Double Positive Solutions of Three-Point Boundary Value Problems for p-Laplacian Difference Equations

Zhimin He

Abstract. In this paper, by means of double fixed-point theorem in a cone, the existence of double positive solutions of three-point boundary value problems for p−Laplacian difference equations is considered.

Keywords: Difference equation, p−Laplacian, boundary value problem, positive solution, double fixed-point theorem, cone

MSC 2000: Primary 39A10, secondary 34B10, 34B18

1. Introduction

For notation, given $a < b$ in Z, we employ intervals to denote discrete sets such as $[a, b] = \{a, a+1, ..., b\}, [a, b) = \{a, a+1, ..., b-1\}, [a, \infty) = \{a, a+1, ...,\},\$ etc. Let $N \geq 1$ be fixed. In this paper, we are concerned with the existence of positive solutions of the following p-Laplacian difference equation

$$
\Delta[\phi_p(\Delta u(t-1))] + a(t)f(u(t)) = 0, \quad t \in [1, N+1],
$$
 (1)

satisfying the boundary conditions

$$
u(0) - B_0(\Delta u(\eta)) = 0, \quad \Delta u(N+1) = 0,
$$
\n(2)

or

$$
\Delta u(0) = 0, \quad u(N+2) + B_1(\Delta u(\eta)) = 0,
$$
\n(3)

where $\phi_p(s)$ is a *p*-Laplacian operator, i.e., $\phi_p(s) = |s|^{p-2} s, p > 1, (\phi_p)^{-1} = \phi_q,$
 $\frac{1}{p} + \frac{1}{q} = 1, 0 < \eta < N + 1$ and $\frac{1}{q} = 1, 0 < \eta < N + 1$ and

ISSN 0232-2064 / \$ 2.50 c Heldermann Verlag Berlin

Zhimin He: Department of Applied Mathematics, Central South University, Changsha 410083, Hunan, People's Republic of China; hezhimin@mail.csu.edu.cn This work was supported by NSF (No. 03JJY2001) of Hunan and Mathematical Tianyuan Foundation (No. A0324621) of People's Republic of China.

- (\mathbf{H}_1) $f : \mathbb{R} \to \mathbb{R}^+$ is continuous $(\mathbb{R}^+$ denotes the nonnegative reals);
- $(\mathbf{H_2})$ $a(t)$ is a positive valued function defined on $[0, N+2]$;
- (H_3) $B_0(v)$ and $B_1(v)$ are both continuous odd functions defined on R and satisfies that there exist $A, B > 0$ such that $Bv \leq B_i(v) \leq Av$ for all $v \geq 0, j = 0, 1.$

We remark that by a solution u of (1) , (2) (respectively (1) , (3)), we mean $u : [0, N + 2] \to \mathbb{R}$, u satisfies (1) on [1, N + 1], and u satisfies the boundary conditions (2) (respectively (3)). If $\Delta^2 u(t-1) \leq 0$ for $t \in [1, N + 1]$, then we say $u(t)$ is concave on [0, $N + 2$].

p-Laplacian problems with two-point, three-point and multi-point boundary conditions for ordinary differential equations and finite difference equations have been studied extensively, see $[1, 4 - 6, 9 - 16]$ and references therein. In this paper, by using a new double fixed-point theorem due to Avery and Henderson [3] in a cone, we prove that there exist at least double positive solutions of (1) , (2) (respectively (1) , (3)). To this end, in Section 2 we provide some background material from the theory of cones in Banach spaces, and we then state the double fixed-point theorem. In Section 3 and Section 4, by defining an appropriate Banach space and cones, we impose the growth conditions on f which allow us to apply the double fixed-point theorem in obtaining existence of double positive solutions of (1) , (2) (respectively (1) , (3)). Our results are discrete analogues of the recent paper by Liu and Ge [11].

2. Preliminaries

In this section, we provide some background materials from the theory of cones in Banach spaces, and we then state the double fixed-point theorem for a cone preserving operator. The following definitions can be found in the book by Deimling [7] as well as in the book by Guo and Lakshmikantham [8].

