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Minimal Quasidifferential of a
Piecewise Linear Function in R3

Jerzy Grzybowski

Abstract. A quasidifferential of piecewise linear function in Rn can be a pair of
polytopes (A,B). We prove that a minimal pair (C,D) of compact convex sets which
is equivalent to (A,B) is a pair of polytopes for n = 3.
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1. Introduction

Quasidifferential calculus, which was introduced by Demyanov and Rubinov in
[7], is useful in nonsmooth optimization. Quasidifferentiable functions include,
in particular, convex functions and piecewise linear functions.

Let X be a normed space, X∗ its dual space and K(X∗) the family of
nonempty weak-*-compact convex subsets of X∗. For a function f : X → R the
directional derivative is defined by

∂f

∂g

∣∣∣∣
x0

= lim
t→0+

f(x0 + tg)− f(x0)

t

and its quasidifferential is defined by

Df |x0=
(
∂ f |x0 , ∂f |x0

)
∈ K(X∗)×K(X∗),

where

∂f

∂g

∣∣∣∣
x0

= max
v∈∂ f |x0

v(g) + min
w∈∂ f |x0

w(g) = max
v∈∂ f |x0

v(g) − max
w∈−∂ f |x0

w(g).
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If we put A = ∂ f |x0
and B = −∂f |x0 , then

∂f

∂g

∣∣∣∣
x0

= pA(g)− pB(g),

where pA and pB are the support functions of the weak-*-compact convex sets
A and B.

While the differential is an element of X∗, the quasidifferential is a pair of
nonempty compact convex sets in X∗. More exactly, we can look at the quasid-
ifferential as a quotient class in K(X∗)×K(X∗) with respect to the equivalence
class ” ∼ ”, where (A, B) ∼ (C, D) if and only if A + D = B + C with the
Minkowski sum A + B = { a + b | a ∈ A and b ∈ B }.

The study of pairs of compact convex sets produced a number of results: the
existence of minimal pairs [12], uniqueness of minimal pairs up to translation
for dim X = 2 ([9, 16]), and many others ([4, 13, 17] and others). Most of
these results are gathered in [14]. Pairs of compact convex sets are applied
in the numerical evaluation of the Aumann-Integral ([1, 2] and others) and in
combinatorial convexity ([8, 11]).

It is proved in [10] and [5, 6] that a minimal pair equivalent to a pair of
polytopes in R2 is a pair of polytopes. In [14] the question is posed: whether
for any pair of polytopes in Rn, n > 2, there exists an equivalent minimal
pair of compact convex sets that are polytopes? We give the positive answer
to the question for n = 3 in Theorem 2. Theorem 3 states that a minimal
quasidifferential of a piecewise linear function in R3 is a pair of polytopes.

2. Main body

Let A, B, C be nonempty compact convex sets in X = R3. By A∨B we denote
the convex hull of A ∪B. For f ∈ (R3)∗ \ {0} we define the face HfA of A by

HfA = {a ∈ A | f(a) = max x∈Af(x)}.

We say that A is a summand of B and B is an anti-summand of A if A+C = B
for some C. We say that C is a minimal common anti-summand (m.c.a.s.) of
A and B if C is an anti-summand of A and B and for any anti-summand D of
A and B the inclusion D ⊂ C implies D = C.

From now on we assume that A and B are convex polytopes with nonempty
interiors, that A and B have only coparallel edges (that is HfA is an interval
if and only if HfB is an interval) and that polytopes A and B are simple (that
is each vertex of A and each vertex of B belongs to exactly three edges of A
or B).

In the following, let C be a m.c.a.s. of A and B.
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Definition 1.

(i) We say that an interval k is an edge of C if k = HfC and HfA is an
interval for some f ∈ (R3)∗ \ {0}.

(ii) We say that an interval k is an extreme edge of C if k = HgHfC and
HgHfA is an interval for some f, g ∈ (R3)∗ \ {0}.

For an edge k of C we denote k = HfA, k = HfB. By | k | we denote the

length of the interval k. For an extreme edge k of C we denote k = HgHfA, k =
HgHfB.

There exists a similarity between edges and exposed points, extreme edges
and extreme points. In particular, x is an extreme point of C if and only if
every neighborhood of x contains an exposed point of C. In a similar way, the
following proposition holds true.

