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Integral Inequalities
in Higher Dimensional Spaces

Shiojenn Tseng, Pen-Chi Wang
Wing-Sum Cheung and Chur-Jen Chen

Abstract. Integral inequalities play an important role in many different areas in-
cluding differential equations, integral equations, variational calculus, etc. In this
work, we present some new higher dimensional integral inequalities involving mono-
tonic or convex functions in higher dimensional spaces. These are then applied to
solve directly some Calculus of Variations problems for optimal solutions, effectively.
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1. Introduction and basic integral inequalities

In this paper, we discuss some integral inequalities of functions in higher di-
mensional spaces and some integral inequalities of vector-valued functions. By
extending Cheung’s idea in [1] to higher dimensional spaces, we first derive some
basic integral inequalities involving functions of several variables with certain
kinds of monotonicity, and then we extend these results to inequalities involving
convex functions. Finally, we give some applications to the calculus of varia-
tions.

In this section, we derive some integral inequalities in higher dimensional
spaces involving functions on a bounded rectangle. Generally speaking, such
integral inequalities require some kind of monotonicity of the functions involved;
but as seen in Lemma 1 and Theorem 2 below, this is not strictly necessary in
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certain situations. Some results in this section will be generalized to more
general settings in Section 3.

Let 〈·, ·〉 be the usual inner product in Rn. In the following, let D =∏n
i=1[ai, bi], M =

∏n
i=1(bi − ai), x = (x1, · · · , xn) ∈ D, dx = dx1dx2 · · · dxn and

hj = (hj
1, · · · , hj

n) ∈ D.
Lemma 1. Let fj, gj : D → R, j = 1, · · · ,m, be continuous functions. Let
f = (f1, · · · , fm) and g = (g1, · · · , gm). Suppose that for each j, 1 ≤ j ≤ m,
hj ∈ D is a point such that

fj(hj) =
1

M

∫
D

fj(x) dx.

Let

f̄(x) =
(
f̄1(x), · · · , f̄m(x)

)
=

(
f1(x)− f1(h1), · · · , fm(x)− fm(hm)

)
ḡ(x) =

(
ḡ1(x), · · · , ḡm(x)

)
=

(
g1(x)− g1(h1), · · · , gm(x)− gm(hm)

)
.

Then the following inequaliets hold:

(i) If 〈f̄ , ḡ〉 ≤ 0, then〈∫
D

f(x) dx,

∫
D

g(x) dx
〉
≥M

∫
D

〈
f(x),g(x)

〉
dx. (1)

(ii) If 〈f̄ , ḡ〉 ≥ 0, then〈∫
D

f(x) dx,

∫
D

g(x) dx
〉
≤M

∫
D

〈
f(x),g(x)

〉
dx. (2)

Furthermore, in both cases the equality holds if and only if 〈f̄ , ḡ〉 ≡ 0.

Proof. If 〈f̄ , ḡ〉 ≤ 0, then we have〈∫
D

f(x) dx,

∫
D

g(x) dx
〉

=
m∑

j=1

[ ∫
D

fj(x) dx

][ ∫
D

gj(x) dx

]

= M
m∑

j=1

∫
D

fj(hj)gj(x) dx

= M

m∑
j=1

∫
D

fj(x)gj(x) dx−M

m∑
j=1

∫
D

f̄j(x)ḡj(x) dx

= M

∫
D

〈
f(x),g(x)

〉
dx−M

∫
D

〈
f̄(x), ḡ(x)

〉
dx

≥M

∫
D

〈
f(x),g(x)

〉
dx,

and it is obvious that the equality holds if and only if 〈f̄ , ḡ〉 ≡ 0. This shows
case (i). The proof of case (ii) is analogous.
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Definition 1. Let f, g : D → R be real-valued functions. f is said to be parallel
to g if f(x) = f(y) whenever g(x) = g(y) and f(x) < f(y) whenever g(x) <
g(y). f is said to be anti-parallel to g if f(x) = f(y) whenever g(x) = g(y) and
f(x) < f(y) whenever g(x) > g(y).

It is clear that the ‘parallelism’ is an equivalence relation in the set of all
real-valued functions on D.