Definition 1. Let E be a real Banach space. A nonempty, closed convex set $P \subset E$ is called a *cone*, if it satisfies the following two conditions:

- (i) $x \in P, \lambda > 0$ implies $\lambda x \in P$;
- (ii) $x, -x \in P$ implies $x = 0$.

Every cone $P \subset E$ induces an *ordering* in E given by

 $x \leq_{P} y$ if and only if $y - x \in P$.

Definition 2. Given a cone P in a real Banach space E, a functional $\psi : P \to R$ is said to be *increasing* on P, provided $\psi(x) \leq \psi(y)$ for all $x, y \in P$ with $x \leq_P y$. **Definition 3.** Given a nonnegative continuous functional γ on a cone P of a real Banach space E , we define, for each $d > 0$, the *level* set

$$
P(\gamma, d) = \{ x \in P \mid \gamma(x) < d \}.
$$

The following double fixed-point theorem due to Avery and Henderson [3] will play an important role in the proof of our results. Applications of this fixed point theorem can be found in recent papers [2, 11, 12].

Theorem 1. Let P be a cone in a real Banach space E. Let α and γ be increasing, nonnegative, continuous functionals on P, and let θ be a nonnegative, continuous functional on P with $\theta(0) = 0$ such that for some $c > 0$ and $M > 0$,

$$
\gamma(x) \le \theta(x) \le \alpha(x) \quad \text{and} \quad ||x|| \le M\gamma(x)
$$

for all $x \in \overline{P(\gamma, c)}$. Suppose there exist positive numbers a and b with $a < b < c$ such that

$$
\theta(\lambda x) \le \lambda \theta(x) \quad \text{for} \ \ 0 \le \lambda \le 1 \quad \text{and} \ \ x \in \partial P(\theta, b) \,,
$$

and

$$
T:\overline{P(\gamma,c)}\to P
$$

is a completely continuous operator such that

- (i) $\gamma(T x) > c$ for all $x \in \partial P(\gamma, c)$
- (ii) $\theta(Tx) < b$ for all $x \in \partial P(\theta, b)$
- (iii) $P(\alpha, a) \neq \emptyset$ and $\alpha(Tx) > a$ for all $x \in \partial P(\alpha, a)$.

Then T has at least two fixed points x_1 and x_2 belonging to $\overline{P(\gamma, c)}$ such that

$$
a < \alpha(x_1) \quad \text{with} \quad \theta(x_1) < b
$$
\n
$$
b < \theta(x_2) \quad \text{with} \quad \gamma(x_2) < c.
$$

3. Solutions of (1) and (2) in a cone

In this section, by defining an appropriate Banach space and cones, we impose the growth conditions on f which allow us to apply the double fixed-point theorem in establishing the existence of double positive solutions of (1) , (2) . We note that, from the nonegativity of a and f, a solution of (1) , (2) is nonegative and concave on $[0, N + 2]$.

Let

$$
E = \{u \mid u : [0, N+2] \to \mathbb{R}\},\
$$

with norm $||u|| = \max_{t \in [0, N+2]} |u(t)|$, then $(E, || \cdot ||)$ is a Banach space. Define a cone $P \subset E$ by

$$
P = \left\{ u \in E \mid \text{u is concave and nonnegative valued} \atop \text{on } [0, N+2], \text{ and } \triangle u(N+1) = 0 \right\}.
$$

Lemma 1. If $u \in P$, then

$$
u(t) \ge \frac{t}{N+2} ||u||, \quad t \in [0, N+2],
$$
\n(4)

where $||u|| = \max_{t \in [0,N+2]} |u(t)|$.

Proof. From the fact that u is concave on $[0, N + 2]$, we see that $\Delta u(t)$ is decreasing. Thus $\Delta u(t) \geq \Delta u(N + 1) = 0$ for $t \in [0, N + 1]$ and $u(t)$ is increasing on $[0, N + 2]$, that is, $u(N + 2) \ge u(t) \ge u(0) \ge 0$ for $t \in [0, N + 2]$. So, $||u|| = \max_{t \in [0, N+2]} |u(t)| = u(N + 2)$.