The following obvious proposition characterizes extreme edges of C.

Proposition 1. Let k ⊂ C. Then k is an extreme edge of C if and only if k is
not properly contained in any interval k′ ⊂ C and every ε-neighborhood B(k, ε)
of k contains some edge of C.

Proposition 2. Let k be an extreme edge of C. Then | k | ≥ max (| k |, | k |).

Proposition 2 follows from Theorem 3.2.8 in [15] and Theorem 2.6 in [10].
In fact, C is an anti-summand of both A and B if and only if the inequality

| k |≥ max (| k |, | k |) holds true for all edges k of C.

Definition 2.

(i) We call an extreme edge k of C minimal if | k |=
max (| k |, | k |).

(ii) We call (k1, . . . , kn) a chain of extreme edges if ki 6= kj for i 6= j, and ki

and ki+1 have a common vertex for i = 1, . . . , n− 1.

(iii) We call a chain of extreme edges (k1, . . . , kn) a maximal chain if it is not
a part of any longer chain of extreme edges of C.

(iv) We call two chains of extreme edges (k1, . . . , kn) and (k′1, . . . , k
′
n) coparallel

if ki = k′i, i = 1, . . . , n.

The following proposition gives an upper bound for the length of any chain
of minimal edges.

Proposition 3. Let p be the number of all edges of A and let (k1, . . . , kn) be a
chain of minimal edges of C. Then n < (p + 1)p+1 + p + 1.
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Proof. Let us assume that n = (p + 1)p+1 + p + 1. Then (k1, . . . , kp+1), . . . ,
(kn−p, . . . , kn) are (p + 1)p + 1 sequences of the length p + 1 of edges of A. Then
(kr, . . . , kr+p) = (ks, . . . , ks+p) for some r, s = 1, . . . , n − p − 1 with r + p < s.
Moreover, kr+i = kr+j = ks+i = ks+j for some i, j = 0, . . . , p, i < j. Then
the chains (kr+i, . . . , kr+j) and (ks+i, . . . , ks+j) are coparallel with respective
segments of the same length. Hence the set E = kr+i ∨ kr+j ∨ ks+i ∨ ks+j is a
paralellopiped with nonempty interior.

Let kr+i ⊂ Hf1C, kr+j ⊂ Hf2C, ks+i ⊂ Hf3C, ks+j ⊂ Hf4C, where
f1, f2, f3, f4 ∈ (R3)∗ \ {0}. Then kr+i ⊂ Hf1E, kr+j ⊂ Hf2E, ks+i ⊂ Hf3E,
ks+j ⊂ Hf4E. Let us take any x ∈ R3, x 6= 0. For some t > 0 and some
y ∈ kr+i ∪ kr+j ∪ ks+i ∪ ks+j we have y− tx ∈ E. Then for some i = 1, 2, 3, 4 we
have fi(y) = max fi(E) ≥ fi(y − tx). Hence fi(x) ≥ 0.

We have just proved that max (f1, f2, f3, f4) ≥ 0. We also have kr+i ⊂
Hf1A ∩ Hf2A ∩ Hf3A ∩ Hf4A. We can assume that 0 ∈ kr+i. Then

A ⊂ f−1
1

(
(−∞, 0]) ∩ f−1

2

(
(−∞, 0]

)
∩ f−1

3

(
(−∞, 0]

)
∩ f−1

4

(
(−∞, 0]

)
=

(
max (f1, f2, f3, f4)

)−1
(0)

⊂ f−1(0).

Hence A is contained in a two-dimensional subspace. This contradicts our
assumption that A has a nonempty interior. Then n < (p + 1)p+1 + p + 1.

The next proposition and corollary characterize extreme points of C.

Proposition 4. Let x be an extreme point of C. For any ε > 0 there exists an

edge k of C such that dist (k, x) < ε and | k | −max (| k |, | k |) < ε.