Theorem 1. Let f, g : D → R be continuous. Suppose that f is anti-parallel
to g. Then [∫

D

f(x) dx

] [∫
D

g(x) dx

]
≥M

∫
D

f(x)g(x) dx, (3)

where the equality holds if and only if f ≡ const or g ≡ const.

Proof. Let h ∈ D be a point such that f(h) = 1
M

∫
D
f(x) dx. Let f̄(x) =

f(x) − f(h), ḡ(x) = g(x) − g(h). By the parallelism of f and g, f̄ · ḡ ≤ 0 on
D, and thus from Lemma 1 it follows that[∫

D

f(x) dx

] [∫
D

g(x) dx

]
≥M

∫
D

f(x)g(x) dx,

where the equality holds if and only if f̄ · ḡ ≡ 0.

It remains to show that f̄ · ḡ ≡ 0 if and only if f ≡ const or g ≡ const. It
is trivial that if f ≡ const or g ≡ const, then f̄ · ḡ ≡ 0. Conversely, suppose
that f̄ · ḡ ≡ 0. Since f : D → R is continuous, the same is true for f̄ . Hence,
there are h1,h2 ∈ D such that for all x ∈ D,

f̄(h1) ≤ f̄(x) ≤ f̄(h2), (4)

and thus

f̄(h1) ≤ f̄(h) = 0 ≤ f̄(h2). (5)

If the equalities of (5) hold, then f ≡ constant. Otherwise, by the condition∫
D
f̄(x)dx = 0, we have f̄(h1) < 0 < f̄(h2). From the assumption f̄ · ḡ ≡ 0,

it follows that ḡ(h1) = ḡ(h2) = 0. By (4) and the parallelism of f and g,
ḡ(h1) ≥ ḡ(x) ≥ ḡ(h2) for all x ∈ D. However, then it forces ḡ ≡ 0 on D, which
completes the proof.

The condition of parallelism of functions is not necessary in the following
result.

Theorem 2. Let f : D → R be continuous and positive. Then[∫
D

f(x)m dx

] [∫
D

1

f(x)
dx

]m

≥Mm+1

for all m ∈ N, where the equality holds if and only if f ≡ const.
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Proof. Let p = fm, and q = 1
f
. Let h ∈ D be a point such that p(h) =

1
M

∫
D
p(x) dx. Let p̄(x) = p(x)− p(h) and q̄(x) = q(x)− q(h). It is elementary

to check that p̄ · q̄ ≤ 0 on D. By Lemma 1, we have[∫
D

p(x) dx

] [∫
D

q(x) dx

]
≥M

∫
D

p(x)q(x) dx,

where the equality holds if and only if p̄ · q̄ ≡ 0. Hence,[∫
D

f(x)m dx

] [∫
D

1

f(x)
dx

]
≥M

∫
D

f(x)m−1 dx,

where the equality holds if and only if f ≡ const. As this is true for all m ∈ N,
we have by induction[∫

D

f(x)m dx

] [∫
D

1

f(x)
dx

]m

≥Mm+1,

where the equality holds if and only if f ≡ const.

Theorem 3. Let f, g : D → R be continuous. Suppose that f is parallel to g.
Then [∫

D

f(x) dx

] [∫
D

g(x) dx

]
≤M

∫
D

f(x)g(x) dx, (6)

where the equality holds if and only if f ≡ const or g ≡ const.

Proof. The theorem follows immediately by applying Theorem 1 to the func-
tions f and −g.

Corollary 1. Let fj : D → R be nonnegative and continuous for all j =
1, · · · ,m. Suppose that fj, j = 1, · · · ,m, are pairwisely parallel. Then

m∏
j=1

∫
D

fj(x) dx ≤Mm−1

∫
D

m∏
j=1

fj(x) dx. (7)

Furthermore, if none of the fj’s is the zero function, then the equality holds if
and only if at most one of the fj’s is nonconstant.

