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Finite Truncations of
Generalized One-Dimensional

Discrete Convolution Operators and
Asymptotic Behavior of the Spectrum.

The Matrix Case.

I. B. Simonenko and O. N. Zabroda

Abstract. In this paper we study the sequence {AN (a)}N∈N of finite truncations of
a generalized discrete convolution operator, which have matrices of the form

AN (a) ∼
(

a

(
n

E(N)
,

k

E(N)
, n− k

))
n,k=1,...,N

,

where a is some function defined on [0,+∞) × [0,+∞), E(·) is defined on N and
E(N) →∞, N

E(N) →∞ as N →∞. For this sequence we get a generalization of the
Szegö limit theorem.
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1. Introduction

The study of truncated convolution operators and the asymptotic behavior of
their spectrum was started by G. Szegö [22]. The results, that he had received,
were advanced subsequently by many authors. A thorough bibliography on this
topic is contained in [1], pages 165 – 172, and in [2], pages 243 – 253. However,
regular convolution operators were investigated in most cases. Generalized con-
volution operators have been studied in the papers [4], [5], [15], [18], [21], [23]
and [25 – 30].
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The investigation presented in this paper is a continuation of the research,
which the authors started in [26], [27] and [30] when studying the collective
asymptotic behavior of the spectrum of the operators AN(a) (N ∈ N), which
are given by matrices of the form(

a
( n

E(N)
,

k

E(N)
, n− k

))
n,k=1,...,N

.

Therein a : R+×R+×Z −→ C (where R+ = [0,+∞)) is some function, which is

uniformly continuous in the first two variables. The function E : N −→ (0,+∞)

possesses the following properties:

E(N) −−−→
N→∞

∞ ,
N

E(N)
−−−→
N→∞

∞ .

This paper, as already stated, continues the previous research and generalizes
previous results to the case where a : R+ × R+ × Z → Cm×m. Here Cm×m

(m ∈ N) denotes the space of complex matrices of order m ×m. In [25], [26],
[28] and [29] the authors investigated also operators of another form, which are
given by a matrix (

a
( n
N
,
k

N
, n− k

))
n,k=1,...,N

,

where a : [0, 1] × [0, 1] × Z → C is a function, which is continuous in the first
two variables.

The papers [4], [5], [15], [18], [21] and [23] contain other approaches to
deriving analogs of the classical theorems in more general cases. It should be
mentioned, that the probability theory and statistical mechanics are potential
areas of applications for generalized convolution operators.

2. Main results

Let us introduce the following notations:

N, Z, R, C are the sets of natural, integer, real and complex numbers,
respectively, R+ = [0,+∞); S is the unit circle in the complex plane; µ is the
Lebesgue measure on S.

l2(U), U ⊂ Z, is the Banach space of all complex-valued functions X defined
on U , with the norm

‖X‖l2(U) =

( ∑
n∈U

|X(n)|2
) 1

2

<∞ ,
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l2(∅) = {0} (∅ is the empty set). Especially, l2 = l2(Z), Cm = l2({1, . . . ,m}),
m ∈ N (and elements of this spaces will be considered as vector-columns),
l2m(U), m ∈ N, U ⊂ Z, is the Banach space of all functions X defined on U with
values in Cm and with the norm

‖X‖l2m(U) =

( ∑
n∈U

‖X(n)‖2
Cm

) 1
2

<∞ .

Analogously l2m(∅) = {0} and l2m = l2m(Z), CN
m = l2m({1, . . . , N}), N,m ∈ N.

Hom(K1, K2) is the Banach space of bounded linear operators from a Ba-
nach space K1 to a Banach space K2; End(K1) = Hom(K1, K1).

PU,V ∈ Hom(l2m(U ∩ Z), l2m(V ∩ Z)) for U, V ⊂ R and (V ∩ Z) ⊂ (U ∩ Z) is
the operator of truncation; JV,U ∈ Hom(l2m(V ∩Z), l2m(U ∩Z)) is the operator of
continuation by zero and QV

U = JV,UPU,V .

E : N −→ R+\{0} is a function having the following properties:

E(N) −−−→
N→∞

∞ ,
N

E(N)
−−−→
N→∞

∞ .

Definition 1. Let us denote by D the Banach algebra of all functions a :
R+ × R+ × Z −→ C possessing the properties:

1) a(x, y, n) is uniformly continuous on R+ × R+ for everyfixed n ∈ Z;

2) the series
∑

n∈Z a(x, y, n) satisfies the Weierstrass condition of uniform
convergence:

∑
n∈Z sup(x,y)∈R+×R+ |a(x, y, n)| <∞.

The multiplication in D is defined as follows:

(a ∗ b)(x, y, n) =
∑
k∈Z

a(x, y, n− k)b(x, y, k) .

The norm in D is defined by

‖a‖D =
∑
n∈Z

sup
(x,y)∈R+×R+

|a(x, y, n)| .

Let Cm×m be the space of all complex matrices of order m×m.

Definition 2. Let us denote by Dm×m the Banach algebra of all matrix-valued
functions a : R+ × R+ × Z → Cm×m of the form

a(x, y, n) = (aij(x, y, n))i, j=1,...,m , aij ∈ D ,

with the usual definition of multiplication (for matrices whose entries are ele-
ments in a Banach algebra) and the norm

‖a‖Dm×m =
m∑

i,j=1

‖aij‖D .
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Below we introduce some more notation. If a ∈ Dm×m, then:

AN(a) ∈ End(CN
m) is a linear operator given by the matrix(

a
( n

E(N)
,

k

E(N)
, n− k

))
n,k=1,...,N

(it should be emphasized that entries of this matrix are matrices of orderm×m);

aξ : Z −→ Cm×m for ξ ∈ R+ is defined by

aξ(n) = a(ξ, ξ, n) , n ∈ Z ;

L
(
aξ

)
∈ End(l2m) is the operator with the matrix representation

(aξ(n− k))n,k∈Z ;

LU

(
aξ

)
∈ End(l2m(U ∩ Z)) for U ⊂ R is defined by

LU

(
aξ

)
= PZ,UL

(
aξ

)
JU,Z .

We define

(Λa)(x, y, t) =
∑
n∈Z

a(x, y, n)tn , x, y ∈ R+, t ∈ S

(Λaξ)(t) =
∑
n∈Z

aξ(n)tn , t ∈ S .

Moreover, let the function Φf : End(K) → C be defined by

Φf (A) =
1

Numb(B)

∑
k∈B

f(λk) ,

where K is a finite-dimensional Banach space; f is a function defined on some
open domain in the complex plane; {λk} are the eigenvalues of the operator
A ∈ End(K) taking multiplicities into account; B is the set of those indices k,
for which λk belongs to the domain of the function f ; Numb(B) is the cardinality
of the set B.