Proof. Let HfC = {x} and Cδ = {c ∈ C | f(c) ≤ f(x)− δ}. For small enough
δ > 0 we have diam (C \ Cδ) < min (ε, min {| k | | k is an edge of A}). If
HgA is an edge of A and HgCδ is a one-point set or an interval parallel to HgA,
then k = HgC is an edge of C and HgCδ = k∩Cδ. Hence | HgCδ | ≥ | k | − ε. If

| k∩Cδ | ≥ max (| k |, | k |) for all edges k of C then, according to Theorem 2.6
in [10], Cδ is a common summand of A and B. Therefore, | k ∩ Cδ | < max

(| k |, | k |) for some edge k of C. Then | k |< max (| k |, | k |) + | k \ Cδ |, and
k \ Cδ 6= ∅ and k \ Cδ ⊂ B(x, ε).

Since every extreme point of C is a limit of some sequence of exposed points
the proposition holds true.

Corollary 1. Let x be an extreme point of C. There exists an extreme edge k
of C such that x is one end of k.

Proof. There exists a sequence (kn = HfnC = yn ∨ zn)n of edges of C such
that dist (kn, x) tends to 0, fn ∈ (R3)∗, || fn || = 1, n ∈ N. We can choose a
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subsequence (knm)m such that fnm tends to some f, ynm tends to y and znm

tends to z. Then y ∨ z ⊂ HfC.

If HfC is an interval let k = HfC. If dim HfC = 2 then y ∨ z is contained
in the relative boundary of HfC. Hence, for some g ∈ (R3)∗ we have y ∨ z ⊂
HgHfC, where k = HgHfC is an interval. In both cases x ∈ y ∨ z ⊂ k.

Let V be a two-dimensional subspace of R3 orthogonal to an extreme edge
k of C. Denote by prV : R3 −→ V the orthogonal projection on V. The arc⋃ {

prV (HfC) | f ∈ (R3)∗ \ {0}, k ⊂ HfA
}

is a part of the boundary of two-
dimensional compact convex set pV (C).

Definition 3. We say that an extreme edge k lies between extreme edges k′

and k′′ if k = k′ = k′′ if the point prV (k) lies between the points prV (k′) and
prV (k′′) on the arc⋃ {

prV (HfC) | f ∈ (R3)∗ \ {0}, k ⊂ HfA
}
⊂ V.

Remark 1. If an extreme edge k lies between extreme edges k′ ⊂ Hf ′C and
k′′ ⊂ Hf ′′C, then k ⊂ HfC for some f = tf ′ + (1− t)f ′′, where t ∈ [0, 1]. Note
that t = 0 (resp. t = 1) if and only if k and k′′ (k and k′) are two parallel sides
of two-dimensional face HfC.

Remark 2. Let {k1, k
′
1, k

′′
1} and {k2, k

′
2, k

′′
2} be two sets of coparallel extreme

edges of C such that k1 lies between k′1 and k′′1 and k1 ∩ k2 = {x}, k′1 ∩ k′2 =
{x′}, k′′1 ∩ k′′2 = {x′′}. There exist linear functionals h and f1 in (R3)∗ \ {0} such
that card h(k1 ∪ k2) = 1 and k1 ⊂ Hf1C. Let us denote

lt1 = h−1(t) ∩
⋃ {

HfC | f ∈ (R3)∗ \ {0}, k1 ⊂ HfA
}

= Hf1(h
−1(t) ∩ C),

where t ∈ (h(k′1), h(k′′1)). Then lt1 is an interval parallel to k1. The interval lt1 is
an extreme edge of C or lt1 is a maximal interval parallel to k1 contained in a
two-dimensional face of C, a face with two sides being extreme edges coparallel

to k1. Hence | lt1 | ≥ max (| k1 |, | k1 |).

Now we need a somewhat technical proposition concerning extreme edges
coparallel to three edges of A with common endpoint.

Proposition 5. Let k1, k2 and k3 be extreme edges of C, k1 ∩ k2 = {x},
k1 ∩ k2 ∩ k3 = {x}, k3 = x ∨ y, h ∈ (R3)∗ \ {0}, h(k1 ∪ k2) = {h(x)} and
h(y) > h(x). Then min h(k3) ≥ h(x).
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Proof. Let k1 = Hg1Hf1C, k2 = Hg2Hf2C and k1 = Hg1Hf1C. Let us assume
that x = 0. Then Λ := f−1

1 ((−∞, 0]) ∩ f−1
2 ((−∞, 0]) ∩ f−1

3 ([0,−∞)) is a cone.
Let z ∈ k3 and denote z = z − x. Then z ∈ Λ. Now we assume that h(z) <
0. We introduce such coordinates in R3 that k1 = (0, 0, 0) ∨ (1, 0, 0), k2 =
(0, 0, 0)∨(0, 1, 0) and k3 = (0, 0, 0)∨(0, 0, 1). Then f1(u) = a2u2 +a3u3, f2(u) =
b1u1 + b3u3, f3(u) = c1u1 + c2u2, h(u) = du3 for u = (u1, u2, u3) ∈ R3 and for
some a2, a3, b1, b3, c1, c2 ≤ 0 and d > 0.

