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Mackey Topologies on
Vector-Valued Function Spaces

Marian Nowak

Abstract. Let E be an ideal of L° over a o-finite measure space (£2,%, 1), and
let (X,|-||x) be a real Banach space. Let E(X) be a subspace of the space L°(X)
of wu-equivalence classes of all strongly Y-measurable functions f : € — X and
consisting of all those f € L°(X) for which the scalar function ||f(-)||x belongs
to E. Let E(X); stand for the order continuous dual of E(X). We examine

n

the Mackey topology 7(E(X), E(X)y) in case when it is locally solid. It is shown

n

that 7(E(X), E(X)y) is the finest Hausdorff locally convex-solid topology on E(X)

n
with the Lebesgue property. We obtain that the space (E(X),7(E(X),E(X);)) is
complete and sequentially barreled whenever E is perfect. As an application, we
obtain the Hahn-Vitali-Saks type theorem for sequences in E(X),’. In particular, we
consider the Mackey topology 7(L*®(X), L®?(X);) on Orlicz-Bochner spaces L®(X).

n
We show that the space (L®(X),7(L®(X),L*(X)y)) is complete iff L® is perfect.
Moreover, it is shown that the Mackey topology 7(L>°(X),L>(X);) is a mixed
topology.
Keywords: Vector-valued function spaces, Orlicz-Bochner spaces, locally solid topo-
logies, Lebesgue topologies, Mackey topologies, mixed topologies, sequen-
tial barreledness
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1. Introduction and preliminaries

Given a topological vector space (L, &) by (L,&)* we will denote its topological
dual. We denote by o(L,K) and 7(L, K) the weak topology and the Mackey
topology on L with respect to a dual pair (L, K). In the theory of topological
function spaces the Mackey topology 7(E, Er’) on a function space E is of im-
portance (see [8, 7, 14]). It is well known that 7(E, E;’) is the finest Hausdorff
locally convex-solid topology on E with the Lebesgue property.
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In this paper we consider the Mackey topology 7(E(X), E(X),) on a vector-
valued function space E(X) whenever E is an ideal of L° (over a o-finite
measure space), X is a Banach space and E(X)) stand for the order con-
tinuous dual of E(X). In Section 2 we examine some properties of solid
sets in the order continuous dual E(X)y of E(X). We examine the prop-
erties of 7(E(X),E(X)y) in case it is locally solid. In Section 3 we show
that 7(E(X), E(X)) is the finest Hausdorff locally convex-solid topology on
E(X) with the Lebesgue property (see Theorem 3.2). We obtain that the
space (E(X),7(E(X), E(X)y)) is complete and sequentially barreled when-
ever E is perfect (see Theorem 3.3 and Theorem 3.5). As an application,
we obtain that E(X)Y is o(E(X)y, E(X))-sequentially complete (see Theo-
rem 3.6). In Section 4 we consider the Mackey topology 7(L®(X),L*(X)7)
on Orlicz-Bochner spaces L®(X) (® is not necessarily convex). It is shown
that the space (L®(X),7(L*(X),L*(X)y)) is complete if and only if L? is
perfect (see Theorem 4.4). In particular, we obtain that 7(L>(X), L>°(X)>)
is a mixed topology (see Theorem 4.5).

First we establish terminology concerning function spaces (see [2, 10, 27]).
Let (£2,%, 1) be a complete o-finite measure space. Let L° denote the space
of p-equivalence classes of all Y-measurable real valued functions defined and
finite a.e. on 2. For a subset M of L° by supp M we denote the support
of M, i.e., the smallest set in ¥ containing (a.e.) the supports of all u € M (see
[10, Chapter 1.6]). Let x4 stand for the characteristic function of a set A, and
let N and R denote the sets of all natural and real numbers.

