) 4z < 00, and a € CY[0,T] with
a'(z) = B+ d(z), (8.5)

where 0 = o(1) as x — 0 and fT |6(;| dr < oo, then the solution of equa-
tion (2.1) is in C?(0, T], where

v =1+ v (8.6)

with V € C[0,T] and V(0) =0, fT |V$‘°)‘ dz < oo, and besides (8.3) there holds
the relation

w(zx) = ,u-l—/oz @ d¢ (8.7)

implying w € C*(0, T].

Proof for k € C'. The proof follows the lines of the proof of Theorem 7.
Again u = 3 satisfies the corresponding equation (7.9) and w =y’ — p In x the
equation

w(x) = / Ko(z w(§) dé, (8.8)

where again Ky(z) = a(x)y(x) and

Po(z) = p(z) — p In x —|— / Ko(zr — &) In& d¢
with ¢ as in the proof of Theorem 7. In view of (4.1) — (4.3) we have
Ko(z) =A+pzx In 2+ My(z)
with My € C[0,T] and 4, € C[0,T] with 44(0) = 0 and [, 2@ gz < co. We

have to look for a continuous solution w of (8.8) satisfying w(0) = u, since only
this condition guarantees that (8.2) is compatible with (4.3) and z(0) = 0.
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We write equation (8.8) in the form

where

Y(z) = vo(z) + /Ox [% — H w(&)dé € C[0,T]

satisfies ¥(0) = 0 and fT @l gy < o0. Observing w(0) = p, we further obtain
the equation

w(@) = p+ (o /”‘”(5

o)+ [ P [ {%—ﬂw(ﬁ)dﬁ (5.10)

[ [ s

“ 1o (€)
+/0 ¢ de € C[0.T]

with value zero at = 0, and the Volterra integral operator in (8.10) has a
logarithmic singular kernel and acts in C|[0,T|. Therefore, for given y € C|0, T
and given value p at z = 0 equation (8.8) has a unique solution in C[0,T].

There holds

Analogously as before, the function Z = z is the unique continuous solution
of the augmented linear Volterra equation (7.14) satisfying the additional con-
dition Z(0) = 0, where fy, Go[Z] and Ly[z, Z] are given by the formulas (4.5) —
(4.6) in Theorem 3 and Hy[Z] = H[Z — z| with

H[Z](x) /f{k' ) = a(Q)[A+ p(z — &) In(z — I} Z(§) dE . (8.11)

The Volterra integral operator in (7.14) at present has a logarithmic singular
kernel, too.

We now redefine w as the unique continuous solution of equation (8.8) for
the given solution y € C[0,7] of the form (4.3) from Theorem 3 with the
additional condition w(0) = p. Then the function u = w + p Inz satisfies
equation (7.15) from which by integrating and inserting the expression (4.3) for
y, after some longer elementary calculations, equation (7.14) for the function

20) = -u+ [ wie)de
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with Z(0) = 0 arises. By uniqueness of the solution to this equation we obtain
z = Z, and (4.3) implies

ylx)=A+pzx lnx—um—l—/zw(f)df.
0

That means, y is in C'(0,7] and the relations (8.2) and (8.3) with w(0) = u
hold.

Proof of the additional statement for £ € C?. As in the proof of Theo-
rem 7, formulas (7.15) for ¢’ and (7.16) for 3" hold true yielding y € C?(0,T7.
In view of the assumptions (4.1), (4.2), (8.1), (8.4), (8.5) on k,a and (4.3),
(8.2) for y,y' from (7.16) we conclude that (8.6) for y” is valid. Further, the
representations (8.2) and (8.6) imply relation (8.7). Theorem 8 is proved. 1

We still investigate the solution y under the stronger assumptions

k(z) = Az + Bx* + o(z®In z) )
K (z) = A+ 2Bz + o(2*In z)
k"(z) = 2B+ o(zn x) b (8.12)
a(z) =1 +ﬁx + o(x*In 1)
d'(z) =B+ o(zln x) )
as £ — 0. Then from (7.16) the representation
2
y'(z) = Fol 1z 4ng- vo(z) (8.13)
r A
where vy € C[0,T] with vy(0) = % , and the relation
2 T
w(x) :,u-i-%[az In’z — 2z Inz + 27] +/ vo(€) In& d¢ (8.14)
0
follow. From (8.2) and (8.14) we get the asymptotic expansion
% %
y'(:c):ulnac-l—u-i-lenzx-l- lenx—l—o(xlnx) (8.15)
as £ — 0, and from (4.3), (8.3) and (8.14) we have
12
y(r)=A+prlnz+ — 2°In’*z + o(2* Inx) (8.16)