If a3 < 0 and b3 < 0 then z ∈ Λ implies that a2z2 + a3z3 ≤ 0, b1z1 + b3z3 ≤
0, c1z1 + c2z2 ≥ 0. Then a3z3 > 0, b3z3 > 0. Hence a2z2 < 0, b1z1 < 0. Then
z2 > 0, z1 > 0, and f3(z) < 0, which contradicts our assumption that z ∈ Λ.

If a3 < 0, b3 = 0 then a3z3 > 0. Hence a2z2 < 0, b1z1 ≤ 0, and z2 > 0, z1 ≥ 0.
Then c2z2 ≤ 0, c1z1 ≤ 0. Since c2z2 + c1z1 ≥ 0 then c2z2 = 0, and c2 = 0.
Hence f2, f3 are linearly dependent and Hf2C = Hf3C. Let us notice that k2, k3

are contained in the relative boundary of Hf2C. Since H−hHf2A = k2 then
H−hHf2C = k2. Hence h(z) ∈ h(k3) ⊂ h(Hf2C) and min h(k3) ≥ h(k2) = h(x),
which contradicts the assumption that h(z) < 0.

If a3 = 0, b3 < 0, then f1, f3 are linearly dependent and we repeat the
previous reasoning.

If a3 = b3 = 0, then

f3 =
c1

b1

f2 +
c2

a2

f1.

Since x ∈ Hf1C ∩Hf2C then x ∈ Hf3C = k3. Hence k3 ⊂ Hf2C and we repeat
the reasoning.

The following proposition shows that the middle one of three coparallel
chains of exteme edges is not maximal.

Proposition 6. Let (k1, . . . , kn), (k′1, . . . , k
′
n), (k′′1 , . . . , k

′′
n) be three coparallel

chains of extreme edges, let k1 lie between k′1 and k′′1 and a ∈ k1, b ∈ kn, a 6= b
be the end points of the chain (k1, . . . , kn). Then for any ε > 0 there exists an

edge k of C such that | k | < max (| k |, | k |) + ε and dist (a, k) < ε, where k
is not parallel to k1, or dist(b, k) < ε, where k is not parallel to kn. Hence the
chain (k1, . . . , kn) is not maximal.

Proof. Let h1, . . . , hn−1 ∈ (R3)∗ \ {0} such that hi(ki ∪ ki+1) is a one-point set
and hi(k

′′
i ) < hi(ki) < hi(k

′
i) , i = 1, . . . , n− 1. Let ki ⊂ Hfi

C, i = 1, . . . , n. Let
0 < δ < min (h1(k

′
1)− h1(k1), h1(k1)− h1(k

′′
1)). Let us denote

α1 = Hf1

(
C ∩ h−1

1 (h1(k1) + δ)
)
, β1 = Hf1

(
C ∩ h−1

1 (h1(k1)− δ)
)

αi = Hfi

(
C ∩ h−1

i−1(hi−1(αi−1))
)
, βi = Hfi

(
C ∩ h−1

i−1(hi−1(βi−1))
)

for i = 2, . . . , n. For all i = 1, . . . , n, the intervals αi, βi are parallel to ki and

| αi |, | βi | ≥ max (| ki |, | ki |). Let g1, . . . , gn ∈ (R3)∗ \{0} such that gi(αi∪βi)
is a one-point set and gi(ki) > gi(αi), i = 1, . . . , n.
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There exists a θ > 0 such that B(ki, θ) ∩ B(kj, θ) = ∅ for all i, j and such
that ki and kj are parallel. Since all extreme edges of C are parallel to a finite
amount of edges of A we can assume that θ is so small that the length of the
interval k ∩ B(ki, θ) is less than ε/n for all ki, i = 1, . . . , n and all nonparallel
extreme edges k of C.