Let

$$
x(t) = u(t) - \frac{t}{N+2} ||u||, \quad t \in [0, N+2].
$$
 (5)

Then

$$
\Delta^2 x(t-1) \le 0 \quad \text{for } t \in [1, N+1],\tag{6}
$$

and

$$
x(0) \ge 0, \quad x(N+2) = 0. \tag{7}
$$

 \blacksquare

From (6), (7) we get for $t \in [0, N + 2]$

$$
x(t) = \frac{N+2-t}{N+2}x(0) + \frac{t}{N+2}x(N+2) - \sum_{s=1}^{N+1} G(t,s)\triangle^2 x(s-1) \ge 0,\tag{8}
$$

where

$$
G(t,s) = \frac{1}{N+2} \begin{cases} s(N+2-t), & 1 \le s \le t \le N+2, \\ t(N+2-s), & 0 \le t \le s \le N+1. \end{cases}
$$

From (5) , (8) we obtain

$$
u(t) \ge \frac{t}{N+2} ||u||
$$
 for $t \in [0, N+2].$

The proof of Lemma 1 is complete.

Fix an integer l such that $0 < \eta < l < N + 2$, and define the increasing, nonnegative continuous functionals γ , θ , and α on P by

$$
\gamma(u) = \min_{\eta \le t \le l} u(t) = u(\eta)
$$

$$
\theta(u) = \max_{0 \le t \le \eta} u(t) = u(\eta)
$$

$$
\alpha(u) = \min_{l \le t \le N+2} u(t) = u(l).
$$

We see that $\gamma(u) = \theta(u) \leq \alpha(u)$ for each $u \in P$. In addition, for each $u \in P$, Lemma 1 implies $\gamma(u) = u(\eta) \ge \frac{\eta}{N+2} ||u||$. Thus,

$$
||u|| \le \frac{N+2}{\eta} \gamma(u)
$$
 for all $u \in P$.

We also see that $\theta(\lambda u) = \lambda \theta(u)$ for $\lambda \in [0, 1]$ and $u \in \partial P(\theta, b)$. For notational convenience, we denote μ , ξ and δ , by

$$
\mu = (B + l)\phi_q \bigg(\sum_{i=l}^{N+1} a(i)\bigg)
$$

$$
\xi = A\phi_q \bigg(\sum_{i=\eta+1}^{N+1} a(i)\bigg) + \sum_{s=0}^{\eta-1} \phi_q \bigg(\sum_{i=s+1}^{N+1} a(i)\bigg)
$$

$$
\delta = (B + \eta)\phi_q \bigg(\sum_{i=\eta+1}^{N+1} a(i)\bigg).
$$

We note that $u(t)$ is a solution of (1) and (2), if and only if for $t \in [0, N + 2]$

$$
u(t) = B_0 \left(\phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) f(u(i)) \right) \right) + \sum_{s=0}^{t-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) f(u(i)) \right).
$$

Theorem 2. Assume that conditions (H_1) , (H_2) and (H_3) are satisfied. Let

$$
0 < a < \frac{\mu}{\xi}b < \frac{\eta\mu}{(N+2)\xi}c,
$$

and suppose that f satisfies the following conditions:

 (C_1) $f(w) > \phi_p(\frac{c}{\delta})$ $(\frac{c}{\delta})$ for $c \leq w \leq \frac{N+2}{\eta}$ $rac{+2}{\eta}c$ (C_2) $f(w) < \phi_p(\frac{b}{\epsilon})$ $(\frac{b}{\xi})$ for $0 \leq w \leq \frac{N+2}{\eta}$ $rac{+2}{\eta}b$ (C_3) $f(w) > \phi_p(\frac{a}{a})$ $\frac{a}{\mu}$) for $a \leq w \leq \frac{N+2}{l}$ $\frac{+2}{l}a.$

Then, there exists at least two solutions u_1 and u_2 of (1) and (2) such that

$$
a < \alpha(u_1) \quad \text{with} \quad \theta(u_1) < b
$$
\n
$$
b < \theta(u_2) \quad \text{with} \quad \gamma(u_2) < c.
$$

Proof. Define a completely continuous summation operator $T : P \to E$ by

$$
(Tu)(t) = B_0 \left(\phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) f(u(i)) \right) \right) + \sum_{s=0}^{t-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) f(u(i)) \right) \tag{9}
$$

for $u \in P$, $t \in [0, N + 2]$. We will seek fixed points of T in the cone P. For $t \in [0, N+2]$, it is easy to see that $(Tu)(t)$ satisfies (1), (2). So each fixed point of T in the cone P is a positive solution of $(1), (2)$.