Proof. Inequality (7) clearly holds by induction. Next, assume that none of the
fj’s is the zero function. It is clear that if at most one of the fj’s is nonconstant,
the equality holds. Conversely, suppose that, without loss of generality, f1 and
f2 are nonconstant, then from Theorem 3, it follows that[∫

D

f1(x) dx

] [∫
D

f2(x) dx

]
< M

∫
D

f1(x)f2(x) dx.
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Since all of fj’s are nonnegative,
∏m

j=3

∫
D
fj(x) dx > 0. By the parallelism of

the fj’s, we have

m∏
j=1

∫
D

fj(x) dx < M

[ ∫
D

f1(x)f2(x) dx

][ m∏
j=3

∫
D

fj(x) dx

]

≤Mm−2

[∫
D

f1(x)f2(x) dx

] [ ∫
D

m∏
j=3

fj(x) dx

]

≤Mm−1

∫
D

m∏
j=1

fj(x) dx,

which implies that the equality does not hold. This completes the proof.

Corollary 2. Let fi : D → R, i = 1, · · · , k, be nonnegative; and gj : D → R,
j = 1, · · · , l, be nonpositive. Suppose that f1, · · · , fk,−g1, · · · ,−gl are pair-
wisely parallel. Then the following inequalities hold:

(i) If l is odd, then[ k∏
i=1

∫
D

fi(x) dx

][ l∏
j=1

∫
D

gj(x) dx

]
≥Mk+l−1

∫
D

[ k∏
i=1

fi(x)

][ l∏
j=1

gj(x)

]
dx.

(ii) If l is even, then[ k∏
i=1

∫
D

fi(x) dx

][ l∏
j=1

∫
D

gj(x) dx

]
≤Mk+l−1

∫
D

[ k∏
i=1

fi(x)

][ l∏
j=1

gj(x)

]
dx.

Proof. It follows immediately from Corollary 1 when applied to the functions
f1, · · · , fk,−g1, · · · ,−gl .

2. Generalized integral inequalities in two dimensions

In this section, we show some useful integral inequalities involving mean values
of convex functions. These can be applied to derive further interesting integral
inequalities and some improvements of certain results obtained in Section 1. For
the sake of simplicity, we only present these results in a 2-dimensional setting,
but the analogue in higher dimensional situations should be transparent.

Theorem 4. Let f : [a, b]×[c, d] → R be continuous, U ⊂ R be an open interval
containing the image of f, and let F : U → R be convex (resp., concave). Then

1

(b− a)(d− c)

∫ b

a

∫ d

c

F (f(x, y)) dydx

≥ F

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) dydx

] (8)
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(resp., the reverse inequality). Furthermore, if F is strictly convex (resp.,
strictly concave), the equality holds if and only if f ≡ const.

Proof. Let (h, k) ∈ [a, b]× [c, d] be a point such that

f(h, k) =
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) dy dx.

Since F is convex [2], there exists m ∈ R such that

F (f(h, k) + t) ≥ F (f(h, k)) +mt for all t ∈ R. (9)

Therefore∫ b

a

∫ d

c

F (f(x, y)) dy dx =

∫ b

a

∫ d

c

F (f(h, k) + (f(x, y)− f(h, k))) dy dx

≥
∫ b

a

∫ d

c

[F (f(h, k)) +m(f(x, y)− f(h, k))] dy dx

= (b− a)(d− c)F (f(h, k)),

and so inequality (8) follows.

It is obvious that the equality holds if f ≡ const. Conversely, if F is strictly
convex, strict inequality in (9) holds for all t 6= 0, that is,

F (f(h, k) + t) > F (f(h, k)) +mt for all t 6= 0.

If f 6= constant, then there exists (x, y) ∈ [a, b] × [c, d] such that f(x, y) −
f(h, k) 6= 0; and by continuity, there is an open sub-rectangle of [a, b]× [c, d] on
which f(x, y)− f(h, k) 6= 0. Hence,∫ b

a

∫ d

c

F (f(x, y)) dy dx =

∫ b

a

∫ d

c

F (f(h, k) + (f(x, y)− f(h, k))) dy dx

>

∫ b

a

∫ d

c

[F (f(h, k)) +m(f(x, y)− f(h, k))] dy dx

= (b− a)(d− c)F (f(h, k)),

and so the assertion for f ≡ const follows. The case of concavity is analogously
shown.

