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Double Positive Solutions of Three-Point
Boundary Value Problems

for p-Laplacian Difference Equations
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Abstract. In this paper, by means of double fixed-point theorem in a cone, the
existence of double positive solutions of three-point boundary value problems for
p−Laplacian difference equations is considered.
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1. Introduction

For notation, given a < b in Z, we employ intervals to denote discrete sets such
as [a, b] = {a, a + 1, ..., b}, [a, b) = {a, a + 1, ..., b − 1}, [a,∞) = {a, a + 1, ....},
etc. Let N ≥ 1 be fixed. In this paper, we are concerned with the existence of
positive solutions of the following p-Laplacian difference equation

4[φp(4u(t− 1))] + a(t)f(u(t)) = 0, t ∈ [1, N + 1], (1)

satisfying the boundary conditions

u(0)−B0(4u(η)) = 0, 4u(N + 1) = 0, (2)

or
4u(0) = 0, u(N + 2) +B1(4u(η)) = 0, (3)

where φp(s) is a p-Laplacian operator, i.e., φp(s) = |s|p−2s, p > 1, (φp)
−1 = φq,

1
p

+ 1
q

= 1, 0 < η < N + 1 and
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(H1) f : R → R+ is continuous (R+ denotes the nonnegative reals );

(H2) a(t) is a positive valued function defined on [0, N + 2];

(H3) B0(v) and B1(v) are both continuous odd functions defined on R and
satisfies that there exist A,B > 0 such that Bv ≤ Bj(v) ≤ Av for all
v ≥ 0, j = 0, 1.

We remark that by a solution u of (1), (2) (respectively (1), (3)), we mean
u : [0, N + 2] → R, u satisfies (1) on [1, N + 1], and u satisfies the boundary
conditions (2) (respectively (3)). If 42u(t − 1) ≤ 0 for t ∈ [1, N + 1], then we
say u(t) is concave on [0, N + 2].

p-Laplacian problems with two-point, three-point and multi-point boundary
conditions for ordinary differential equations and finite difference equations have
been studied extensively, see [1, 4 – 6, 9 – 16] and references therein. In this
paper, by using a new double fixed-point theorem due to Avery and Henderson
[3] in a cone, we prove that there exist at least double positive solutions of
(1), (2) (respectively (1), (3)). To this end, in Section 2 we provide some
background material from the theory of cones in Banach spaces, and we then
state the double fixed-point theorem. In Section 3 and Section 4, by defining
an appropriate Banach space and cones, we impose the growth conditions on f
which allow us to apply the double fixed-point theorem in obtaining existence
of double positive solutions of (1), (2) (respectively (1), (3)). Our results are
discrete analogues of the recent paper by Liu and Ge [11].

2. Preliminaries

In this section, we provide some background materials from the theory of cones
in Banach spaces, and we then state the double fixed-point theorem for a cone
preserving operator. The following definitions can be found in the book by
Deimling [7] as well as in the book by Guo and Lakshmikantham [8].

Definition 1. Let E be a real Banach space. A nonempty, closed convex set
P ⊂ E is called a cone, if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;

(ii) x,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤P y if and only if y − x ∈ P.

Definition 2. Given a cone P in a real Banach space E, a functional ψ : P → R
is said to be increasing on P, provided ψ(x) ≤ ψ(y) for all x, y ∈ P with x ≤P y.
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Definition 3. Given a nonnegative continuous functional γ on a cone P of a
real Banach space E, we define, for each d > 0, the level set

P (γ, d) = {x ∈ P | γ(x) < d}.

The following double fixed-point theorem due to Avery and Henderson [3]
will play an important role in the proof of our results. Applications of this fixed
point theorem can be found in recent papers [2, 11, 12].