There exists a δ > 0 small enough that C ∩ g−1
i ((gi(αi,∞))) ⊂ B(ki, θ). Let

us denote

Cδ = C ∩
n⋂

i=1

g−1
i ((−∞, gi(αi)]).

Let g ∈ (R3)∗ and HgA be an edge of A. If max g(C) > max g(Cδ), then HgC
contains an extreme edge k such that k ⊂

⋃n
i=1 B(ki, θ).

We can assume that ε is less than the length of the shortest edge of A. If

no ki is parallel to k, then 0 < max (| k |, | k |) − ε ≤ | k | − ε ≤ | k ∩ Cδ |
and max g(C) = max g(Cδ) which contradicts our assumption. Hence some
ki is parallel to k and gi(k) > gi(αi). Then HgCδ is equal to αi or βi or it is a
two-dimensional face of Cδ containing αi and βi.

If max g(C) = max g(Cδ) and k = HgC is an edge of C, then HgCδ = k∩Cδ

and | k ∩ Cδ | ≥ max (| k |, | k |) − ε. If max g(C) = max g(Cδ) and k = HgC
is a two-dimensional face of C while HgCδ is an interval, then HgCδ = αi or βi

for some i = 1, . . . , n.

Applying Theorem 2.6 in [10] we see that for some edge k of C we have

max (| k |, | k |)− ε ≤ | k ∩ Cδ | ≤ max (| k |, | k |).
Since ε can be arbitrarily small there exists a sequence (k(q) = xq ∨ yq)q of

edges such that both dist(k(q), k1 ∪ . . . ∪ kn) and | k(q) | −max (k(q), k(q)) tend
to 0. We can choose a subsequence (k(qm))m such that xqm tends to some x,
yqm tends to some y and x ∨ y is contained in some extreme edge of C. Then
(x∨y)∩

⋃n
i=1 ki 6= ∅ and x or y is an end point of some ki. Let x be this endpoint.

If {x} = ki ∩ ki+1 for some i then, applying Proposition 5, either hi(k) ≥ hi(k
′
i)

or hi(k) ≤ hi(k
′′
i ). Hence x does not belong to ki. Therefore, x ∈ {a, b} and

dist (kqm , {a, b}) tends to 0.

Another proposition shows that the smaller is the distance between middle
segments in coparallel chains of extreme edges the smaller is the difference
between the lengths of these segments.

Proposition 7. For any ε > 0 there exists a δ > 0 such that for any two coparal-
lel chains (k1, k2, k3), (k

′
1, k

′
2, k

′
3) of extreme edges of C holds: if dist (k2, k

′
2) < δ,

then | k′2 |> | k2 | − ε.

Proof. Let us assume the opposite statement. For some ε > 0 there exist
two sequences of coparallel chains (k

(n)
1 , k

(n)
2 , k

(n)
3 ), (k

(n)′
1 , k

(n)′
2 , k

(n)′
3 ), k

(n)
1 = an ∨
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bn, k
(n)
2 = bn ∨ cn, k

(n)
3 = cn ∨ dn, k

(n)′
1 = a′n ∨ b′n, k

(n)′
2 = b′n ∨ c′n, k

(n)′
3 = c′n ∨

d′n such that dist (k
(n)
2 , k

(n)′
2 ) tends to 0 and | k

(n)′
2 | ≤ | k

(n)
2 | − ε. We can

choose a sequence (nm)m, m ∈ N such that all chains (k
(nm)
1 , k

(nm)
2 , k

(nm)
3 ) and

(k
(nm)′
1 , k

(nm)′
2 , k

(nm)′
3 ) are coparallel, anm tends to some a, bnm to b, cnm to c, a′nm

to a′, b′nm
to b′ and c′nm

to c′.

The intervals a ∨ b, b ∨ c, c ∨ d, a′ ∨ b′, b′ ∨ c′ and c′ ∨ d′ are contained in
respective extreme edges of C. The interval a ∨ b is parallel to a′ ∨ b′, b ∨ c to
b′ ∨ c′ and c ∨ d to c′ ∨ d′. Then b ∨ c and b′ ∨ c′ are parallel extreme edges and
dist (b ∨ c, b′ ∨ c′) = 0, and b = b′, c = c′. Hence

0 = || c− b || − || c′ − b′ ||= lim
m→∞

(| k(nm)
2 |, | k(nm)′

2 ) |) ≥ ε > 0,

which contradicts our assumption.