2A

as z — 0.
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Furthermore, since the asymptotic expansion (8.16) for y contains logarith-
mic terms, it makes sense to include such terms also in the expansions of k
and a. In particular, under the assumptions

k(z) = Az + Br? + g2®In* 2 4+ q2® Inz + o(2® In ) )

K'(z) = A+ 2Bz + 3go7% In® 7 + [3q; + 2¢o]2° Inx + o(2% In )

K"(z) = 2B + 6¢2x In” z + [6¢; + 10¢2]x Inz + o(x Inz) > (8.17)
a(x) =1+ Bz +pex®In®z + piz®Inz + o(z? Inz)

d'(z) = B+ 2pox In” 2 + [2p; + 2po]z Inx + o(7 Inx) )

as x — 0, the asymptotic expansions

2
ylz)=A4+pzInz+ [,u_ + Aps —3q2]x21n2x

24 (8.18)
+ [Apl —3q1 — 2Ap, + 4q2}a:2 Inz + o(z*In 1)
2
y'(x)=pInzx+p+ [MZ + 2Ap, — 6q2]a: In? 2
2 (8.19)
+ [,uz + 2Ap, — 6q1 — 2Ap, + 2q2} z Inz +o(z Inx)
2
y'(z) = s [,uz + 2Apy — 6q2} In® z
u 22 (8.20)
+ [% + 2Ap; — 6g1 + 2Ap, — 10q2] Inz + o(In )

as £ — 0 hold true. If k/z and a also contain terms of the form z? In" z, n > 2,
such terms occur in the expansions for y, too. We summarize the last results in

Corollary 3. Under the additional assumptions (8.12) on k and a the asymp-
totic expansions (8.16), (8.15) and (8.13) fory,y' and y" and the relation (8.14)
for w are valid. Under the assumptions (8.17) on k and a the asymptotic ex-
pansions (8.18) — (8.20) for y,y" and y" hold.

9. Holomorphic solutions

Next, we strengthen the hypotheses of the Theorems 1 and 7 in such a way that
the solutions become holomorphic functions (in a neighbourhood of zero). As
at the beginning of Section 5 we restrict ourselves to the case a = 1, i.e., to the
integral equation

y(z) = ﬁ /0 “yla — (o) de, (9.1)

where in this section z shall be a complex variable, and we begin with some
preparations.
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Lemma 2. The function

1 —
flz) =2—=21n(1 - ) (9.2)
x —_—
has the Taylor series
p)=x-Y ea" (lz[<1) (9.3)
n=3
with positive coefficients
n—1
1 1 1
n = — - — >3), 9.4
=Ygy 29 (94)
and the reciprocal has the Laurent series
! —1+id:ﬁ"1 (0<|z| <1) (9.5)
fl@) = = |

with d,, > 0 for all n.

Proof. It can easily be checked that the function (9.2) can be expanded into
the form (9.3) with (9.4). The assertion e, > 0 for n > 3 follows immediately
from

1

1 n 1 v 2 4 2

— > 1 —):1 —_————>1.
22(4-” +n 2n n2n

Writing (9.3) in the form f(z) = z(1 — 22¢(z)) we find

o0

D (a? , (9.6)

n=0

L
fla

Hln—\

and the last assertion follows from the fact that g(z) has a Taylor series at x = 0
with only positive coefficients. |

The first coefficients in (9.3) and (9.5), respectively, are

1 2 1 31
GTUTE 5T T 7T a0
1 29 7 1139 11
d:d = — d:— d:— = — = — .
27T M 180 P45 T TEe0’ T 120

By means of elementary calculations it follows
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Lemma 3. Assume that k(z) = Arf () with f from (9.2) and r > 0. Then

y(z) = ?e_’;//: is the solution of (9.1) satisfying (2.4) with the Taylor series

y(z) :A(1+§:cn (%)") (2| < 7), (9.7)

and positive coefficients

y(x) = Zan:r". (9.9)