Let W (S) be the space of complex-valued functions on S which can be
expanded into an absolutely converging Fourier series; let W+(S)(⊂ W (S))
be the subspace of those functions which allow an analytical continuation to
{t ∈ C, |t| < 1}; let W−(S)(⊂ W (S)) be the subspace of functions that allow
an analytical continuation to {t ∈ C, |t| > 1} and having at infinity a finite
limit.
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It is known (for references see, e.g., [9]), that a nonvanishing function g ∈
W (S) can be represented in the form

g(t) = g+(t)tχg−(t) ,

where χ ∈ Z; the function g+ ∈ W+(S) has no zeros for |t| 6 1; g− ∈ W−(S)
has no zeros for |t| > 1 and g−(∞) 6= 0. This representation is called the
factorization of the function g. In this case the number χ is equal to the winding
number of the function g (i.e., the increment of its argument when going round
the unit circle in positive direction, divided by 2π):

χ = wind
S

g(t) =
1

2π
arg
t∈S

g(t) .

Let C(R+×R+×S) be the normed space of all bounded uniformly contin-
uous complex-valued functions ϕ, defined on R+ × R+ × S, with the norm

‖ϕ‖C(R+×R+×S) = sup
x,y∈R+, t∈S

|ϕ(x, y, t)| .

Definition 3. We denote by U the set of all functions ϕ from C(R+ × R+ ×
S), which are uniformly continuous on R+ × R+ × S and satisfy the following
conditions:

1) the function ϕ(ξ, ξ, t) belongs to the space W (S) for each fixed ξ ∈ R+;

2) the closure of the image of the function ϕ(ξ, ξ, t) for all ξ ∈ R+, t ∈ S
does not contain zero;

3) the function ϕ(0, 0, t) has winding number zero.

Let us remark, that (by Definition 3) the function ϕ(ξ, ξ, t) (ϕ ∈ U) has the
winding number zero for every ξ ∈ R+.

By Wm×m(S), W+
m×m(S) and W−

m×m(S) we denote the spaces of all matrices
of order m × m whose entries are functions from W (S), W+(S) and W−(S),
respectively. By a right factorization of a matrix-valued function g ∈ Wm×m(S)
having a nonvanishing determinant we mean a representation of the form

g(t) = gr−(t)


tχ1 0 . . . 0
0 tχ2 . . . 0
...

...
. . .

...
0 0 . . . tχm

 gr+(t) ,

where gr− ∈ W−
m×m(S), gr+ ∈ W+

m×m(S), the determinants of their conti-
nuations into the corresponding domains and also the determinant of gr− at
infinity do not vanish. The integer numbers χ1 6 χ2 6 . . . 6 χm are called the
right partial indices. It is a well known fact, that

∑m
k=1 χk = windS det g(t).
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By a left factorization of an invertible matrix-valued function g ∈ Wm×m(S)
we denote a representation of the form

g(t) = gl+(t)


tν1 0 . . . 0
0 tν2 . . . 0
...

...
. . .

...
0 0 . . . tνm

 gl−(t) ,

where gl+ ∈ W+
m×m(S), gl−(t) ∈ W−

m×m(S), the determinants of their conti-
nuations into the corresponding domains and the determinant of gr− at infinity
do not vanish. The integer numbers ν1 6 ν2 6 . . . 6 νm are called the left
partial indices. In this case also

∑m
k=1 νk = windS det g(t).

It is also important to mention (see [2], [9]) that right and left partial indices
are uniquely determined.

Let ϕ be a matrix-valued function on R+ × R+ × S of the form

ϕ(x, y, t) = (ϕij(x, y, t))i,j=1,...,m ,

where ϕij(x, y, t) are bounded complex-valued functions defined and uniformly
continuous on R+×R+×S. We denote by Limϕ(S) the set of all matrix-valued
functions ψ on S, which have the form

ψ(t) = (ψij(t))i,j=1,...,m ,

where the ψij(·) are defined on S and continuous, and for which there exists such
a sequence {xn}n∈N, xn ∈ R+, that xn → +∞ as n → ∞ and every function
ϕij(xn, xn, t) converges uniformly to ψij(t) as n→∞. Let Cm×m(R+×R+×S)
be the normed space of all matrix-valued functions of the form

ϕ(x, y, t) = (ϕij(x, y, t))i,j=1,...,m ,

where ϕij ∈ Cm×m(R+ × R+ × S), with the norm

‖ϕ‖Cm×m(R+×R+×S) = max
i,j=1,...,m

sup
x,y∈R+, t∈S

|ϕij(x, y, t)| .

Definition 4. Let us denote by Um×m the set of all functions ϕ(x, y, t) from
Cm×m(R+ × R+ × S), which satisfy the following four conditions:

1) for every fixed ξ ∈ R+ the matrix-valued function ϕ(ξ, ξ, t) belongs to the
space Wm×m(S);

2) the closure of the image of the determinant of ϕ(ξ, ξ, t) for all ξ ∈ R+,
t ∈ S does not contain zero;

3) ϕ(0, 0, t) allows a right factorization with zero partial indices;
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4) every matrix-valued function ψ(t) ∈ Limϕ(S) allows a left factorization
with zero partial indices.

Let us introduce another important notation Bδ,N(a). Let δ > 0, a ∈
Dm×m and Λa ∈ Um×m. Let us remark, that because of the last condition of
Definition 4 and the stability criterion for partial indices (see [16]), there exists

such an N0 ∈ N, that for each N > N0 the matrix-valued function
(
Λa

N
E(N)

)
(t)

allows the left factorization with zero partial indices (therefore, the operator

L(−∞,N ]

(
a

N
E(N)

)
is invertible). For all N ∈ N such that N > max{3δE(N), N0}

(in this case the following expression has a meaning), we introduce

Bδ,N(a) = J[1,E(N)ξ1),[1,N ]P[1,+∞),[1,E(N)ξ1)L
−1
[1,+∞)

(
a0

)
× J[1,E(N)ξ2),[1,+∞)P[1,N ],[1,E(N)ξ2)

+

η(N)∑
k=2

J[E(N)ξk−1,E(N)ξk),[1,N ]PZ,[E(N)ξk−1,E(N)ξk)L
−1

(
aξk−1

)
× J[E(N)ξk−2,E(N)ξk+1),ZP[1,N ],[E(N)ξk−2,E(N)ξk+1)

+ J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L
−1
(−∞,N ]

(
a

N
E(N)

)
× J[E(N)ξη(N)−1,N ],(−∞,N ]P[1,N ],[E(N)ξη(N)−1,N ] ,

(1)

where ξk = kδ for k = 0, 1, 2, . . .. Therein η(N) ∈ N satisfies the condition

1

δ

N

E(N)
− 3 < η(N) 6

1

δ

N

E(N)
− 2 .

For N ∈ N, for which N 6 max{3δE(N), N0}, we define Bδ,N(a) = 0.