The following technical proposition that we need is similar to the previous
one.

Proposition 8. For any ε > 0 there exists a δ > 0 such that for any two
coparallel chains (k1, k2), (k

′
1, k

′
2) of extreme edges of C holds: if dist (a, k′1) < δ,

where a is the endpoint of k1 that does not belong to k2, then | k′1 |> | k1 | − ε.

The proof of the proposition is very similar to the proof of Proposition 7.
We also need the following proposition on closed chains of extreme edges.

Proposition 9. Let n ∈ N. Then the amount of all closed chains of n extreme
edges of C is finite.

Proof. Let us assume that the amount of all closed chains of n extreme edges
of C is infinite. Then there exists an infinite set {(ki

1, . . . , k
i
n)}i∈I of coparallel

closed chains of extreme edges. Let f i
j ∈ (R3)∗, || f i

j ||= 1, ki
j ⊂ Hf i

j
C. Choosing

an appropriate subsequence we can assume that limi→∞ f i
j = fj for some fj ∈

(R3)∗, j = 1, . . . , n, and f i
1 tends to f1 monotonously from one side, i.e., if i < i′,

then f i′
1 = αf i

1 + βf1 for some α, β ≥ 0. Hence f i
j tends to fj monotonously

from one side for all j = 1, . . . , n. There exist extreme edges k1, . . . , kn such
that kj ⊂ Hfj

C for j = 1, . . . , n. Hence for any ε > 0 and any j = 1, . . . , n we
have kl

j ⊂ B(kj, ε) for almost all l ∈ N. Then (k1, . . . , kn) is a closed chain of
extreme edges coparallel to (kl

1, . . . , k
l
n).

Let gl
j = αl

jf
l
j + βl

jfj, αl
j, β

l
j > 0 be such that gl

j(k
l
j) = gl

j(kj), j = 1, . . . , n.
Let K l

j = {x ∈ C | gl
j(x) > gl

j(kj)}. For any ε > 0 and any j = 1, . . . , n

we have K l
j ⊂ B(kj, ε) for almost all l ∈ N. For sufficiently large l we have

K l
j ∩ K l

j′ 6= ∅ if and only if | j − j′ | ≤ 1 or {j, j′} = {1, n}. Let us denote

Cl = C \
⋃n

j=1 K l
j. Notice that Hgl

j
Cl = kl

j ∨ kj. Then Hαgl
j+βfj

Cl = kj for

α, β > 0, and Hαgl
j+βf l

j
Cl = kl

j for α, β > 0.
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Consider an extreme edge k ⊂ HfC such that f = αfj + βf l
j for no j =

1, . . . , n and no α, β ≥ 0. If k and kj are parallel then k ∩ K l
j = ∅. The set

K l = ∂C∩
⋃n

j=1 K l
j is open in the boundary ∂C of C. Then the relative boundary

of K l in ∂C is equal to
⋃n

j=1 kj ∪
⋃n

j=1 kl
j. If ε is sufficiently small then k is not

contained in ⋃
{B(kj, ε) | j = 1, . . . , n, kj is not parallel to k} .

Hence k is not contained in K l. Then k∩K l 6= ∅ implies that some internal point
of of the interval k belongs to the relative boundary of K l in ∂C. Hence some
internal point of the interval k belongs to kj or kl

j for some j. This contradicts
the fact that kj and kl

j are extreme edges.

Then Cl is a common summand of A and B which is properly contained in
C. This contradicts the fact that C is a minimal common summand and thus
proves our proposition.

Now we are prepared to prove our main result.

Theorem 1. Let A and B be two simple polytopes in R3 with nonempty interiors
such that A and B have only coparallel edges. Assume that the compact convex
set C is a minimal common anti-summand (m.c.a.s.) of A and B. Then C is
a polytope.

Proof. The set C is the convex hull of all extreme edges of C. Let us assume
that C is not a polytope. Then the amount of all extreme edges of C is infinite.
There exists an edge l of A such that the amount of all extreme edges k of C
with k = l is infinite.