Let E be an ideal of L° with supp £ = Q and let £’ stand for the Kothe
dual of E, ie, E' = {v e L°: [ |u(w)v(w)dy < oo forall u e E}.
Throughout the paper we assume that supp E’ = . Let £, £ and EJ
stand for the order dual, the order continuous dual and the singular dual of F,
respectively. Then E separates points of E and it can be identiﬁed with E’
through the mapping: E' 3 v — ¢, € E, where ¢,(u) = [, u(w)v(w)dpu for
all w € E. E is said to be perfect Whenever the natural embeddlng from E
into (E>)~ is onto, i.e., B/ = F.

Now we collect notation along with some basic facts concerning vector-
valued function spaces E(X) and locally solid topologies on F(X) as set out
in [3 - 5], [9] and [19 — 21].

Let (X,| - |lx) be a real Banach space, and let Sx and Bx denote the
unit sphere and the unit ball in X. Let X* stand for the Banach dual of X.
By L° we will denote the set of p-equivalence classes of strongly Y-measurable
functions f:Q — X. For f e L°(X) let f(w)=|f(w)|x for we Q. Let

EX)={felX): feE}.

A subset H of E(X) is said to be solid whenever fi<frand f € E(X),
fo € H imply f; € H. A linear topology 7 on E(X) is said to be locally solid
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if it has a local base at 0 consisting of solid sets. A linear topology on FE(X)
that is at the same time locally solid and locally convex will be called a locally
convez-solid topology on E(X). A pseudonorm p on E(X) is called solid if
o(f1) < o(f2) whenever fi, fo € E(X) and f1 < fo. Tt is known that a linear
topology 7 on E(X) is locally solid (resp. locally convex-solid) if and only
if it is generated by some family of solid pseudonorms (resp. solid seminorms)
defined on E(X) (see [9, Theorems 2.2 and 2.4]).

Recall that a locally solid topology 7 on FE(X) is said to be a Lebesgue
topology whenever for a net (f,) in FE(X), fa 9.0 in E implies f, — 0
(see [9, Definition 2.2]).

In the case when E is provided with a locally solid topology (resp. locally
convex-solid topology) & one can topologize E(X) as follows. Let {p; : t € T}
be a family of Riesz pseudonorms (resp. Riesz seminorms) on E that generates
¢. By putting 3

B(f)=p(f) for feB(X) (teT)
we obtain a family {p,: t € T'} of solid pseudonorms (resp. solid seminorms)
on E(X) that defines a locally solid (resp. locally convex-solid) topology ¢ on
E(X) (called the topology associated with &).

Now we recall “vector valued analogues” of E~, £ and E7 as set out in
5, 20].
For a linear functional F' on E(X) let us set

IF|(f) =sup{|F(h)|: he E(X), h< f} forall f € E(X).
Then the set
EX)"={FecEX)*: |F|(f)<oo forall fec E(X)}.

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual
of E(X)) (see [5, §§3, 18]).

It is well known that the Mackey topology 7(F, E™~) is locally solid (see [1]).
Moreover, one can show that the Mackey topology 7(E(X), E(X)™) is locally
solid and 7(E(X), E(X)~) = 7(E, E~) (see [21, Theorem 3.3]).

Making use of the concept of |F'| we can define in a natural way a positive
linear functional ¢p on E. Let F € E(X)~ and z, € Sy be fixed. For
u € ET let us set

or(u) = |F|l(u®x,) =sup{|F(h)|: h e E(X), h < u},

where (u ® z,)(w) = u(w)z, for w € Q. Clearly |F|(f) = @r(f) for all
f € E(X). Then pr: ET — R is an additive mapping and ¢r has a unique
positive extension to a linear mapping from E to R (denoted by ¢r again)
and given by

or(u) == pr(ut) —pp(u~) forallue E
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(see [5, Lemma 7], [2, Lemma 3.1]).

Now we are ready to consider the concept of solidness in FE(X)~. For
F,F, € E(X)~ we will write |Fi| < |Fy| whenever |Fi|(f) < |F|(f) for all
f € E(X). Asubset A of E(X)™ issaid to be solid whenever |Fy| < |Fy| with
Fy e E(X)~ and F, € A imply Fy; € A. A linear subspace [ of E(X)~ will
be called an ideal of E(X)~ whenever [ is solid. It is known that (E(X),7)*
is an ideal of E(X)~ whenever 7 is a locally solid topology on E(X) (see [19,
Theorem 3.2]).