Theorem 1. Let P be a cone in a real Banach space E. Let α and γ be in-
creasing, nonnegative, continuous functionals on P, and let θ be a nonnegative,
continuous functional on P with θ(0) = 0 such that for some c > 0 and M > 0,

γ(x) ≤ θ(x) ≤ α(x) and ‖x‖ ≤Mγ(x)

for all x ∈ P (γ, c). Suppose there exist positive numbers a and b with a < b < c
such that

θ(λx) ≤ λθ(x) for 0 ≤ λ ≤ 1 and x ∈ ∂P (θ, b) ,

and
T : P (γ, c) → P

is a completely continuous operator such that

(i) γ(Tx) > c for all x ∈ ∂P (γ, c)

(ii) θ(Tx) < b for all x ∈ ∂P (θ, b)

(iii) P (α, a) 6= ∅ and α(Tx) > a for all x ∈ ∂P (α, a).

Then T has at least two fixed points x1 and x2 belonging to P (γ, c) such that

a < α(x1) with θ(x1) < b

b < θ(x2) with γ(x2) < c.

3. Solutions of (1) and (2) in a cone

In this section, by defining an appropriate Banach space and cones, we impose
the growth conditions on f which allow us to apply the double fixed-point
theorem in establishing the existence of double positive solutions of (1), (2). We
note that, from the nonegativity of a and f , a solution of (1), (2) is nonegative
and concave on [0, N + 2].

Let
E = {u | u : [0, N + 2] → R},

with norm ‖u‖ = maxt∈[0,N+2] |u(t)|, then (E, ‖ · ‖) is a Banach space. Define a
cone P ⊂ E by

P =

{
u ∈ E

∣∣∣∣ u is concave and nonnegative valued

on [0, N + 2] , and 4u(N + 1) = 0

}
.
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Lemma 1. If u ∈ P, then

u(t) ≥ t

N + 2
‖u‖, t ∈ [0, N + 2], (4)

where ‖u‖ = maxt∈[0,N+2] |u(t)|.

Proof. From the fact that u is concave on [0, N + 2], we see that 4u(t) is
decreasing. Thus 4u(t) ≥ 4u(N + 1) = 0 for t ∈ [0, N + 1] and u(t) is
increasing on [0, N + 2], that is, u(N + 2) ≥ u(t) ≥ u(0) ≥ 0 for t ∈ [0, N + 2].
So, ‖u‖ = maxt∈[0,N+2] |u(t)| = u(N + 2).

Let

x(t) = u(t)− t

N + 2
‖u‖, t ∈ [0, N + 2]. (5)

Then
42x(t− 1) ≤ 0 for t ∈ [1, N + 1], (6)

and
x(0) ≥ 0, x(N + 2) = 0. (7)

From (6), (7) we get for t ∈ [0, N + 2]

x(t) =
N + 2− t

N + 2
x(0) +

t

N + 2
x(N + 2)−

N+1∑
s=1

G(t, s)42x(s− 1) ≥ 0, (8)

where

G(t, s) =
1

N + 2

{
s(N + 2− t), 1 ≤ s ≤ t ≤ N + 2,

t(N + 2− s), 0 ≤ t ≤ s ≤ N + 1.

From (5), (8) we obtain

u(t) ≥ t

N + 2
‖u‖ for t ∈ [0, N + 2].

The proof of Lemma 1 is complete.

Fix an integer l such that 0 < η < l < N + 2, and define the increasing,
nonnegative continuous functionals γ, θ, and α on P by

γ(u) = min
η≤t≤l

u(t) = u(η)

θ(u) = max
0≤t≤η

u(t) = u(η)

α(u) = min
l≤t≤N+2

u(t) = u(l).

We see that γ(u) = θ(u) ≤ α(u) for each u ∈ P . In addition, for each u ∈ P,
Lemma 1 implies γ(u) = u(η) ≥ η

N+2
‖u‖. Thus,

‖u‖ ≤ N + 2

η
γ(u) for all u ∈ P.
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We also see that θ(λu) = λθ(u) for λ ∈ [0, 1] and u ∈ ∂P (θ, b). For notational
convenience, we denote µ, ξ and δ, by

µ = (B + l)φq

(N+1∑
i=l

a(i)

)

ξ = Aφq

( N+1∑
i=η+1

a(i)

)
+

η−1∑
s=0

φq

( N+1∑
i=s+1

a(i)

)

δ = (B + η)φq

( N+1∑
i=η+1

a(i)

)
.