We now prove that the conditions of Theorem 1 hold with respect to T . Let $u \in \partial P(\gamma, c)$, then $(Tu)(t) \geq 0$ for $t \in [0, N+2]$. In addition, $\Delta^2(Tu)(t) \leq 0$ for $t \in [0, N]$, and $\Delta(T u)(N+1) = 0$. This implies $Tu \in P$, and so $T : P(\gamma, c) \to P$.

To verify that (i) of Theorem 1 holds, we choose $u \in \partial P(\gamma, c)$. Then $\gamma(u) =$ $\min_{\eta \leq t \leq l} u(t) = u(\eta) = c$. This implies $u(t) \geq c, \eta \leq t \leq N+2$. Recalling that $||u|| \leq \frac{N+2}{\eta} \gamma(u) = \frac{N+2}{\eta}c$, we have

$$
c \le u(t) \le \frac{N+2}{\eta}c \quad \text{for } \eta \le t \le N+2.
$$

As a consequence of (C_1) , $f(u(s)) > \phi_p\left(\frac{c}{\delta}\right)$ $\frac{c}{\delta}$) for $\eta \leq s \leq N+2$. Since $Tu \in P$, we have

$$
\gamma(Tu) = (Tu)(\eta)
$$

= $B_0 \left(\phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) f(u(i)) \right) \right) + \sum_{s=0}^{\eta-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) f(u(i)) \right)$
> $(B + \eta) \phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) \right) \cdot \frac{c}{\delta} = c.$

Thus, (i) of Theorem 1 is satisfied.

Let $u \in \partial P(\theta, b)$. Then $\theta(u) = \max_{0 \leq t \leq \eta} u(t) = u(\eta) = b$. This implies $0 \le u(t) \le b, 0 \le t \le \eta$, and since $u \in P$, we have $b \le u(t) \le ||u|| = u(N + 2)$ for $\eta \leq t \leq N+2$. Note that $||u|| \leq \frac{N+2}{\eta} \gamma(u) = \frac{N+2}{\eta} \theta(u) = \frac{N+2}{\eta} b$. So,

$$
0 \le u(t) \le \frac{N+2}{\eta}b \quad \text{for } 0 \le t \le N+2.
$$

From (C_2) we have $f(u(s)) < \phi_p(\frac{b}{\varepsilon})$ $(\frac{b}{\xi})$ for $0 \leq s \leq N+2$, and so

$$
\theta(Tu) = (Tu)(\eta)
$$

= $B_0 \left(\phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) f(u(i)) \right) \right) + \sum_{s=0}^{\eta-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) f(u(i)) \right)$
 $\leq A \phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) f(u(i)) \right) + \sum_{s=0}^{\eta-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) f(u(i)) \right)$
 $< \left(A \phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) \right) + \sum_{s=0}^{\eta-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) \right) \right) \cdot \frac{b}{\xi} = b.$

Thus, (ii) of Theorem 1 is satisfied.

We now prove that (iii) of Theorem 1 is also satisfied. We note that $u(t) = \frac{a}{2}$, $t \in [0, N + 2]$, is a member of $P(\alpha, a)$ and $\alpha(u) = \frac{a}{2} < a$. So $P(\alpha, a) \neq \emptyset$. Now, let $u \in \partial P(\alpha, a)$. Then $\alpha(u) = \min_{l \leq t \leq N+2} u(l) = a$. Recalling that $||u|| \leq \frac{N+2}{l}\gamma(u) \leq \frac{N+2}{l}$ $\frac{1}{l} \alpha(u) = \frac{N+2}{l} a$, we have

$$
a \le u(t) \le \frac{N+2}{l}a
$$
 for $l \le t \le N+2$.