Every subset A of E(X)~ is contained in the smallest (with respect to
inclusion) solid set called the solid hull of A and denoted by S(A). One can
note that S(A) ={F € E(X)~: |F| < |G| for some G € A}.

Recall that a functional F' € E(X)"~ is said to be order continuous when-
ever for a net (fo) in E(X), fa —5 0 in E implies F(f.) — 0. The set
E(X); consisting of all order continuous linear functionals on E(X) is called
the order continuous dual of E(X). E(X); is an ideal of E(X)™~ (see [19]).

A functional F' € F(X)™~ is said to be singular if there is an ideal B of E
with supp B = Q and such that F(f) =0 for all f € E(X) with f € B. The
set consisting of all singular functionals on E(X) will be denoted by E(X)Y
and called the singular dual of E(X) (see [6, 18]). E(X)7 isanideal of E(X)~
(see [19]).

Let L°(X*, X) be the set of weak*-equivalence classes of all weak*-measu-
rable functions ¢ : 2 — X*. One can define the so called abstract norm
v LY(X*, X) — L° by 9(g9) = sup{|g.| : = € Bx}, where g,(w) = g(w)(x)
for w € Q and x € X. One can show that ¥(\g) = |A[J(g) and V(g, +g,) <
¥(g,)+9(g,) for g,9,,9, € L°(X*, X) and A € R. Thenfor f € L°(X) and g €
L°(X*, X) the function (f,g): Q@ — R defined by (f,¢)(w) := (f(w),g(w)) is
measurable, and [(f, g)| < f9(g). Moreover, ¥(g) = § for g € L°(X*).

Let

E'(X*,X)={geL°(X* X): d(g) € E'Y.

Due to A. V. Bukhvalov (see [4, Theorem 4.1]) E(X); can be identified with

n

E'(X*,X) through the mapping E'(X*,X) 5 g+ F, € E(X)?, where
FAD = [ g de forall £ € B(X) (1.1)
and moreover,
R = [ F)ila))dn forall £ € B(X).

It is known (see [19, Corollary 2.5]) that for ¢,, g, € E'(X*, X)

|Fg1] < |Fg2| if and only if ¥(g,) < 9(g,). (1.2)
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Due to A. V. Bukhvalov and G.Y. Lozanowskii (see [5, §3, Theorem 2]) the
following Yosida-Hewitt type decomposition holds

E(X)™ = E(X), ® E(X)7 (1.3)

and moreover, if F' = F, 4+ F;, where g € E'(X*,X) and F,; € E(X)7, then
Y = ¢, + g, where ¢, (u) = Jo u(w)d(g)(w)dp for ue E and ¢, € E7.

Proposition 1.1. Let E be an ideal of L°. Then the following statements are
equivalent:
(i) E(X)™ = E(X);
(i) E(X)7 = {0}
(iii) £ ={0}
(iv) E~=E.

Proof. (i) <= (ii): It follows from (1.3).

(ili) <=(iv): This is obvious, because E~ = E~ & E7.

(ii) = (iii): Assume that E(X)7 = {0} and let ¢ € E. Then there is
an ideal B of E with supp B = Q and such that ¢(u) = 0 for all u € B.
Let z, € Sy and let z} € Sx- be such that z}(z,) = 1. Define a linear
functional F, on E(X) by setting F,(f) = ¢(x; o f) for f € E(X). To show
that F, € E(X)~, let uw € E*. Then for f € E(X) with f < u we have
250 fl < £, s0

sup {|F,()| : f € B(X), f <u}=sup{lp(aiof)]: feEX) [<u}
<sup{lo(w)|: weE, |w|<u} < .