It is necessary to mention that this notation is correct. The invertibility

of the ”extreme” operators L[1,+∞) (a0) and L(−∞,N ]

(
a

N
E(N)

)
in the scalar case

(if Λa ∈ U is fulfilled) is shown in papers [6 – 8], [11 – 13], [17] and [19]. The
corresponding results for the matrix case (if Λa ∈ Um×m) can be found for
example in [2] and [9]. The invertibility of the ”middle” operators L

(
aξk−1

)
is

obvious:

L−1
(
aξk−1

)
= L

( (
aξk−1

)−1
)
,

where
(
aξk−1

)−1
are the Fourier coefficients of the function

(
Λaξk−1

)−1
(·).

Here is a theorem about the almost inverse operator.

Theorem 1. Let a ∈ Dm×m and Λa ∈ Um×m. Then:

1) sup
δ>0,N∈N

‖Bδ,N(a)‖ <∞;
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2) for an arbitrary ε > 0 there exists such a δ0 > 0, that for every δ < δ0
there is a corresponding N(δ) ∈ N satisfying the following condition:

sup
N>N(δ)

‖Bδ,N(a)AN(a)− EN‖ < ε ,

where EN is the identity operator inCN
m.

The completed proof of Theorem 1 is contained in Section 6. In Section 5
we prove first a special case of this statement for so-called truncations of the
function a, which have the form

aq(x, y, n) =

{
a(x, y, n), x, y ∈ R+, |n| 6 q ,

0, x, y ∈ R+, |n| > q ,

where q ∈ N is large enough. Then, in Section 6, we derive the proof for
the general situation while using the approximation of the function a by its
truncations aq.

Before we formulate the main result it makes sense to explain one important
fact (see [3]). Let T be a linear bounded operator acting in a Banach space K;
let σ(T ) be its spectrum; let f be an analytic function on a neighbourhood of
σ(T ); let U be an open set, whose boundary Γ consists of a finite number of
rectifiable Jordan curves (positively oriented). Let us suppose that U ⊃ σ(T )
and that U ∪Γ is contained in the domain of analyticity of the function f . Then
the operator f(T ) is defined by

f(T ) =
1

2πi

∫
Γ

f(λ)R(λ, T )dλ ,

where R(λ, T ) is the resolvent of the operator T . By trT we denote the trace
of the operator T .

Theorem 2. Let a ∈ Dm×m; let G(a) be the set of all λ ∈ C, for which
(Λa)(x, y, t)− λIm×m ∈ Um×m, where Im×m is the unit matrix of order m×m;
let F(a) = C\G(a); let D be an open subset of C containing the set F(a); let f
be an analytic function on D. Then:

1) the spectrum of the operator AN(a) is contained in D for N ∈ N large
enough;

2) the following limit relation holds:

Φf (AN(a))− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx −−−→

N→∞
0 .

Theorem 2 is proved in Section 7 first for a case, when f is a rational
function, and then for a function f , which can be approximated by rational
functions.
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3. The uniform boundedness of the operator Bδ,N(a)

This section contains the proof of the first statement of Theorem 1.

Definition 5. Let us denote by D̃m×m the subalgebra of such functions in
Dm×m, which do not depend on x and y, i.e., D̃m×m is a Banach algebra of
functions c : Z → Cm×m.

Lemma 1. Let a ∈ Dm×m, Λa ∈ Um×m. Let also aq ∈ Dm×m for q ∈ N be
defined as

aq(x, y, n) =

{
a(x, y, n), x, y ∈ R+, |n| 6 q

0, x, y ∈ R+, |n| > q .

Then there is such a q0 ∈ N, that for all q > q0 and ξ ∈ R+ the operator L
(
aξ

q

)
is invertible and the family of operators

{
L−1

(
aξ

q

)}
ξ∈R+, q>q0

is precompact.

Proof. It is obvious, that we can find such a q0 ∈ N, that the closure of the set
of all values of det

(
Λaξ

q

)
(t) for q > q0, ξ ∈ R+, t ∈ S does not contain zero.

The sequences {aξ
q(n)}n∈Z, ξ ∈ R+, q > q0, form a precompact set in the

algebra D̃m×m. We denote its closure by B. Clearly, det(Λb)(t) for b ∈ B does
not vanish.

The convolution operators L(b), b ∈ B, form a compact set and are inver-
tible. In this case the set of the inverse operators L−1 (b), b ∈ B, is also compact.
The statement is true, since{

L−1
(
aξ

q

)}
ξ∈R+, q>q0

⊂
{
L−1 (b)

}
b∈B .

Lemma 2. Let the conditions of Lemma 1 be fulfilled. Then there exist q0,
N0 ∈ N such that for all q > q0 and N > N0

the operator L(−∞,1]

(
a

N
E(N)
q

)
is invertible and

the family of operators
{
L−1

(−∞,1]

(
a

N
E(N)
q

)}
N>N0, q>q0

is precompact.

Proof. Analogously, the sequences
{
a

N
E(N)
q (n)

}
n∈Z for q,N ∈ N form a precom-

pact set in the algebra D̃m×m. By Bq0,N0 (q0, N0 ∈ N) we denote the closure

of the set of the sequences
{
a

N
E(N)
q (n)

}
n∈Z for q > q0, N > N0. Using the

properties of the space Um×m and the stability criterion for partial indices (see
[16]), we can show, that q0 and N0 can be fixed so that every matrix-valued
function (Λb) (t), b ∈ Bq0,N0 , has a nonvanishing determinant and allows the left
factorization with zero partial indices.

The set of operators L(−∞,1](b), b ∈ Bq0,N0 , is compact and they are inver-
tible. The set of the inverse operators L−1

(−∞,1] (b), b ∈ Bq0,N0 , is also compact,
and the statement is true.
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Let Numb(B) be a number of elements in the set B. If B is infinite, then
we put Numb(B) = +∞. By the overlapping rate of a family of sets uα, α ∈ U ,
where U is some index set, we mean the value supx∈u r(x), where u =

⋃
α∈U uα

and r(x) = Numb{α ∈ U| x ∈ uα}. In the case u = ∅ we put the overlapping
rate to be equal to zero. (Obviously, if the overlapping rate is equal to 1, then
the sets uα are mutually disjoint.)

Lemma 3. Let {Ak}n
k=1 be a family of operators from End(l2m(U)), U ⊂ Z; c =

max k ‖Ak‖; let {vk}n
k=1, {wk}n

k=1 be families of subsets of U with overlapping
rates 1 and r, respectively. Then the following estimate is true:∥∥∥∥ n∑

k=1

Jvk,UPU,vkAkJwk,UPU,wk

∥∥∥∥ 6 rc .

Proof. This Lemma is proved in [20] (page 27).

Proposition 1. Let the conditions of Lemma 1 be fulfilled. Then there exists
such a q0 ∈ N, that Λaq ∈ Um×m for every q > q0 and

sup
δ>0, N∈N, q>q0

‖Bδ,N(aq)‖ <∞ .

Proof. This statement follows from Lemmas 1, 2 and 3.