Corollary 3. Let f : [a, b] × [c, d] → R be continuous, U ⊂ R be an open
interval containing the image of f , and let F : U → R be C2 with F ′′ ≥ 0
(resp., F ′′ ≤ 0). Then

1

(b− a)(d− c)

∫ b

a

∫ d

c

F (f(x, y)) dy dx

≥ F

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) dy dx

] (10)
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(resp., the reverse inequality). Furthermore, if F ′′ = 0 only at isolated points,
the equality holds if and only if f ≡ const.

Proof. A function F with F ′′ ≥ 0 is convex; and a function F with F ′′ ≥ 0
and F ′′ = 0 only at isolated points is strictly convex [2]. Hence, this statement
follows immediately from Theorem 4.

Corollary 4. Let f : [a, b] × [c, d] → R be continuous, U ⊂ R be an open
interval containing the image of f, and let ϕ, ψ : U → R be C1 functions such
that

(i) ϕ ′ doesn’t change sign and may vanish only at isolated points,

(ii) ψ ′ ≥ 0 and may vanish only at isolated points, and

(iii) ψ ◦ ϕ−1 is convex (resp., concave) on ϕ(U).

Then

ψ−1

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

ψ ◦ f(x, y) dy dx

]
≥ ϕ−1

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

ϕ ◦ f(x, y) dy dx

] (11)

(resp., the reverse inequality). Furthermore, if ψ ◦ϕ−1 is strictly convex (resp.,
strictly concave), the equality holds if and only if f ≡ const.

Proof. By (i) and (ii), both ϕ−1 and ψ−1 exist. Replacing F and f by ψ ◦ϕ−1

and ϕ ◦ f , respectively, from Theorem 4 it follows that

1

(b− a)(d− c)

∫ b

a

∫ d

c

(ψ ◦ ϕ−1)(ϕ ◦ f)(x, y) dy dx

≥ (ψ ◦ ϕ−1)

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

ϕ ◦ f(x, y) dy dx

]
.

Since ψ is strictly increasing, this gives inequality (11). Finally, when the
convexity of ψ ◦ ϕ−1 is strict, by Theorem 4 the equality holds if and only if
ϕ ◦ f ≡ const, or equivalently, f ≡ const. The case of concavity is analogously
proven.

Corollary 5. Let f : [a, b] × [c, d] → R be continuous, U ⊂ R be an open
interval containing the image of f , and let ϕ, ψ : U → R be C2 functions such
that

(i) ϕ ′ doesn’t change sign and may vanish only at isolated points,

(ii) ψ ′ ≥ 0 and may vanish only at isolated points, and

(iii) ψ ◦ ϕ−1 ∈ C2, (ψ ◦ ϕ−1)′′ ≥ 0 (resp., ≤ 0) on ϕ(U).
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Then

ψ−1

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

ψ ◦ f(x, y) dy dx

]
≥ ϕ−1

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

ϕ ◦ f(x, y) dy dx

] (12)

(resp., the reverse inequality). Furthermore, if (ψ ◦ ϕ−1)′′ = 0 only at isolated
points, the equality holds if and only if f ≡ const.

Proof. The assertion follows immediately from Corollary 4.

Corollary 6. Suppose that f : [a, b] × [c, d] → R is continuous and positive.
Then the following inequalities hold:

(i) If α < 0 or α > 1, then

[(b− a)(d− c)]α−1

∫ b

a

∫ d

c

f(x, y)α dy dx ≥
[∫ b

a

∫ d

c

f(x, y) dy dx

]α

.

(ii) If 0 < α < 1, then

[(b− a)(d− c)]α−1

∫ b

a

∫ d

c

f(x, y)α dy dx ≤
[∫ b

a

∫ d

c

f(x, y) dy dx

]α

.

Furthermore, in both cases the equality holds if and only if f ≡ const.

Proof. Let F (z) = zα, z > 0. Then F ′′(z) = α(α − 1)zα−2 , z > 0. Since
F ′′(z) > 0 for α < 0 or α > 1 and F ′′(z) < 0 for 0 < α < 1, by Corollary 3 the
results follow.