It is seen that F,(f) = 0 for f € E(X) with f € B, because 2z’ o f € B.
Hence F, € E(X); = {0}, so F, = 0. Then for v € E, we get ¢(u) =
p(xi(u® x,)) = Fyo(u®x,) = 0. Hence ¢ =0, as desired.

(i) = (ii): Assume that EY = {0} and let F' € E(X)7. Then ¢, €

s

)
E7 = {0} (see 1.3),s0 F =0. |

2. Solid sets in the order continuous dual

In this section we shall show that the convex hull (conv A) of a solid subset A
of E(X)y is also solid in F(X);". For this purpose we will need the following

n
two lemmas.

Lemma 2.1. Let g € L°(X*, X) and ¢g; € L°(X*, X) for n = 1,2,...,n,
and assume that 9(g) < 931, 9:;). Then there exist g, € L°(X*, X) for
i=1,2,...,n such that g => ", g and V(q}) <V (g;) for i=1,2,...,n.
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Proof. By using induction it is enough to establish this result for n = 2. For
1=1,2 let us put

9(g) () |
wi(@) =4 @@ + o)) T e T o)) >0
0 it 9(g,)(w) +9(g,)(w) = 0.

It is seen that u; are p-measurable, and let g/ = u,g for ¢ = 1,2. Then
9, + 9, = u,g +u,g = g and since (g, +g,) < J(g,) +¥(g,) for i =1,2 we
have

0(g)) = sup{|(v,9)s| - « € Bx}
=sup{u|g.|: * € Bx}
< wu;sup{|gz| : © € Bx } =u,9(g)
<u, g, +9,)
< u, (V(g,) +0(g.)) = 9(g.).

Thus the proof is complete. |
Lemma 2.2. Let F € E(X), and F, € E(X); for i = 1,2,...,n, and

n

assume that |F| <|>"" | Fj|. Then there exist F] € E(X)y fori=1,2,....,n
such that F =" | F! and |F}| <|Fj| for i=1,2,...,n.

Proof. In view of (1.1) there exist ¢ € E'(X*,X) and ¢; € E'(X*, X) for
¢t = 1,2,...,n such that ' = F, and F; = F,, for i = 1,2,...,n. Then
Iyl < [0 Fyl = [ Bl 50 9(g) < 9(S, 63) by (1.2). Then in view of
Lemma 2.1 there exist ¢} € L°(X*, X) for i =1,2,...,n such that g =>"" | ¢!
and ¥(g{) < 9(g;). Then gi € E'(X*, X) for i =1,2,...,n and let F] = Fy
for i = 1,2,...,n. Then F = Fy = Fyn o = > " Fy = " F/ and
|F| = |Fg| < |Fy| = |F| for i=1,2,...,n. |

Now we are ready to state our desired result.

Proposition 2.3. Let A be a solid subset of E(X).. Then conv A is also a
solid set in E(X).

Proof. Assume that |F,| < |F| where F, € E(X), and F € conv A. Then
there exist F; € A and o; > 0 for i = 1,2,...,n with > o =1 such
that F = Y ", a;F;. Hence by Lemma 2.2 there exist F] € E(X); for i =
1,2,...,n such that |F/| < |F| = «|F;| for i« = 1,2,...,n and F, =
S F!. Putting G; = o 'F} we get |Gi| < |F| for i = 1,2,...,n, so
G; € A for i=1,2,...,n. Hence Fy, =Y " a;G; € conv A, and this means
that conv A is solid in E (X)) . |
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3. Mackey topologies on vector-valued functions spaces

One can observe that (E(X),7)" C E(X) whenever 7 is a Lebesgue topology
on E(X). Moreover, it is known that a locally convex-solid topology 7 on
E(X) has the Lebesgue property whenever (E(X),7)* C E(X)Y (see [20,
Theorem 2.4]). In [20, Theorem 3.4] it is shown that if an ideal E is perfect
and a Banach space X is reflexive, then the Mackey topology 7(E(X), E(X))
is locally solid and it is the finest Hausdorff locally convex-solid topology on

E(X) with the Lebesgue property.