4. The local estimate of the operator AN(a)

This section deals with the local approximation of the operator AN(a) by the
regular convolution operator. Let αM = {αx / x ∈ M} for some set M ⊂ R
and some α ∈ R. For ξ ∈ R+ we denote Uξ(δ) = (ξ − δ, ξ + δ), where δ > 0.

Lemma 4. Let the function a ∈ Dm×m be of the form

a(x, y, n) =

p∑
r=1

f r(x, y)ar(n) ,

where p ∈ N, f 1, . . . , fp are complex-valued functions defined and uniformly
continuous on R+ × R+, a1, . . . , ap ∈ D̃m×m. Then for every ε > 0 there exists
a δ0 > 0 such that for any δ > δ0 and N ∈ N the following inequality holds:

sup
ξ∈R+

∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ]

(
AN(a)− L[1,N ]

(
aξ

))
Q

E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥ < ε .
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Proof. Let ar ∈ D̃m×m (r = 1, . . . , p) have the form ar(n) = (ar
ij(n))i,j=1,...,m,

n ∈ Z. Let also c ∈ D̃m×m, c(n) = (cij(n))i,j=1,...,m, where cij(n) =
∑p

r=1 |ar
ij(n)|.

Let us fix ε > ε1 > 0. Because of the uniform continuity of the functions
f 1, . . . , fp there exists a δ0 > 0 such that for any δ > δ0 the following inequality
is fulfilled:

sup
ξ∈R+

p∑
r=1

sup
x,y∈Uξ(δ)∩R+

|f r(x, y)− f r(ξ, ξ)| < ε1

C
,

where C = ‖c‖D̃m×m
. Then

sup
ξ∈R+

∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ]

(
AN(a)− L[1,N ]

(
aξ

))
Q

E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥2

= sup
ξ∈R+

sup
‖X‖=1

∑
n∈E(N)Uξ(δ)∩[1,N ]∩N

m∑
i=1

∣∣∣∣ ∑
k∈E(N)Uξ(δ)∩[1,N ]∩N

m∑
j=1

p∑
r=1

[
f r(ξ, ξ)− f r

( n

E(N)
,

k

E(N)

)]
ar

ij(n− k)Xj(k)

∣∣∣∣2
6 sup

‖X‖=1

∑
n∈E(N)Uξ(δ)∩[1,N ]∩N

m∑
i=1

( ∑
k∈E(N)Uξ(δ)∩[1,N ]∩N

m∑
j=1

sup
ξ∈R+

p∑
r=1

∣∣∣∣f r(ξ, ξ)− f r
( n

E(N)
,

k

E(N)

)∣∣∣∣|ar
ij(n− k)‖Xj(k)|

)2

6
ε2
1

C2
sup
‖X‖=1

∑
n∈Z

m∑
i=1

( N∑
k=1

m∑
j=1

|cij(n− k)||Xj(k)|
)2

6
ε2
1

C2
sup
‖X‖=1

∑
n∈Z

m∑
i=1

{ N∑
k=1

m∑
j=1

|cij(n− k)|
}{ N∑

k=1

m∑
j=1

|cij(n− k)||Xj(k)|2
}

6
ε2
1

C
sup
‖X‖=1

N∑
k=1

m∑
j=1

{ ∑
n∈Z

m∑
i=1

|cij(n− k)|
}
|Xj(k)|2

6 ε2
1 sup
‖X‖=1

N∑
k=1

‖X(k)‖2
Cm

= ε2
1 < ε2.

Lemma 5. Suppose that for the function a ∈ Dm×m there exists q ∈ N such
that a(x, y, n) = 0 for every |n| > q. Then for every ε > 0 there exists such a
δ0 > 0, that for every δ > δ0 and N ∈ N the following inequality holds:

sup
ξ∈R+

∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ]

(
AN(a)− L[1,N ]

(
aξ

))
Q

E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥ < ε .
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Proof. The matrix-valued function a(x, y, n) = (aij(x, y, n))i,j=1,...,m can be re-
presented in the form

a(x, y, n) =

q∑
k=−q

m∑
i,j=1

aij(x, y, k)b
k i j(n) ,

where bk i j(n) = 0 for n 6= k, and for n = k it is a matrix with entry 1 on the
crossing of the j-th line and j-th column, the other entries of which are equal
to zero. In accordance with Lemma 4 we get the necessary result.

Proposition 2. Let a ∈ Dm×m. Then for every ε > 0 there exists such a
δ0 > 0, that for any δ > δ0 and N ∈ N the following inequality holds:

sup
ξ∈R+

∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ]

(
AN(a)− L[1,N ]

(
aξ

))
Q

E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥ < ε .

Proof. Let us take an arbitrary ε > 0. For a(x, y, n) = (aij(x, y, n))i,j=1,...,m let
us denote

Rq =
∑
|n|>q

m∑
i,j=1

sup
x,y∈R+

|aij(x, y, n)| .

We take such a q0 ∈ N, that Rq0 < ε/3. Let also for x, y ∈ R+

aq0(x, y, n) =

{
a(x, y, n), |n| 6 q0

0, |n| > q0 .

By Lemma 5 there exists such a δ0 > 0, that for any δ > δ0, N ∈ N the following
inequality is fulfilled:

sup
ξ∈R+

∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ]

(
AN(aq0)− L[1,N ]

(
aξ

q0

))
Q

E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥ < ε

3
.

We have to show the correctness of the estimates

sup
ξ∈R+

∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ] (AN(a)− AN(aq0))Q
E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥ < ε

3
(2)

sup
ξ∈R+

∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ]

(
L[1,N ]

(
aξ

)
− L[1,N ]

(
aξ

q0

))
Q

E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥ < ε

3
. (3)

Let us prove the inequality (2). It holds∥∥∥QE(N)Uξ(δ)∩[1,N ]

[1,N ] (AN(a)− AN(aq0))Q
E(N)Uξ(δ)∩[1,N ]

[1,N ]

∥∥∥2

= sup
‖X‖=1

∑
n∈E(N)Uξ(δ)∩[1,N ]∩N

m∑
i=1

∣∣∣∣ ∑
k∈E(N)Uξ(δ)∩[1,N ]∩N

m∑
j=1

[
aij

( n

E(N)
,

k

E(N)
, n− k

)
− (aq0)ij

( n

E(N)
,

k

E(N)
, n− k

)]
Xj(k)

∣∣∣∣2
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6 sup
‖X‖=1

∑
n∈N

m∑
i=1

( N∑
k=1

m∑
j=1

sup
x,y∈R+

|aij(x, y, n− k)−−(aq0)ij(x, y, n− k)||Xj(k)|
)2

6 sup
‖X‖=1

∑
n∈Z

m∑
i=1

( N∑
k=1

m∑
j=1

sup
x,y∈R+

|aij(x, y, n− k)− (aq0)ij(x, y, n− k)|
)

×
( N∑

k=1

m∑
j=1

sup
x,y∈R+

|aij(x, y, n− k)− (aq0)ij(x, y, n− k)||Xj(k)|2
)

6 R2
q0

sup
‖X‖=1

N∑
k=1

m∑
j=1

|Xj(k)|2 <
ε2

9
.