From assumption (C_3) , we get $f(u(s)) > \phi_p\left(\frac{a}{u}\right)$ $\left(\frac{a}{\mu}\right)$ for $l \leq s \leq N+2$, and so

$$
\alpha(Tu) = (Tu)(l)
$$

= $B_0 \left(\phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) f(u(i)) \right) \right) + \sum_{s=0}^{l-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) f(u(i)) \right)$

$$
\geq B \phi_q \left(\sum_{i=\eta+1}^{N+1} a(i) f(u(i)) \right) + \sum_{s=0}^{l-1} \phi_q \left(\sum_{i=s+1}^{N+1} a(i) f(u(i)) \right)
$$

$$
> (B+l) \phi_q \left(\sum_{i=l}^{N+1} a(i) \right) \cdot \frac{a}{\mu} = a.
$$

Therefore, Theorem 1 implies that T has at least two fixed points u_1 and u_2 , belonging to $\overline{P(\gamma, c)}$, which are positive solutions of (1) and (2) such that

$$
a < \alpha(u_1)
$$
 with $\theta(u_1) < b$
\n $b < \theta(u_2)$ with $\gamma(u_2) < c$.

The proof of Theorem 2 is complete.

4. Solutions of (1) and (3) in a cone

In this section, we use the double fixed-point theorem to establish the existence of double positive solutions of (1), (3).

Consider the Banach space

$$
E = \{ u \mid u : [0, N + 2] \to R \},\
$$

with norm $||u|| = \max_{t \in [0,N+2]} |u(t)|$, and define a cone $P_1 \subset E$ by

$$
P_1 = \left\{ u \in E \mid \begin{array}{c} u \text{ is concave and nonnegative valued} \\ \text{on } [0, N+2], \text{ and } \triangle u(0) = 0 \end{array} \right\}.
$$

Lemma 2. If $u \in P_1$, then

$$
u(t) \ge \frac{N+2-t}{N+2} ||u||, \quad t \in [0, N+2],
$$
\n(10)

where $||u|| = \max_{t \in [0, N+2]} |u(t)|$.

 \blacksquare

Proof. From the fact that u is concave on $[0, N + 2]$, we see that Δu is decreasing. Thus $\Delta u(t) \leq \Delta u(0) = 0$ for $t \in [0, N + 1]$ and $u(t)$ is decreasing on $[0, N + 2]$, that is, $u(0) \ge u(t) \ge u(N + 2) \ge 0$ for $t \in [0, N + 2]$. So, $||u|| = \max_{t \in [0, N+2]} |u(t)| = u(0).$

Let

$$
y(t) = u(t) - \frac{N+2-t}{N+2} ||u||, \quad t \in [0, N+2].
$$
 (11)

Then

$$
\Delta^2 y(t-1) \le 0, \quad t \in [1, N+1], \tag{12}
$$

and

$$
y(0) = 0, \quad y(N+2) \ge 0. \tag{13}
$$

П

From (12), (13) we get

$$
y(t) = \frac{N+2-t}{N+2}y(0) + \frac{t}{N+2}y(N+2) - \sum_{s=1}^{N+1} G(t,s)\triangle^2 y(s-1) \ge 0 \tag{14}
$$

for $t \in [0, N + 2]$, where

$$
G(t,s) = \frac{1}{N+2} \begin{cases} s(N+2-t), & 1 \le s \le t \le N+2 \\ t(N+2-s), & 0 \le t \le s \le N+1. \end{cases}
$$

From (11) , (14) we obtain

$$
u(t) \ge \frac{N+2-t}{N+2} ||u||
$$
, $t \in [0, N+2]$.

The proof of Lemma 2 is complete.

Fix an integer r such that $0 < r < \eta$, and define the increasing, nonnegative, continuous functionals γ , θ and α on P_1 by

$$
\gamma(u) = \min_{r \le t \le \eta} u(t) = u(\eta)
$$

$$
\theta(u) = \max_{\eta \le t \le N+2} u(t) = u(\eta)
$$

$$
\alpha(u) = \min_{0 \le t \le r} u(t) = u(r).
$$

We see that, for each $u \in P_1$, $\gamma(u) = \theta(u) \leq \alpha(u)$. In addition, for each $u \in P_1$, $\gamma(u) = u(\eta) \ge \frac{N+2-\eta}{N+2} ||u||$. Thus,