We note that u(t) is a solution of (1) and (2), if and only if for t ∈ [0, N + 2]

u(t) = B0

(
φq

( N+1∑
i=η+1

a(i)f(u(i))

))
+

t−1∑
s=0

φq

( N+1∑
i=s+1

a(i)f(u(i))

)
.

Theorem 2. Assume that conditions (H1), (H2) and (H3) are satisfied. Let

0 < a <
µ

ξ
b <

ηµ

(N + 2)ξ
c,

and suppose that f satisfies the following conditions:

(C1) f(w) > φp(
c
δ
) for c ≤ w ≤ N+2

η
c

(C2) f(w) < φp(
b
ξ
) for 0 ≤ w ≤ N+2

η
b

(C3) f(w) > φp(
a
µ
) for a ≤ w ≤ N+2

l
a.

Then, there exists at least two solutions u1 and u2 of (1) and (2) such that

a < α(u1) with θ(u1) < b

b < θ(u2) with γ(u2) < c.

Proof. Define a completely continuous summation operator T : P → E by

(Tu)(t) = B0

(
φq

( N+1∑
i=η+1

a(i)f(u(i))

))
+

t−1∑
s=0

φq

( N+1∑
i=s+1

a(i)f(u(i))

)
(9)

for u ∈ P, t ∈ [0, N + 2]. We will seek fixed points of T in the cone P. For
t ∈ [0, N +2], it is easy to see that (Tu)(t) satisfies (1), (2). So each fixed point
of T in the cone P is a positive solution of (1), (2).

We now prove that the conditions of Theorem 1 hold with respect to T. Let
u ∈ ∂P (γ, c), then (Tu)(t) ≥ 0 for t ∈ [0, N+2]. In addition, 42(Tu)(t) ≤ 0 for
t ∈ [0, N ], and 4(Tu)(N+1) = 0. This implies Tu ∈ P, and so T : P (γ, c) → P.
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To verify that (i) of Theorem 1 holds, we choose u ∈ ∂P (γ, c). Then γ(u) =
minη≤t≤l u(t) = u(η) = c. This implies u(t) ≥ c, η ≤ t ≤ N + 2. Recalling that
‖u‖ ≤ N+2

η
γ(u) = N+2

η
c, we have

c ≤ u(t) ≤ N + 2

η
c for η ≤ t ≤ N + 2.

As a consequence of (C1), f(u(s)) > φp

(
c
δ

)
for η ≤ s ≤ N + 2. Since Tu ∈ P,

we have

γ(Tu) = (Tu)(η)

= B0

(
φq

( N+1∑
i=η+1

a(i)f(u(i))

))
+

η−1∑
s=0

φq

( N+1∑
i=s+1

a(i)f(u(i))

)

> (B + η)φq

( N+1∑
i=η+1

a(i)

)
· c
δ

= c.

Thus, (i) of Theorem 1 is satisfied.

Let u ∈ ∂P (θ, b). Then θ(u) = max0≤t≤η u(t) = u(η) = b. This implies
0 ≤ u(t) ≤ b, 0 ≤ t ≤ η, and since u ∈ P, we have b ≤ u(t) ≤ ‖u‖ = u(N + 2)
for η ≤ t ≤ N + 2. Note that ‖u‖ ≤ N+2

η
γ(u) = N+2

η
θ(u) = N+2

η
b. So,

0 ≤ u(t) ≤ N + 2

η
b for 0 ≤ t ≤ N + 2.

From (C2) we have f(u(s)) < φp

(
b
ξ

)
for 0 ≤ s ≤ N + 2, and so

θ(Tu) = (Tu)(η)

= B0

(
φq

( N+1∑
i=η+1

a(i)f(u(i))

))
+

η−1∑
s=0

φq

( N+1∑
i=s+1

a(i)f(u(i))

)

≤ Aφq

( N+1∑
i=η+1

a(i)f(u(i))

)
+

η−1∑
s=0

φq

( N+1∑
i=s+1

a(i)f(u(i))

)

<

(
Aφq

( N+1∑
i=η+1

a(i)

)
+

η−1∑
s=0

φq

( N+1∑
i=s+1

a(i)

))
· b
ξ

= b.