Thus the correctness of inequality (2) is shown. Inequality (3) can be proved
similarly.

5. The function φ[A]

Let ρ(F1, F2) for F1, F2 ⊂ R be the quantity defined by

ρ(F1, F2) = inf
z1∈F1,z2∈F2

|z1 − z2| ,

and if one of the sets F1, F2 is empty, then we put ρ(F1, F2) = +∞.

Definition 6. Let U ⊂ Z, A ∈ End(l2m(U)). By φ[A] : [0,+∞) → [0,+∞) we
denote the function, which is defined as follows:

(φ[A])(d) = sup
F1,F2⊂U, ρ(F1,F2)>d

∥∥QF1
U AQ

F2
U

∥∥ .

The function φ[A] was first introduced in the paper [14] as an auxiliary
notation for obtaining necessary estimates. Propositions 3 and 4, which are
given below, were proved in the same paper in the scalar (multidimensional)
case, but they can easily be generalized to the case of matrix-valued functions.

Proposition 3. The function φ[A] possesses the following properties:

1) (φ[A])(d) 6 ‖A‖;
2) if d1 6 d2, then (φ[A])(d1) > (φ[A])(d2);

3) (φ[A+B])(d) 6 (φ[A])(d) + (φ[B])(d);

4) (φ[AB])(d) 6 ‖A‖(φ[B])(λd) + ‖B‖(φ[A])((1− λ)d) for every λ ∈ [0, 1];
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5) if the operator B is invertible, then for any n ∈ N

(φ[B−1])(d) 6
‖B−1‖2 ‖B‖

n
+ 4

∥∥B−1
∥∥2

(φ[B])
( d

4n− 1

)
.

Proposition 4. If the families of the operators {Ai}i∈I and {A−1
i }i∈I , acting

in the space l2m(Ui) (Ui ⊂ Z), are bounded and if (φ[Ai]) (d) → 0 uniformly in
i ∈ I for d→∞, then

(
φ[A−1

i ]
)
(d) → 0 uniformly in i ∈ I for d→∞.

Proof. This statement follows from the property 5) of Proposition 3.

Proposition 5. Let a ∈ Dm×m. Then:

1) (φ[AN(a)]) (d) −−−→
d→∞

0 uniformly in N ∈ N;

2)
(
φ

[
LU

(
aξ

)])
(d) −−−→

d→∞
0 uniformly in U ⊂ R and ξ ∈ R+.

Proof. Let us prove the first statement. Let a ∈ Dm×m have the form a(x, y, n)

= (aij(x, y, n))i,j=1,...,m and c ∈ D̃m×m such that c(n) = (cij(n))i,j=1,...,m, where
cij(n) = supx,y∈R+ |aij(x, y, n)| for n ∈ Z. Let also F1, F2 ⊂ ([1, N ] ∩ N) such
that ρ(F1, F2) > d. If one of this sets is empty, then φ[AN(a)](d) = 0. Otherwise

φ[AN(a)](d)

=
∥∥∥QF1

[1,N ]AN(a)QF2

[1,N ]

∥∥∥
= sup

‖X‖=1

∑
n∈F1

m∑
i=1

∣∣∣∣ ∑
k∈F2

m∑
j=1

aij

( n

E(N)
,

k

E(N)
, n− k

)
Xj(k)

∣∣∣∣2
6 sup

‖X‖=1

∑
n∈F1

m∑
i=1

( ∑
k∈F2

m∑
j=1

cij(n− k)|Xj(k)|
)2

6 sup
‖X‖=1

∑
n∈F1

m∑
i=1

( ∑
k∈F2

m∑
j=1

cij(n− k)

)( ∑
k∈F2

m∑
j=1

cij(n− k)|Xj(k)|2
)

6 R2
d sup
‖X‖=1

∑
k=1

m∑
j=1

|Xj(k)|2 6 R2
d ,

where Rd =
∑

|n|>d

∑m
i,j=1 cij(n) → 0 for d → ∞, and the first statement is

proved. The second statement can be proved analogously.

The correctness of the following important statement follows from Proposi-
tions 4, 5 and Lemmas 1, 2.

Proposition 6. Let a ∈ Dm×m and Λa ∈ Um×m. Then:

1)
(
φ

[
L−1

(
aξ

)])
(d) −−−→

d→∞
0; uniformly in ξ ∈ R+

2)
(
φ
[
L−1

(−∞,1]

(
a

N
E(N)

)])
(d) −−−→

d→∞
0 uniformly in N ∈ N.
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6. A special case of Theorem 1

At the beginning of this section, the following remark should be made. Let
τ−N ∈ Hom

(
l2m((−∞, N ] ∩Z), l2m((−∞, 1] ∩ Z)

)
, N ∈ N, be a shift operator

acting like
(τ−NX) (n) = X(n+N − 1) .

Obviously

L(−∞,N ]

(
a

N
E(N)

)
= (τ−N)−1L(−∞,1]

(
a

N
E(N)

)
τ−N ,

and if Λa ∈ Um×m, then there exists such an N0 ∈ N, that for every N > N0

the operator L(−∞,N ]

(
a

N
E(N)

)
is invertible and

L−1
(−∞,N ]

(
a

N
E(N)

)
= (τ−N)−1L−1

(−∞,1]

(
a

N
E(N)

)
τ−N .

Therefore the norms of the operators L−1
(−∞,1]

(
a

N
E(N)

)
and L−1

(−∞,N ]

(
a

N
E(N)

)
for

N > N0 are equal.
The following result is the special case of Theorem 1.

Proposition 7. Let a ∈ Dm×m and suppose there is a q ∈ N such that
a(x, y, n) = 0 for any |n| > q. Let, moreover, Λa ∈ Um×m. Then for every
ε > 0 there exists such a δ0 > 0, that for every δ < δ0 there is an N(δ) ∈ N
satisfying the following condition:

sup
N>N(δ)

‖Bδ,N(a)AN(a)− EN‖ < ε .

Proof. Let us take an arbitrary ε > 0. By Lemma 2 we can find such an

N0 ∈ N, that the operator L(−∞,1]

(
a

N
E(N)

)
is invertible for each N > N0 and the

family of operators
{
L−1

(−∞,1]

(
a

N
E(N)

)}
N>N0

is precompact. In accordance with

Proposition 2, the number δ0 > 0 can be chosen so that for any δ < δ0, ξ ∈ R+

and N ∈ N the following estimate holds:∥∥∥QE(N)Uξ(3δ)∩[1,N ]

[1,N ]

(
AN(a)− L[1,N ]

(
aξ

))
Q

E(N)Uξ(3δ)∩[1,N ]

[1,N ]

∥∥∥ 6
ε

18A′ , (4)

where

A′ = max

{∥∥∥L−1
[1,+∞)

(
a0

) ∥∥∥, sup
ξ∈R+

∥∥L−1
(
aξ

)∥∥ , sup
N>N0

∥∥∥L−1
(−∞,1]

(
a

N
E(N)

)∥∥∥}
.