Applying successively Proposition 6 we can prove that for any n ∈ N the
amount of all chains (k1, . . . , kn) of n extreme edges is infinite and there exists a
sequence l1, . . . , ln of edges of A such that the amount of all chains (k1, . . . , kn)
of extreme edges with k1 = l1, . . . , kn = ln is infinite.

Let us fix n = 2(p + 1)p+1 + 2p + 5. Let Λ be an infinite family of coparallel
chains of n extreme edges. There exists (k1, . . . , kn) ∈ Λ such that for any ε > 0
there exists another chain (k′1, . . . , k

′
n) ∈ Λ such that dist (k1, k

′
1) < ε. Let us

denote by Λε the family of all chains (k′1, . . . , k
′
n) ∈ Λ of extreme edges not equal

to (k1, . . . , kn) such that dist (ki, k
′
i) < ε and if an extreme edge k lies between

ki and k′i then dist (k, ki) < ε. It is quite easy to prove that Λε is not empty for
all ε > 0. Thanks to Proposition 3 we can choose i, j ∈ N such that

1 < i < (p + 1)p+1 + 2p + 3 < j < 2(p + 1)p+1 + 2p + 5,

where | ki |> max (| ki |, | ki |) and | kj |> max (| kj |, | kj |).
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Let

ε =
1

2
min (| ki | −max (| ki |, | ki |), | kj | −max (| kj |, | kj |)).

Let us fix a δ > 0 satisfying Propositions 7 and 8. Let {a} = ki ∩ ki+1, {b} =
kj−1 ∩ kj. There exists an extreme edge k′′i such that dist (a, k′′i ) < δ , | k′′i |<
max (| ki |, | ki |) + δ, k′′i is coparallel to ki and k′′i lies between ki and k′i
for some (k′1, . . . , k

′
n) ∈ Λδ/2. There exists no extreme edge k′′i−1 such that the

chain (k′′i−1, k
′′
i ) is coparallel to (ki−1, ki). Proposition 6 implies the existence

of extreme edges k′′i+1, . . . , k
′′
n such that the chain (k′′i , . . . , k

′′
n) is coparallel to

(ki, . . . , kn) and lies between (ki, . . . , kn) and (k′i, . . . , k
′
n).

Let us denote {b′′} = k′′j−1 ∩ k′′j . There exists a sequence (k
(m)
j )m of extreme

edges such that

lim
m→∞

dist (b′′, k
(m)
j ) = 0, lim

m→∞
| k(m)

j |= max (| kj |, | kj |),

all k
(m)
j are coparallel to kj and lie between kj and k′j. For sufficiently large m

we have dist (b, k
(m)
j ) < δ and | k(m)

j |< max (| kj |, | kj |) + δ. Then there exists

no extreme edge k
(m)
j+1 such that the chain (k

(m)
j , k

(m)
j+1) is coparallel to (kj, kj+1).

Due to Proposition 6, there exist extreme edges k
(m)
1 , . . . , k

(m)
j−1 such that the

chain (k
(m)
1 , . . . , k

(m)
j ) is coparallel to (k1, . . . , kj). Then dist (k′′i , k

(m)
i ) tends to 0

and for sufficiently large m we have | k(m)
i |> | ki | − ε > max (| ki |, | ki |) + ε.

Then k′′i is contained in a longer interval which is contained in C and this is
impossible. Therefore, the compact convex set C is a polytope.

In the following corollaries we repeat the statement of Theorem 1, gradually
removing all the unnecessary assumptions.

Corollary 2. Let A and B be two polytopes in R3 with nonempty interiors
such that A and B have only coparallel edges. Let the compact convex set C be
a minimal common anti-summand (m.c.a.s.) of A and B. Then C is a polytope.

Proof. Let a1, . . . , ap be all the vertices of A. Let f1, . . . , fp ∈ (R3)∗, Hf1A =
{a1}, . . . , HfpA = {ap}. Let us define

Ai
ε = {x ∈ A | fi(x) > fi(ai)− ε}, i = 1, . . . , p, ε > 0.

Let us choose ε > 0 such that Ai
ε ∩ Aj

ε = ∅ for all i, j = 1, . . . , p, i 6= j. Let
Aε = A \

⋃p
i=1 Ai

ε. Then A + Aε and B + Aε are simple polytopes and C + Aε is
a m.c.a.s. of A + Aε and B + Aε.