Thus, (ii) of Theorem 1 is satisfied.

We now prove that (iii) of Theorem 1 is also satisfied. We note that u(t) = a
2
,

t ∈ [0, N + 2], is a member of P (α, a) and α(u) = a
2
< a. So P (α, a) 6= ∅.
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Now, let u ∈ ∂P (α, a). Then α(u) = minl≤t≤N+2 = u(l) = a. Recalling that
‖u‖ ≤ N+2

l
γ(u) ≤ N+2

l
α(u) = N+2

l
a, we have

a ≤ u(t) ≤ N + 2

l
a for l ≤ t ≤ N + 2.

From assumption (C3), we get f(u(s)) > φp

(
a
µ

)
for l ≤ s ≤ N + 2, and so

α(Tu) = (Tu)(l)

= B0

(
φq

( N+1∑
i=η+1

a(i)f(u(i))

))
+

l−1∑
s=0

φq

( N+1∑
i=s+1

a(i)f(u(i))

)

≥ Bφq

( N+1∑
i=η+1

a(i)f(u(i))

)
+

l−1∑
s=0

φq

( N+1∑
i=s+1

a(i)f(u(i))

)

> (B + l)φq

(N+1∑
i=l

a(i)

)
· a
µ

= a.

Therefore, Theorem 1 implies that T has at least two fixed points u1 and u2,
belonging to P (γ, c), which are positive solutions of (1) and (2) such that

a < α(u1) with θ(u1) < b

b < θ(u2) with γ(u2) < c .

The proof of Theorem 2 is complete.

4. Solutions of (1) and (3) in a cone

In this section, we use the double fixed-point theorem to establish the existence
of double positive solutions of (1), (3).

Consider the Banach space

E = {u | u : [0, N + 2] → R},

with norm ‖u‖ = maxt∈[0,N+2] |u(t)|, and define a cone P1 ⊂ E by

P1 =

{
u ∈ E

∣∣∣∣ u is concave and nonnegative valued

on [0, N + 2] , and 4u(0) = 0

}
.

Lemma 2. If u ∈ P1, then

u(t) ≥ N + 2− t

N + 2
‖u‖ , t ∈ [0, N + 2], (10)

where ‖u‖ = maxt∈[0,N+2] |u(t)|.
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Proof. From the fact that u is concave on [0, N + 2], we see that 4u is de-
creasing. Thus 4u(t) ≤ 4u(0) = 0 for t ∈ [0, N + 1] and u(t) is decreasing
on [0, N + 2], that is, u(0) ≥ u(t) ≥ u(N + 2) ≥ 0 for t ∈ [0, N + 2]. So,
‖u‖ = maxt∈[0,N+2] |u(t)| = u(0).

Let

y(t) = u(t)− N + 2− t

N + 2
‖u‖ , t ∈ [0, N + 2]. (11)

Then

42y(t− 1) ≤ 0 , t ∈ [1, N + 1], (12)

and

y(0) = 0, y(N + 2) ≥ 0. (13)

From (12), (13) we get

y(t) =
N + 2− t

N + 2
y(0) +

t

N + 2
y(N + 2)−

N+1∑
s=1

G(t, s)42y(s− 1) ≥ 0 (14)

for t ∈ [0, N + 2], where

G(t, s) =
1

N + 2

{
s(N + 2− t), 1 ≤ s ≤ t ≤ N + 2

t(N + 2− s), 0 ≤ t ≤ s ≤ N + 1.

From (11), (14) we obtain

u(t) ≥ N + 2− t

N + 2
‖u‖ , t ∈ [0, N + 2].

The proof of Lemma 2 is complete.

Fix an integer r such that 0 < r < η, and define the increasing, nonnegative,
continuous functionals γ, θ and α on P1 by

γ(u) = min
r≤t≤η

u(t) = u(η)

θ(u) = max
η≤t≤N+2

u(t) = u(η)

α(u) = min
0≤t≤r

u(t) = u(r) .