Theorem 9. Let k be a holomorphic function for small |z| with k(0) = £"(0) =
0 and k'(0) = A > 0. Then the integral equation (9.1) has a uniquely determined
holomorphic solution y for small |x| with y'(0) = 0, and the coefficients in (9.9)
are recursively determined by ay = A, a1 =0 and

n+1 ! vl
mn = v\ UbK/ 2 2 ) '1
= Z (n—&—i—l)!a“a (n>2) (9.10)

ptv+K=n
where the dash at the sum shall mean that the triples (n,0,0) and (0,n,0) are
excluded for (u, v, k).

Proof. Inserting the series (9.8), (9.9) into (9.1), we get by comparing coeffi-
cients )
ap = ———————a,a,by .
2, e

For n = 0 and ay # 0 this equation implies ag = 1/by = A, for n = 1 it
is an identity in view of a; = b; = 0, and for n > 2 we obtain (9.10). In
order to show the convergence of (9.9) for small |z| we use Cauchy’s method of
majorants. Since the right-hand side of (9.10) has only positive coefficients, we
see for positive z: If (9.8) is replaced by a majorant with the same by = 1/A,
then the corresponding solution is a majorant of the original solution. We shall
show that there exists an r > 0 such that (9.8) has the majorant 1/(Ar f(z/r)).
Then the solution Ae~*/"/(1 — x/r) mentioned in Lemma 3 is a majorant of
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the solution y(x), and therefore also the latter one is a holomorphic function
for |z| < r.

___ Obviously, (9.8) has a non-vanishing radius of convergence g, so that p™! =
lim {/|b,| is finite, and we can define a positive number r by

1
— =6 sup v/ A|by| (9.11)

n>2
For |z| < r this implies

R (OHCS

n=2 n=0

since (22g(z))" > (32*(1+12))" > %(1 + %) for positive z.
According to (9.6) we have found the wanted majorant, and the theorem is
proved. |

Remark 4. The determination of r by means of (9.11) is not optimal, since
the proof yields the estimate r < f’ whereas we conjecture that » > p. The
example k(z) = sin(wz)/(wJp(wz)), w # 0, with the corresponding solution
y(x) = Jo(wz) of (9.1) shows that (9.9) can even be an entire function, though
(9.8) has only a finite radius of convergence. The recursions (9.10) show that
y is always an even function when £ is an odd one as in the just mentioned
example.

10. Example

As a further concrete example we consider the special case k(z) = 2sinhz of
(6.1) , i.e., the integral equation

1
2sinh z

y(z) =

/0 Cetye - Oye)de  (0<a). (10.1)

According to Theorem 3 it has a continuous solution for 0 < z < oo, and
this solution is positive, cf. the Introduction. Moreover, it has the asymptotic
expansion

2

y(r) =2 —2zInz + 2> In’x + (1 - %) 2% + o(z?) (x—0), (10.2)

where the first three terms on the right-hand side are those from (8.16), and the
fourth term can be calculated directly out of (10.1). In particular, it is y(0) = 2.
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Lemma 4. Let m be a positive constant and M(zx) a function such that
y(@) < M(2) < M(m)<e™  (0<z<m). (10.3)

Then, with M = M (m), the solution of (10.1) satisfies the estimate

y(x) < exp {Q.T - % In lan} (InM < z). (10.4)

Proof. Estimating y on the right-hand side of (10.1) by M where M > 2 we
find

M2
et +1

y(z) < (10.5)

for 0 < z < m. According to (10.3) this means that y(m) < M additionally to
y(x) < M for 0 < z < m. In view of the continuity of y we even have (10.5)
not only for 0 < z < m + ¢ and some € > 0, but for all x > 0, i.e., y(z) < M
for all x > 0.