$$
||u|| \le \frac{N+2}{N+2-\eta} \gamma(u), \quad u \in P_1.
$$

We also see that $\theta(\lambda u) = \lambda \theta(u)$ for $\lambda \in [0, 1]$ and $u \in \partial P_1(\theta, b)$. Set

$$
\mu_1 = (B + N + 2 - r)\phi_q \bigg(\sum_{i=1}^r a(i)\bigg)
$$

$$
\xi_1 = A\phi_q \bigg(\sum_{i=1}^{\eta} a(i)\bigg) + \sum_{s=\eta}^{N+1} \phi_q \bigg(\sum_{i=1}^s a(i)\bigg)
$$

$$
\delta_1 = (B + N + 2 - \eta)\phi_q \bigg(\sum_{i=1}^{\eta} a(i)\bigg).
$$

We note that $u(t)$ is a solution of (1) and (3), if and only if for $t \in [0, N+2]$

$$
u(t) = B_1 \left(\phi_q \left(\sum_{i=1}^{\eta} a(i) f(u(i)) \right) \right) + \sum_{s=t}^{N+1} \phi_q \left(\sum_{i=1}^{s} a(i) f(u(i)) \right).
$$

In analogy to the existence results of the previous section, we have the following theorem for positive solutions of (1) and (3).

Theorem 3. Assume that conditions (H_1) , (H_2) and (H_3) are satisfied. Let

$$
0 < a < \frac{\mu_1}{\xi_1} b < \frac{(N+2-\eta)\mu_1}{(N+2)\xi_1} c,
$$

and suppose that f satisfies the following conditions

 (D_1) $f(w) > \phi_p(\frac{c}{\delta_1})$ $\frac{c}{\delta_1}$) for $c \leq w \leq \frac{N+2}{N+2-1}$ $\frac{N+2}{N+2-\eta}c$ (D_2) $f(w) < \phi_p(\frac{b}{\epsilon_1})$ $\frac{b}{\xi_1}$) for $0 \leq w \leq \frac{N+2}{N+2-1}$ $\frac{N+2}{N+2-\eta}b$ (D_3) $f(w) > \phi_p(\frac{a}{w})$ $\frac{a}{\mu_1}$) for $a \leq w \leq \frac{N+2}{N+2-1}$ $\frac{N+2}{N+2-r}a.$

Then, there exists at least two solutions of (1) and (3) such that

$$
a < \alpha(u_1) \quad \text{with} \quad \theta(u_1) < b
$$
\n
$$
b < \theta(u_2) \quad \text{with} \quad \gamma(u_2) < c.
$$

5. Example

In this section, we present an example to explain our result. Consider the p−Laplacian difference equation

$$
\Delta[\phi_p(\Delta u(t-1))] + f(u(t)) = 0, \quad t \in [1, 99], \tag{15}
$$

satisfying the boundary conditions

$$
u(0) - 2\Delta u(45) = 0, \quad \Delta u(99) = 0,
$$
\n(16)

where $p=\frac{3}{2}$ $\frac{3}{2}, q = 3, a(t) \equiv 1, A = B = 2, \eta = 45, N = 98, \text{ and}$

$$
f(u) = \begin{cases} 0.4, & 0 \le u \le \frac{1}{9} \cdot 10^6 \\ 0.4 + \frac{9u - 10^6}{8 \cdot 10^5}, & \frac{1}{9} \cdot 10^6 \le u \le 2 \cdot 10^5 \\ 1.4, & u \ge 2 \cdot 10^5. \end{cases}
$$

Then, the system (15), (16) has at least two positive solutions.