We see that, for each u ∈ P1, γ(u) = θ(u) ≤ α(u). In addition, for each u ∈ P1,
γ(u) = u(η) ≥ N+2−η

N+2
‖u‖. Thus,

‖u‖ ≤ N + 2

N + 2− η
γ(u) , u ∈ P1.
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We also see that θ(λu) = λθ(u) for λ ∈ [0, 1] and u ∈ ∂P1(θ, b). Set

µ1 = (B +N + 2− r)φq

( r∑
i=1

a(i)

)

ξ1 = Aφq

( η∑
i=1

a(i)

)
+

N+1∑
s=η

φq

( s∑
i=1

a(i)

)

δ1 = (B +N + 2− η)φq

( η∑
i=1

a(i)

)
.

We note that u(t) is a solution of (1) and (3), if and only if for t ∈ [0, N +2]

u(t) = B1

(
φq

( η∑
i=1

a(i)f(u(i))

))
+

N+1∑
s=t

φq

( s∑
i=1

a(i)f(u(i))

)
.

In analogy to the existence results of the previous section, we have the following
theorem for positive solutions of (1) and (3).

Theorem 3. Assume that conditions (H1), (H2) and (H3) are satisfied. Let

0 < a <
µ1

ξ1
b <

(N + 2− η)µ1

(N + 2)ξ1
c,

and suppose that f satisfies the following conditions

(D1) f(w) > φp(
c
δ1

) for c ≤ w ≤ N+2
N+2−η

c

(D2) f(w) < φp(
b
ξ1

) for 0 ≤ w ≤ N+2
N+2−η

b

(D3) f(w) > φp(
a
µ1

) for a ≤ w ≤ N+2
N+2−r

a.

Then, there exists at least two solutions of (1) and (3) such that

a < α(u1) with θ(u1) < b

b < θ(u2) with γ(u2) < c.

5. Example

In this section, we present an example to explain our result. Consider the
p−Laplacian difference equation

4[φp(4u(t− 1))] + f(u(t)) = 0 , t ∈ [1, 99], (15)

satisfying the boundary conditions

u(0)− 24u(45) = 0 , 4u(99) = 0, (16)
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where p = 3
2
, q = 3, a(t) ≡ 1, A = B = 2, η = 45, N = 98, and

f(u) =


0.4, 0 ≤ u ≤ 1

9
· 106

0.4 + 9u−106

8·105 ,
1
9
· 106 ≤ u ≤ 2 · 105

1.4, u ≥ 2 · 105.

Then, the system (15), (16) has at least two positive solutions.

Proof. Choose a = 104, b = 5 · 104, c = 2 · 105 and l = 50. Then

µ = 52φ3

( 99∑
i=50

a(i)

)
= 130000

ξ = 2φ3

( 99∑
i=46

a(i)

)
+

44∑
s=0

φ3

( 99∑
i=s+1

a(i)

)
= 280227

δ = 47φ3

( 99∑
i=46

a(i)

)
= 137052.

It is easy to see that 0 < a < µ
ξ
b < ηµ

(N+2)ξ
c , and f satisfies

f(w) > φp

(c
δ

)
=

√
2 · 105

137052
≈ 1.208 for 2 · 105 ≤ w ≤ 4

9
· 106

f(w) < φp

(
b

ξ

)
=

√
5 · 105

280227
≈ 0.422 for 0 ≤ w ≤ 1

9
· 106

f(w) > φp

(
a

µ

)
=

√
104

130000
≈ 0.277 for 104 ≤ w ≤ 2 · 104.

Therefore by Theorem 2, the problem (15), (16) has at least two positive solu-
tions u1, u2 satisfying

104 < min
t∈[50,100]

u1(t) with max
t∈[0,45]

u1(t) < 5 · 104

5 · 104 < max
t∈[0,45]

u2(t) with min
t∈[45,50]

u2(t) < 2 · 105.
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