Now we fix some δ < δ0 and such an N ′ ∈ N, that every N > N ′ satisfies the
inequality N > max{3δE(N), N0}. Let us consider three families of subsets
of R+:

1) {uk}k∈N, where uk = [(k − 1)δ, kδ) ∩ (0,+∞);
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2) {vk}k∈N, where vk = [(k− 2)δ, (k+1)δ)∩ (0,+∞) (obviously, the overlap-
ping rate of these sets is equal to 5);

3) {wk}k∈N, where wk = [(k − 3)δ, (k + 2)δ) ∩ (0,+∞) (the overlapping rate
is equal to 9).

It is useful to note that uk ⊂ vk ⊂ wk. Let us denote for convenience A =
‖a‖Dm×m .

We have to consider the following two products IN and I′N as N > N ′:

IN = Bδ,N(a)AN(a)

= JE(N)u1,[1,N ]P[1,+∞),E(N)u1L
−1
[1,+∞)

(
a0

)
JE(N)v1,[1,+∞)P[1,N ],E(N)v1AN(a)

+

η(N)∑
k=2

JE(N)uk,[1,N ]PZ,E(N)uk
L−1

(
aξk−1

)
JE(N)vk,ZP[1,N ],E(N)vk

AN(a)

+ J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L
−1
(−∞,N ]

(
a

N
E(N)

)
× J[E(N)ξη(N)−1,N ],(−∞,N ]P[1,N ],[E(N)ξη(N)−1,N ]AN(a)

and

I′N = JE(N)u1,[1,N ]P[1,+∞),E(N)u1L
−1
[1,+∞)

(
a0

)
JE(N)v1,[1,+∞)P[1,N ],E(N)v1L[1,N ]

(
a0

)
+

η(N)∑
k=2

JE(N)uk,[1,N ]PZ,E(N)uk
L−1

(
aξk−1

)
JE(N)vk,Z

× P[1,N ],E(N)vk
L[1,N ]

(
aξk−1

)
Q

E(N)wk

[1,N ]

+ J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L
−1
(−∞,N ]

(
a

N
E(N)

)
× J[E(N)ξη(N)−1,N ],(−∞,N ]P[1,N ],[E(N)ξη(N)−1,N ]L[1,N ]

(
a

N
E(N)

)
.

Let us denote α1 = ‖IN − I′N‖, α2 = ‖I′N − EN‖.
Case 1: We consider first α2 and get

I′N = JE(N)u1,[1,N ]P[1,+∞),E(N)u1L
−1
[1,+∞)

(
a0

)
Q

E(N)v1

[1,+∞)L[1,+∞)

(
a0

)
J[1,N ],[1,+∞)

+

η(N)∑
k=2

JE(N)uk,[1,N ]PZ,E(N)uk
L−1

(
aξk−1

)
×Q

E(N)vk

Z L
(
aξk−1

)
JE(N)wk,ZP[1,N ],E(N)wk

+ J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L
−1
(−∞,N ]

(
a

N
E(N)

)
×Q

[E(N)ξη(N)−1,N ]

(−∞,N ] L(−∞,N ]

(
a

N
E(N)

)
J[1,N ],(−∞,N ]
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and hence

I′N = EN − JE(N)u1,[1,N ]P[1,+∞),E(N)u1L
−1
[1,+∞)

(
a0

)
×Q

[1,+∞)\E(N)v1

[1,+∞) L[1,+∞)

(
a0

)
J[1,N ],[1,+∞)

−
η(N)∑
k=2

JE(N)uk,[1,N ]PZ,E(N)uk
L−1

(
aξk−1

)
×Q

Z\E(N)vk

Z L
(
aξk−1

)
JE(N)wk,ZP[1,N ],E(N)wk

− J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L
−1
(−∞,N ]

(
a

N
E(N)

)
×Q

(−∞,N ]\[E(N)ξη(N)−1,N ]

(−∞,N ] L(−∞,N ]

(
a

N
E(N)

)
J[1,N ],(−∞,N ] .

Applying Lemma 3 (to the middle items) we get the following estimate for α2:

α2 6 A
(
φ
[
L−1

[1,+∞)

(
a0

) ]) (
ρ (E(N)u1, [1,+∞)\E(N)v1)

)
+ 9A max

26k6η(N)

(
φ
[
L−1

(
aξk−1

) ])(
ρ (E(N)uk,Z\E(N)vk)

)
+A

(
φ
[
L−1

(−∞,N ]

(
a

N
E(N)

)]) (
ρ

(
[E(N)ξη(N), N ], (−∞, E(N)ξη(N)−1)

) )
.

It is clear, that

ρ (E(N)u1, [1,+∞)\E(N)v1) −−−→
N→∞

∞

ρ (E(N)uk,Z\E(N)vk) −−−→
N→∞

∞ (k = 2, . . . , η(N))

ρ
(
[E(N)ξη(N), N ], (−∞, E(N)ξη(N)−1)

)
−−−→
N→∞

∞ .

Hence, in accordance with Proposition 6 there is such an N ′′ ∈ N (> N ′), that
for every N > N ′′ the inequality α2 < ε/2 holds.

Case 2: Let us consider now α1. We have α1 6 α′1 + α′′1, where

α′1 =
∥∥∥JE(N)u1,[1,N ]P[1,+∞),E(N)u1L

−1
[1,+∞)

(
a0

)
J[1,N ],[1,+∞)

×Q
E(N)v1

[1,N ]

(
AN(a)− L[1,N ]

(
a0

) )
Q

E(N)w1

[1,N ]

+

η(N)∑
k=2

JE(N)uk,[1,N ]PZ,E(N)uk
L−1

(
aξk−1

)
J[1,N ],Z

×Q
E(N)vk

[1,N ]

(
AN(a)− L[1,N ]

(
aξk−1

) )
Q

E(N)wk

[1,N ]

+ J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L
−1
(−∞,N ]

(
a

N
E(N)

)
J[1,N ],(−∞,N ]

×Q
[E(N)ξη(N)−1,N ]

[1,N ]

(
AN(a)− L[1,N ]

(
a

N
E(N)

))
Q

[E(N)ξη(N)−2,N ]

[1,N ]

∥∥∥
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and

α′′1 =
∥∥∥JE(N)u1,[1,N ]P[1,+∞),E(N)u1L

−1
[1,+∞)

(
a0

)
J[1,N ],[1,+∞)

×Q
E(N)v1

[1,N ]

(
AN(a)− L[1,N ]

(
a0

) )
Q

[1,N ]\E(N)w1

[1,N ]

+

η(N)∑
k=2

JE(N)uk,[1,N ]PZ,E(N)uk
L−1

(
aξk−1

)
J[1,N ],ZQ

E(N)vk

[1,N ] AN(a)Q
[1,N ]\E(N)wk

[1,N ]

+ J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L
−1
(−∞,N ]

(
a

N
E(N)

)
J[1,N ],(−∞,N ]

×Q
[E(N)ξη(N)−1,N ]

[1,N ]

(
AN(a)− L[1,N ]

(
a

N
E(N)

))
Q

[1,N ]\[E(N)ξη(N)−2,N ]

[1,N ]

∥∥∥ .