Corollary 7. Suppose that f : [a, b] × [c, d] → R is continuous and positive.
Then the following inequalities hold:

(i) If α > 0 or α < −1, then[∫ b

a

∫ d

c

1

f(x, y)
dy dx

]α [∫ b

a

∫ d

c

f(x, y)α dy dx

]
≥ [(b− a)(d− c)]α+1.

(ii) If −1 < α < 0, then[∫ b

a

∫ d

c

1

f(x, y)
dy dx

]α [∫ b

a

∫ d

c

f(x, y)α dy dx

]
≤ [(b− a)(d− c)]α+1.

Furthermore, in both cases the equality holds if and only if f ≡ const.
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Proof. The results follow from Corollary 6 by replacing f by 1
f

and α by −α.

Corollary 8. If f : [a, b]× [c, d] → R is continuous, then

1

(b− a)(d− c)

∫ b

a

∫ d

c

exp (f(x, y)) dy dx

≥ exp

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) dy dx

]
,

and the equality holds if and only if f ≡ const.

Proof. The statement follows from Corollary 3 by taking F (z) = exp (z).

Corollary 9. If f : [a, b]× [c, d] → R is continuous and positive, then

1

(b− a)(d− c)

∫ b

a

∫ d

c

ln (f(x, y)) dy dx

≤ ln

[
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) dy dx

]
,

and the equality holds if and only if f ≡ const.

Proof. Let F (z) = ln z, z > 0. Then F ′′(z) = − 1
z2 < 0 for all z > 0. Hence,

the statement follows from Corollary 3.

Remark. It is evident that all results in sections 2 and 3 above are valid in
a slightly more general setting, namely, instead of continuous functions on D
(resp. [a, b]× [c, d]), it is sufficient to require the functions under consideration
to be integrable on a finite measure space (X,µ,Σ) with the property that
there exists some p ∈ X such that f(p) = 1

µ(X)

∫
X
fdµ, which is easily seen

to be satisfied if f(X) is a bounded interval in R. However, in order that this
article can be accessible by a broader class of readers including physicists and
engineers, we chose the present less general setting instead.

3. Applications to the Calculus of Variations

The results in Section 2 can be applied to solving certain Calculus of Variations
problems directly for optimal solutions. For the sake of simplicity, we only
work on some less intricate cases. However, as the method of treatment is
rather algorithmic, it is easily seen that the same techniques can be applied to
more complicated situations. The upshot of the treatment is that we can obtain
the optimal solution directly without having to go through the classical steps of
deriving and solving the Euler-Lagrange equations, which for most of the time
is very tedious if not impossible.
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Example 1. Let ϕ : [a, b] × [c, d] → R be continuous and positive. Consider
the functional

I =

∫ b

a

∫ d

c

ϕ(x, y)f12(x, y)
α dy dx , α ∈ R,

and for all C2 functions f : [a, b]× [c, d] → R satisfying

f12 > 0 on [a, b]× [c, d]

f(a, y) = f(x, c) = 0 ∀x ∈ [a, b], y ∈ [c, d]

f(b, d) = M > 0 ,

where, as usual, f12 = ∂2f/∂x∂y. Denote by ∆ = (b− a)(d− c).

(i) If α < 0 or α > 1, then the minimum of I occurs, when

f(x, y) =
1

C

∫ x

a

∫ y

c

1

ϕ(s, t)
1
α

dt ds ,

where C = 1
M

∫ b

a

∫ d

c
1

ϕ(s,t)
1
α
dt ds and Imin = ∆

Cα .

(ii) If 0 < α < 1, then the maximum of I occurs when

f(x, y) =
1

C

∫ x

a

∫ y

c

1

ϕ(s, t)
1
α

dt ds ,

where C = 1
M

∫ b

a

∫ d

c
1

ϕ(s,t)
1
α
dt ds and Imax = ∆

Cα .