In this section we extend this result to the setting whenever the Mackey
topology 7(F(X), E(X)y) is locally solid. This property is characterized by
the following result:

Theorem 3.1. Let E be an ideal of L°, and let X be a Banach space. Then
the following statements are equivalent:

(1) 7(E(X),E(X)y) is locally solid.

n

(ii) Every absolutely conver o(E(X)y, E(X))-compact subset of E(X)y is

contained in a solid absolutely conver o(E(X)y, E(X))-compact subset
of E(X);.

Proof. It is enough to repeat the reasoning of the proof of [14, Lemma 2.1] and
use the fact that the polar sets of subsets of E(X) and FE(X); with respect to

n

the dual pair (E(X), E(X);) are solid (see [19, Theorem 3.3]). |

n

Remark. In Section 4 we note that for X = [' the Mackey topology
T(L®(X), L*>®(X)y) is not locally solid.

n
Now we are in position to prove our main result.

Theorem 3.2. Let E be an ideal of L° and X be a Banach space. Assume that
the Mackey topology T(E(X), E(X)y) is locally solid. Then 7(E(X), E(X)Y) is

the finest locally convex-solid on E(X) with the Lebesque property and
T(E(X), B(X)y) = 7(E, Ey).

Proof. We shall show that
T(E(X), B(X)y) = 7(E, EY).

Indeed, assume that 7(FE, E}) is generated by a family {p, : t € T} of Riesz
seminorms on E. In view of [9, Theorem 5.7] 7(E, E}) is the finest locally con-
vex Hausdorff Lebesgue topology on E(X). It follows that 7(E(X), E(X)Y) C
T(E, EY).

To prove that 7(E,Ey) C 7(E(X),E(X))) it is enough to show that
(E(X),7(E,Ey))" = E(X),. Since 7(FE,Ey) is a Lebesgue topology, it is

n:
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enough to prove that E(X) C (BE(X),7(E,Ey))*. Indeed, let F € E(X)y,

Le, F(f) = F,(f) = fﬂ (w),g(w))du for some g € F'(X* X) and all
feEX ) Since goﬁ() = (E,7(E,E))* there exist ¢ >0 and t; € T
(1=1,2,. ) such that for feEX)

fl< / flw = puf) < e s pu(F) = e max Pl
This means that F' is 7(F, E)-continuous, as desired. |

As a consequence of Theorem 3.2 and [20, Theorem 2.6] we get the following
result.

Theorem 3.3. Let E be a perfect ideal of L°, and let X be a Banach space.
Assume that the Mackey topology 7(E(X), E(X)?Y) is locally solid. Then the
space (E(X),7(E(X),E(X)Y)) is complete.

The topological dual of (E(X),7(E(X), E(X);)) is characterized by the
next theorem.

Theorem 3.4. Let E be an ideal of L°, and let X be a Banach space. Assume
that the Mackey topology T(E(X), E(X)y) is locally solid. Then the following
statements are equivalent:

(1) F is order continuous, i.e., F € E(X)..
(ii) F is sequentially order continuous (i.e., F(f,) — 0 whenever f, — 0
in E for a sequence (f,) in E(X)).
(iii) F is 7(E(X), E(X);)-continuous.
(iv) F s sequentially 7(E(X), E(X)7)-continuous.

Proof. (i) < (ii): This assertion follows from [19, Theorem 2.3].

(i) < (iil) and (iii) = (iv) are obvious.

(iv) = (ii): Assume that F' is sequentially 7(E(X), E(X);)-continuous,
and let f, —5 0 in E for a sequence (f,) in E(X). Then f, — 0 for
T(E(X),E(X);) because 7(E(X),E(X);) is a Lebesgue topology. Hence

n

F(f.) — 0, as desired. |

Recall that a Hausdorff locally convex space (L, &) is said to be sequentially
barreled whenever every U(LZ, L)-convergent to 0 sequence in L¢ is equicon-
tinuous (see [25]).