With the help of inequality (4) and Lemma 3, we get α′1 < ε/2. Further the
following estimate holds:

α′′1 6 A′(φ [
AN(a)− L[1,N ]

(
a0

)] )(
ρ(E(N)v1, [1, N ]\E(N)w1)

)
+A′

η(N)∑
k=2

(
φ [AN(a)]

)(
ρ(E(N)vk, [1, N ]\E(N)wk)

)
+A′

(
φ
[
AN(a)− L[1,N ]

(
a

N
E(N)

)]) (
ρ([E(N)ξη(N)−1, N ], [1, E(N)ξη(N)−2))

)
.

Since a(x, y, n) = 0 for |n| > q, then there exists such an N(δ) ∈ N (> N ′′),
that α′′1 = 0 for N > N(δ).

Thus, ‖Bδ,N(a)AN(a)−EN‖ < ε for every N > N(δ), and the statement is
proved.

7. Proof of Theorem 1

In the previous section we have proved Proposition 7, the special case of the
Theorem 1. Now we can prove Theorem 1 applying this auxiliary result.

Proof. Let ε > 0. Let us denote for q ∈ N and x, y ∈ R+

aq(x, y, n) =

{
a(x, y, n), |n| 6 q

0, |n| > q .

We can fix now such a q0 ∈ N, that Λaq ∈ Um×m for every q > q0. Let
B = supδ>0,N∈N, q>q0

‖Bδ,N(aq)‖ (this quantity is finite by Proposition 1) and
A = ‖a‖Dm×m . It is easy to show, that q ∈ N(> q0) and N0 ∈ N can be fixed
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such that for all N > N0 and ξ ∈ R+ the following inequalities hold:

‖AN(aq)− AN(a)‖ < ε

3B∥∥∥L−1
[1,+∞)

(
a0

q

)
− L−1

[1,+∞)

(
a0

)∥∥∥ < ε

15A
(5)∥∥L−1

(
aξ

q

)
− L−1

(
aξ

) ∥∥ < ε

15A
(6)∥∥∥L−1

(−∞,N ]

(
a

N
E(N)
q

)
− L−1

(−∞,N ]

(
a

N
E(N)

)∥∥∥ < ε

15A
. (7)

In accordance with Proposition 7, there is such a δ0 > 0, that for every
δ < δ0 one can select N(δ) ∈ N(> N0) satisfying the condition:

sup
N>N(δ)

‖Bδ,N(aq)AN(aq)− EN‖ <
ε

3
.

In consequence of Lemma 3 and inequalities (5), (6), (7) with q as above, we
get ‖Bδ,N(aq)−Bδ,N(a)‖ < ε/3A. Finally we have:

‖Bδ,N(a)AN(a)− EN‖ 6 ‖Bδ,N(a)AN(a)−Bδ,N(aq)AN(a)‖
+ ‖Bδ,N(aq)AN(a)−Bδ,N(aq)AN(aq)‖
+ ‖Bδ,N(aq)AN(aq)− EN‖.

It is clear, that the inequality ‖Bδ,N(a)AN(a) − EN‖ < ε is fulfilled for every
N > N(δ).

It can be helpful for the subsequent part of this paper to remind the defini-
tion of the sets G(a) and F(a). For a ∈ Dm×m we denote by G(a) the set of all
λ ∈ C, for which (Λa)(x, y, t)− λIm×m ∈ Um×m, where Im×m is the unit matrix
of order m×m. We set F(a) = C\G(a).

The next result follows from Theorem 1 and Proposition 1, which have been
already proved.

Corollary 1. If a ∈ Dm×m and Λa ∈ Um×m, then there exists such an N0 ∈ N,
that for all N > N0 the operator AN(a) is invertible.

Let us denote the unity in Dm×m by the symbol e. It is useful to note the
fact, that AN(a − λe) = AN(a) − λEN , where EN is the identity operator in
CN

m, λ ∈ C.

Corollary 2. If a ∈ Dm×m and λ ∈ G(a), then there exists an N0 ∈ N such
that for all N > N0 the operator AN(a− λe) is invertible.

Corollary 3. Let a ∈ Dm×m, λ ∈ G(a). Then for an arbitrary ε > 0 there
is a δ0 > 0 such that for each δ < δ0 one can find an N(δ) ∈ N satisfying the
condition

sup
N>N(δ)

‖Bδ,N(a− λe)AN(a− λe)− EN‖ < ε .
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The following Corollary 4 can be obtained from the Corollaries 2 and 3.

Corollary 4. Let a ∈ Dm×m, λ ∈ G(a). Then for every ε > 0 there is such a
δ0 > 0, that for each δ < δ0 one can find an N(δ) ∈ N satisfying the condition

sup
N>N(δ)

‖Bδ,N(a− λe)− A−1
N (a− λe)‖ < ε .

8. Proof of Theorem 2

In this section we prove Theorem 2 firstly for the case when f is a rational
function. Then we prove the general case applying the well-known statement
about the approximation of an analytic function by rational functions.

Proposition 8. Let a ∈ Dm×m, Λa ∈ Um×m. Moreover, let the function f be
defined on C\{0} by f(z) = z−1. Then the following limit relation holds:

Φf (AN(a))− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx −−−→

N→∞
0 .

Remark. The quantity Φ1(A) for any operator A ∈ End(CN
m) is the matrix

trace of operator A divided by mN .

Proof. Let us denote for brevity

TN =
E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx .

Here we also use the notation introduced in the proof of Proposition 7. Let us
fix some ε > 0. We have to show that there exists such an N ′′ ∈ N, that for
every N > N ′′ the inequality |Φf (AN(a)) − TN | < ε holds. It is clear, that
Φf (AN(a)) = Φ1

(
A−1

N (a)
)
.