Assume that y < M,e " for x > 0, then (10.1) implies
x
y(z) < 7Mge_”z/ e tde < M2e~ (e
1—e22 0

i.e., we can choose M, ;1 = M?2. In view of My = M then we have M, = M?*",
so that we obtain

y(z) < M¥ e ™ (10.6)

for z > 0 and all n € Ny. According to M?"e™™* = M2 e~("=D7 when
e’ = M¥ " we use (10.6) only for M2" ' < e* < M?", n € N, so that (10.6)
implies (10.4). |

The conditions of Lemma 4 are satisfied for
M(z)=1+(1-zlnz)’

and the real solution of mInm = 2+1, so that M = 1+ (1+<)? (approximately
it is m = 2.5401 and M = 2.8711). The inequality y(z) < M(z) follows from
(10.2) when z is small, and from the inequality

1
2sinh z

/Oz e *M(z — &)M(£) dé < M(x) (10.7)

for 0 < z < 3 which is valid in view of Figure 1 (in the interval [0,m] the
function M (z) has two equal maxima at the points £ and m). After knowing
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Figure 1: The function M(z) (above) and its estimate in (10.7) (below)

that y is bounded we can apply Lemma 4 once more with the constant function
M (z) = maxo<¢ y(£) and sufficiently large m whereby (10.4) is improved.

Equation (10.1) can be transformed in different ways. By means of the
Laplace transform Y (p) = L{y(z)} it turns into the difference equation

Yp-1)=Y(p+1){1+Y(p),
and for the solution Y (p — ¢) = L{e“y(z)} with ¢ =1 — C, where C is Euler’s
constant, the asymptotic expansion (10.2) yields the result

2 2 2 1
Yip—c)==-+SInp+ = (In’p—Inp +o<—) P — +0),
(p—c) PR p3( ) e ( )

which sharpens the corresponding asymptotic expansion in [4, p. 1064].
By means of the substitutions = Ini, £ = In$ and y(z) = n(s) equation
(10.1) turns into the integral equation

1
s S
= - t)dt 0<s<1]). 10.8
10 =125 [ 1(5)n0a 0<s<y (10.5)
This equation has the property that with a solution n also s™“n is a solution
where c¢ is an arbitrary constant, cf. Section 1. All solutions have the boundary
values 7(0) = 0 and n(1) = 2.

One of these solutions shall be visualized by means of a numerical approx-
imation, where we use the collocation method, cf. [7, Vol. 4, p.196]. In order
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to do this we choose an arbitrary continuous function 7y(s) with n parameters,
and n different points s; € (0,1), 7 =1,...,n. After calculating

w6 =15 [ w(3)moa

we have to determine the parameters from the system

m(s;) =m(s;)  (G=1...,n). (10.9)

According to n(0) = 0 and 7(1) = 2 we additionally choose the boundary values

1.5+

0.5

0 0.2 0.4 0.6 0.8 1

Figure 2: The collocation function 7;(s)

10(0) = 0 and 79(1) = 2 which imply 7,(0) = 0 and 7,(1) = 2. We try this
method in the case n =2, no(s) = as +bs* + (2 —a — b)s® and s; = 3, s = 2.

After eliminating a® out of (10.9) we get

3(14496% — 4814b — 9928)
T T 00190 + 24492 (10.10)

and after inserting this expression into one of the equations (10.9) we obtain a
polynomial in b of degree 4 with the (numerical) solutions

by = —5.4508, by = —1.3278, b3 =15.25706, by =1160.55.

It proves that the best result arises for the parameter b = b3, for which (10.10)
yields a3 = —0.200683. The corresponding function 7, is illustrated in Figure 2,
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0.024 &n

—0.01+

—0.02

—0.03 4

Figure 3: The error n;(s) — n(s)

and the error An = n; — g in Figure 3. Since the error is sufficiently small, we
resign from improving it. From Figure 3 it can be seen that there is a further
collocation point which lies by s = 0.30997.

We get a second approximation, if we split the interval of integration (s, 1) in
(10.8) into the sub-intervals (s, +/s) and (/s, 1), and apply to both sub-intervals
the trapezoidal rule. In this way we get as an approximation the equation

S

1(s) = S7E(V5)

with the explicit solution

e Ins Ins
77(3) = 25 exp {m In (—E) } y (].0]_1)

where c is an arbitrary constant. Though we only can expect that the approx-
imation (10.11) of the solution of (10.8) is good in a neighbourhood of 1, it
shows as s — +0, i.e., after the substitution s = e™* as x — 0o, an analogous
behaviour as in (6.8) (with z instead of s) and (10.4).
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