Theorem 1 implies that C +Aε is a polytope. Therefore, C is a polytope.



Minimal Quasidifferential 199

Corollary 3. Let A and B be two polytopes in R3 with nonempty interiors. Let
the compact convex set C be a minimal common anti-summand of A and B.
Then C is a polytope.

Proof. The polytopes 2A + B and A + 2B have only coparallel edges, and the
set C + A + B is a m.c.a.s. of 2A + B and A + 2B. The previous corollary
implies that C + A + B is a polytope.

Corollary 4. Let A and B be two polytopes in R3. Let the compact convex set
C be a minimal common anti-summand of A and B. Then C is a polytope.

Proof. Let D be a polytope in R3 with nonempty interior. Then the polytopes
A + D and B + D are polytopes with nonempty interior, and the set C + D is
a m.c.a.s.of A + D and B + D. Corollary 3 implies that C + D is a polytope.

Theorem 2. Let (A, B) be a minimal pair of nonempty compact convex sets in
R3. If there exists a pair (C, D) of polytopes equivalent to (A, B) then A and B
are polytopes.

Proof. The set A+D = B +C is a m.c.a.s. of C and D. Applying Corollary 4
we prove the theorem. For the details the reader is refered to Proposition 2.2
in [10].

Theorem 3. Let f : R3 → R be a piecewise linear function and x0 ∈ R3. Then
a minimal quasidifferential Df |x0 is a pair of polytopes.

Proof. Since the function f is piecewise linear, in some neighbohood of 0 the
function g(x) = f(x−x0)−f(x0) is equal to ∂f

∂ ·

∣∣
x0

which is piecewise linear and

positively homogenous. Hence ∂f
∂ ·

∣∣
x0

is a continuous selection of a finite number

of some linear functions f1, . . . fn. Due to Theorem 2.2 in [3], we have

∂f

∂ ·

∣∣∣∣
x0

= min
j∈{1,...,k}

max
i∈Ij

fi(·)

for some subsets I1, . . . , Ik of {1, . . . , n}.
For nonempty compact convex sets A, B, C and D we have

max (pA − pB, pC − pD) = p(A+D)∨(B+C) − pB+D

and
min (pA − pB, pC − pD) = p(A+C) − p(A+D)∨(B+C).

Since every linear function fi is equal to a difference of support functions of some
sngletons then ∂f

∂ ·

∣∣
x0

= pE(·) − pF (·) for some polytopes E and F. Theorem 2

implies that a minimal quasidifferential Df |x0 is a pair of polytopes.
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The following example gives four different m.c.a.s. of two simple polytopes
having only coparallel edges. Theorem 1 implies that they all must be polytopes.

Example. Let E be a regular octahedron and F be a paralellopiped containing
E, with all facets being identical rhombi. Let A and B be the two polytopes
defined by A = 2E + F and B = E + 2F .
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A = 2E + F
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B = E + 2F

Notice that both polytopes A and B are simple, have nonempty interior and
only coparallel edges.
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The polytopes C1, C2, C3 and C4 are only four of a continuum of minimal
common anti-summands of A and B. The thick lines represent front edges and
thin lines represent back edges. Double lines represent minimal edges.
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We know from Proposition 4 and Theorem 1 that each vertex of any m.c.a.s.
C of A and B is an end point of some minimal edge. Therefore, minimal edges
seem crucial in constructing m.c.a.s. of any two polytops, and, in consequence,
in finding minimal quasi-differencials of piecewise linear functions.

Open questions. There are several questions arising from Theorem 1:

1. The notion of ’betweenness’ from Definition 7 is essential in our proof of
Theorem 1. This is why we were not able to generalize our proof to spaces
X = Rn, n > 3. How can we avoid it?

2. The amount of vertices of an m.c.a.s. C of A and B is bounded by some
function of the amount of vertices of A and B. What is this function?

3. How can we construct effectively a m.c.a.s. C of A and B? How can we
construct all m.c.a.s.’s of A and B?

Questions 2 and 3 can be formulated in terms of minimal pairs of compact
convex sets and in terms of minimal quasidifferentials.
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