Proof. Choose $a = 10^4$, $b = 5 \cdot 10^4$, $c = 2 \cdot 10^5$ and $l = 50$. Then

$$
\mu = 52\phi_3 \left(\sum_{i=50}^{99} a(i) \right) = 130000
$$

$$
\xi = 2\phi_3 \left(\sum_{i=46}^{99} a(i) \right) + \sum_{s=0}^{44} \phi_3 \left(\sum_{i=s+1}^{99} a(i) \right) = 280227
$$

$$
\delta = 47\phi_3 \left(\sum_{i=46}^{99} a(i) \right) = 137052.
$$

It is easy to see that $0 < a < \frac{\mu}{\xi} b < \frac{\eta \mu}{(N+2)\xi} c$, and f satisfies

$$
f(w) > \phi_p\left(\frac{c}{\delta}\right) = \sqrt{\frac{2 \cdot 10^5}{137052}} \approx 1.208 \quad \text{for } 2 \cdot 10^5 \le w \le \frac{4}{9} \cdot 10^6
$$

$$
f(w) < \phi_p\left(\frac{b}{\xi}\right) = \sqrt{\frac{5 \cdot 10^5}{280227}} \approx 0.422 \quad \text{for } 0 \le w \le \frac{1}{9} \cdot 10^6
$$

$$
f(w) > \phi_p\left(\frac{a}{\mu}\right) = \sqrt{\frac{10^4}{130000}} \approx 0.277 \quad \text{for } 10^4 \le w \le 2 \cdot 10^4.
$$

Therefore by Theorem 2, the problem (15), (16) has at least two positive solutions u_1 , u_2 satisfying

$$
10^4 < \min_{t \in [50, 100]} u_1(t) \quad \text{with} \quad \max_{t \in [0, 45]} u_1(t) < 5 \cdot 10^4
$$

5 · 10⁴
$$
< \max_{t \in [0, 45]} u_2(t) \quad \text{with} \quad \min_{t \in [45, 50]} u_2(t) < 2 \cdot 10^5.
$$

References

- [1] Agarwal, R. P., Lü, H. and D. O'Regan: *Eigenvalues and the one-dimensional* p-Laplacian. J. Math. Anal. Appl. 266 (2002), 383 – 400.
- [2] Avery, R. I., Chyan, C. J. and J. Henderson: Twin solutions of a boundary value problems for ordinary differential equations and finite difference equations. Comput. Math. Appl. 42 (2001), 695 – 704.
- [3] Avery, R. I. and J. Henderson: Twin positive fixed points of nonlinear operators on ordered Banach spaces. Comm. Appl. Nonlin. Anal. 8 (2001), 27 – 36.
- [4] Avery, R. I. and J. Henderson: Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian. J. Math. Anal. Appl. 277 (2003), $395 - 404.$
- [5] Avery, R. I. and J. Henderson: Existence of three positive pseudo-symmetric solutions for a one dimensional discrete p-Laplacian. J. Difference Equations. Appl. 10 (2004), 529 – 539.
- [6] Cabada, A.: Extremal solutions for the difference ϕ -Laplacian problem with nonlinear functional boundary conditions. Comput. Math. Appl. 42 (2001), 593 – 601.
- [7] Deimling, K.: Nonlinear Functional Analysis. New York: Springer 1985.
- [8] Guo, D. and V. Lakshmikantham: Nonlinear Promlems in Abstract Cones. New York: Academic Press 1988.
- [9] He, Z. M.: On the existence of positive solutions of p-Laplacian difference equations. J. Comput. Appl. Math. 161 (2003), 193 – 201.
- [10] Kong, L. B. and J. Y. Wang: Multiple positive solutions for the one-dimensional p-Laplacian. Nonlinear Analysis 42 (2000), 1327 – 1333.
- [11] Liu, Y. and W. Ge: Multiple positive solutions to three-point boundary value problem with p-Laplacian operator. J. Math. Anal. Appl. 277 (2003), $293 - 302$.
- [12] Liu, Y. and W. Ge: Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator. J. Math. Anal. Appl. 278 $(2003), 551 - 561.$
- [13] Sun, W. P. and W. G. Ge: The existence of positive solutions for a class of nonlinear boundary value problems (in Chinese). Acta. Math. Sinica. 44 (2001), 577 – 580.
- [14] Wang, H. Y.: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281 (2003), 287 – 306.
- [15] Wang, J. Y.: The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer. Math. Soc. 125 (1997), 2275 – 2283.
- [16] Wang, J. Y. and D. W. Zheng: On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian. Z. Angew. Math. Mech. 77 (1997), 477 – 479.

Received 29.02.2004; in revised form 17.09.2004