Proof. Case (i): By Corollary 6,

I ≥ 1

∆α−1

[∫ b

a

∫ d

c

ϕ(x, y)
1
αf12(x, y) dy dx

]α

, (13)

where the equality holds if and only if ϕ(x, y)
1
αf12(x, y) = 1

C
for some constant

C > 0. Since

f(x, y) =

∫ x

a

∫ y

c

f12(s, t) dt ds+ f(a, y) + f(x, c)− f(a, c),

the equality in (13) holds if and only if

f(x, y) =
1

C

∫ x

a

∫ y

c

1

ϕ(s, t)
1
α

dt ds.

From the condition f(b, d) = M , it follows that C = 1
M

∫ b

a

∫ d

c
1

ϕ(s,t)
1
α
dt ds. Hence,

we have

Imin =
1

∆α−1

[∫ b

a

∫ d

c

1

C
dy dx

]α

=
1

∆α−1

[
1

C
∆

]α

=
∆

Cα
.

Case (ii) is analogous to Case (i).
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Example 2. Let ϕ : [a, b]× [c, d] → R be continuous and positive. Among all
C2 functions f : [a, b]× [c, d] → R with

f12 > 0 on [a, b]× [c, d]

f(a, y) = f(x, c) = 0 ∀x ∈ [a, b], y ∈ [c, d]

f(b, d) = M > 0 ,

the functional

I =

∫ b

a

∫ d

c

ϕ(x, y)ef12(x,y) dy dx

attains its minimum when

f(x, y) = C(x− a)(y − c)−
∫ x

a

∫ y

c

lnϕ(s, t) dt ds

where C = 1
∆

[∫ b

a

∫ d

c
lnϕ(s, t) dtds+M

]
, and Imin = ∆ exp(C).

Proof. By Corollary 8,

I ≥ ∆ exp

[
1

∆

∫ b

a

∫ d

c

(lnϕ(x, y) + f12(x, y)) dy dx

]
, (14)

where the equality holds if and only if lnϕ(x, y) + f12(x, y) = C, that is
f12(x, y) = C − lnϕ(x, y) for some constant C. Since

f(x, y) =

∫ x

a

∫ y

c

f12(s, t) dt ds+ f(a, y) + f(x, c)− f(a, c),

the equality in (14) holds if and only if

f(x, y) = C(x− a)(y − c)−
∫ x

a

∫ y

c

lnϕ(s, t) dt ds.

From the condition f(b, d) = M , it follows that M = C∆−
∫ b

a

∫ d

c
lnϕ(s, t) dt ds,

and thus C = 1
∆

[ ∫ b

a

∫ d

c
lnϕ(s, t) dt ds+M

]
. Hence, we have

Imin = ∆ exp(C) .

Example 3. Let ϕ : [a, b]× [c, d] → R be continuous and positive. Among all
C2 functions f : [a, b]× [c, d] → R with

f12 > 0 on [a, b]× [c, d]

f(a, y) = f(x, c) = 0 ∀x ∈ [a, b], y ∈ [c, d]

f(b, d) = M > 0 ,
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the functional

I =

∫ b

a

∫ d

c

ln(ϕ(x, y)f12(x, y)) dy dx

attains its maximum when

f(x, y) =
1

C

∫ x

a

∫ y

c

1

ϕ(s, t)
dt ds ,

where C = 1
M

∫ b

a

∫ d

c
1

ϕ(s,t)
dt ds and Imax = −∆ lnC.

Proof. By Corollary 9,

I ≤ ∆ ln

[
1

∆

∫ b

a

∫ d

c

ϕ(x, y)f12(x, y) dy dx

]
, (15)

where the equality holds if and only if ϕ(x, y)f12(x, y) = 1
C

for some constant
C > 0. Since

f(x, y) =

∫ x

a

∫ y

c

f12(s, t) dt ds+ f(a, y) + f(x, c)− f(a, c),

the equality in (15) holds if and only if

f(x, y) =
1

C

∫ x

a

∫ y

c

1

ϕ(s, t)
dt ds.

From the condition f(b, d) = M , it follows that C = 1
M

∫ b

a

∫ d

c
1

ϕ(s,t)
dt ds. Hence,

we have

Imax = ∆ ln

[
1

∆

∫ b

a

∫ d

c

1

C
dy dx

]
= ∆ ln

(
1

C

)
= −∆ lnC.

Remark. These results cannot be obtained by using the classical approach.
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