Let us consider the almost inverse operator Bδ,N(a) (for N ∈ N large
enough). As a consequence of Theorem 1 there is such a δ0 > 0, that for
each δ < δ0 one can choose N(δ) ∈ N satisfying

sup
N>N(δ)

∣∣Φ1(Bδ,N(a))− Φ1

(
A−1

N (a)
)∣∣ < ε

2
. (8)

The integral
∫

S
tr f [(Λa) (x, x, t)] dµ is uniformly continuous as a function of

x. Thus, one can fix δ < δ0 and N(δ) ∈ N such that inequality (8) and the
condition∣∣∣∣ ∫

S

tr f [(Λa) (x′, x′, t)] dµ−
∫

S

tr f [(Λa)(x′′, x′′, t)] dµ

∣∣∣∣ < ε

4
, (9)
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are fulfilled for any x′, x′′ ∈ R+, |x′ − x′′| 6 δ. Let us estimate the term
|Φ1(Bδ,N(a))− TN |. It holds

|Φ1(Bδ,N(a))− TN |

=

∣∣∣∣Φ1

(
JE(N)u1,[1,N ]P[1,+∞),E(N)u1L

−1
[1,+∞)

(
a0

)
JE(N)v1,[1,+∞)P[1,N ],E(N)v1

)
+

η(N)∑
k=2

Φ1

(
JE(N)uk,[1,N ]PZ,E(N)uk

L−1
(
aξk−1

)
JE(N)vk,ZP[1,N ],E(N)vk

)
+ Φ1

(
J[E(N)ξη(N),N ],[1,N ]P(−∞,N ],[E(N)ξη(N),N ]L

−1
(−∞,N ]

(
a

N
E(N)

)
× J[E(N)ξη(N)−1,N ],(−∞,N ]P[1,N ],[E(N)ξη(N)−1,N ]

)
− TN

∣∣∣∣ .
It is clear, that the matrix trace of the first and the last term of the construction
of the almost inverse operator is o(N) as N →∞. Then there is such an N ′ ∈ N
(> N(δ)), that for N > N ′ the following estimate holds:

|Φ1(Bδ,N(a))− TN |

6

∣∣∣∣∣
η(N)∑
k=2

Φ1

(
JE(N)uk,[1,N ]PZ,E(N)uk

L
((
aξk−1

)−1
)
JE(N)vk,ZP[1,N ],E(N)vk

)
− E(N)

N

∫ ξη(N)

ξ1

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx

∣∣∣∣∣ +
ε

8
,

where

Φ1

(
JE(N)uk,[1,N ]PZ,E(N)uk

L
( (
aξk−1

)−1 )
JE(N)vk,ZP[1,N ],E(N)vk

)
=

Numb(E(N)uk ∩ Z)

mN

1

2π

∫
S

tr
[(

Λaξk−1
)
(t)

]−1
dµ .

We note that |Numb(E(N)uk ∩ Z) − E(N)(ξk − ξk−1)| 6 1. Let us denote

K = supk>2
1
2π

∫
S

tr
[(

Λaξk−1
)
(t)

]−1
dµ. Then

Φ1

(
JE(N)uk,[1,N ]PZ,E(N)uk

L
((
aξk−1

)−1
)
JE(N)vk,ZP[1,N ],E(N)vk

)
=
E(N)(ξk − ξk−1)

mN

1

2π

∫
S

tr
[(

Λaξk−1
)
(t)

]−1
dµ+ αk(N) ,

where |αk(N)| 6 K/mN for every k > 2, and therefore
∑η(N)

k=2 αk(N) → 0 as

N →∞. Hence, there exists such an N ′′(> N ′), that
∣∣ ∑η(N)

k=2 αk(N)
∣∣ < ε/8 for
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every N > N ′′. Taking into account (9), we obtain

|Φ1(Bδ,N(a))− TN |

6

∣∣∣∣∣
η(N)∑
k=2

E(N)

N

(ξk − ξk−1)

2πm

∫
S

tr
[(

Λaξk−1
)
(t)

]−1
dµ

− E(N)

N

∫ ξη(N)

ξ1

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx

∣∣∣∣∣ +
ε

4

=

∣∣∣∣∣
η(N)∑
k=2

E(N)

N

1

2πm

∫ ξk

ξk−1

∫
S

tr f [(Λa) (ξk−1, ξk−1, t)] dµdx

−
η(N)∑
k=2

E(N)

N

1

2πm

∫ ξk

ξk−1

∫
S

tr f [(Λa)(x, x, t)] dµdx

∣∣∣∣∣ +
ε

4

<
ε

2
.

Thus, |Φ1(Bδ,N(a))− TN | < ε/2 for every N > N ′′. Finally we obtain, that for
every N > N ′′

|Φf (AN(a))− TN | 6
∣∣Φ1(Bδ,N(a))− Φ1

(
A−1

N (a)
)∣∣ + |Φ1(Bδ,N(a))− TN | < ε,

that proves the proposition.

Corollary 5. Let a ∈ Dm×m, λ ∈ G(a). Moreover, let the function f be defined
on C\{λ} by f(z) = (z − λ)−1. Then the following limit relation holds:

Φf (AN(a))− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx −−−→

N→∞
0 .

Lemma 6. Let M be a closed bounded subset of the complex plane C, and let
f be an analytic function defined on M . Then for each ε > 0 there are r ∈ N,
cj ∈ C and zj ∈ C\M (j = 1, . . . , r) such that

sup
z∈M

∣∣∣∣f(z)−
r∑

j=1

cj(z − zj)
−1

∣∣∣∣ < ε .

Proof. The lemma is a corollary e.g. from Theorem 8 in [24, page 28].

Now the proof of Theorem 2 follows.

Proof of Theorem 2. We note, that the first statement of Theorem 2 is a
direct corollary of Theorem 1. We have to prove the second statement.
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Let ε > 0. We are going to show that there is such an N0 ∈ N, that for
each N > N0 the following inequality is fulfilled:∣∣∣∣∣Φf (AN(a))− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr f [(Λa) (x, x, t)] dµ

}
dx

∣∣∣∣∣ < ε . (10)

Let D1 be such an open subset of C, that F(a) ⊂ D1, D1 ⊂ D, where D1 is
a closure of the set D1. Then in accordance with Lemma 6 we can find such a
function g(z) =

∑r
j=1 cj(z − zj)

−1, where r ∈ N, cj ∈ C, zj ∈ C\D1, that

sup
z∈D1

|f(z)− g(z)| < ε

3

sup
x∈R+, t∈S

|tr f [(Λa)(x, x, t)]− tr g[(Λa)(x, x, t)]| < ε

3
.

Hence∣∣∣∣∣Φf (AN(a))− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx

∣∣∣∣∣
6 |Φf (AN(a))− Φg(AN(a))|

+

∣∣∣∣∣Φg(AN(a))− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr g [(Λa)(x, x, t)] dµ

}
dx

∣∣∣∣∣
+

∣∣∣∣∣E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr g [(Λa)(x, x, t)] dµ

}
dx

− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr f [(Λa)(x, x, t)] dµ

}
dx

∣∣∣∣∣ .
By the Corollaries 2 and 8 there is such an N0 ∈ N, that for N > N0 and each
zj ∈ C\D1 (j = 1, . . . , r) the operator AN(a− zje) is invertible and∣∣∣∣∣Φg(AN(a))− E(N)

N

∫ N
E(N)

0

{
1

2πm

∫
S

tr g [(Λa)(x, x, t)] dµ

}
dx

∣∣∣∣∣ < ε

3
.

Finally, for every N > N0 it follows (10), and the statement is proved.
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