Theorem 3.5. Let E be a perfect ideal of L°, and let X be a Banach space.
Assume that the Mackey topology T(E(X), E(X)y) is locally solid. Then the

n

space (E(X),7(E(X),E(X)y)) is sequentially barreled.
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Proof. In view of Theorem 3.4 we have

(E(X),7(E(X), E(X);))" = (B(X),7(E(X), E(X)7)" = E(X);

n n n

(here (E(X),7(E(X),E(X)y))" denotes the sequential topological dual of

n

(E(X),7(E(X),E(X)y)). Since the space (E(X),7(E(X),E(X);)) is com-

plete (see Theorem 3.3), by [25, Proposition 4.3] the space (E(X),7(E(X),
E(X)y)) is sequentially barreled. |

Note that if (F,| - ||g) is a Banach function space with the norm || - ||g
satisfying the o-Fatou property (i.e., 0 <wu, Tu in E implies ||u,|z T ||ullg),
then the space (E(X),7(E(X),E(X)y)) is barreled if and only if || - ||g is
order continuous (see [21, Corollary 3.9]).

It is well known that the space E is o(E;’, E)-sequentially complete (see
2, Theorem 20.23], [10, Corollary 10.3.1]). Now, by making use of Theorem 3.5,
Theorem 3.4 and [25, Proposition 4.4] we obtain the vector-valued version of
this result.

Theorem 3.6. Let E be a perfect ideal of L°, and let X be a Banach space.
Assume that the Mackey topology T(E(X), E(X)y) is locally solid. Then the

n

space E(X)~ is o(E(X)y, E(X))-sequentially complete.

n no

As an application of Theorem 3.6 and (1.1) we get immediately the Hahn-Vitali-
Saks type theorem for sequences in E(X)

Corollary 3.7. Let E be a perfect ideal of L°, and let X be a Banach space.
Assume that the Mackey topology T(E(X), E(X)?) is locally solid. Let (g,) be

a sequence in E'(X*, X) such that for each f € E(X), lim, [,(f(w), gn(w)) dp
exists. Then there is a g € E'(X*, X) such that

lim / (F(@), gu(w)) dpt = / (F(w), () for every f € E(X).

Q

4. Mackey topologies on Orlicz-Bochner spaces

In this section we examine the Mackey topology 7(L®(X), L®(X)7) on Orlicz-
Bochner spaces L?(X) whenever @ is an Orlicz function (not necessarily con-
vex) and X is a general Banach space. Throughout this section we will assume
that the measure space (2,3, ) is atomless.

First we establish notation and basis results concerning Orlicz spaces (see
[13, 24] for more details). By an Orlicz function we mean here a map P :
[0,00) — [0,00) that is non-decreasing left continuous, continuous at 0, van-
ishing only at 0 and lim; . inf(®(¢)/t) > 0. Let ®* stand for the convex
Orlicz function complementary to ® in the sense of Young. Then the function
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D(t) = (®*)*(t) for t > 0 is called a conver minorant of ®, because it is the
largest convex Orlicz function that is smaller than ® on [0, 00).

The Orlicz space L*® can be equipped With a complete topology 74 of the
Riesz F-norm |lule := inf{f\A > 0: [, ®(Ju(w)[/A)dp < A}. Tt is known that
(L®) = L*" (see [11]). Clearly L* is perfect if and only if L? = L® (i.e.,
® is equivalent to some convex Orlicz function). It is seen that (L?) = L*
because ¢ = d*,

The Orlicz-Bochner space L*(X) (= {f € L°(X) : f € L®}) can be
equipped with the complete topology 7¢(X) of the solid F-norm ||f| e (x) =
I flle for fe L*(X) (ie., To(X)= 7'@)

For e > 0 let Vg(e) ={f € L*(X) : [, ®(f(w))du < e}. Then the family

of all sets of the form:
U < Z ch(&)) )
n=1 i=1

where (g,,) is a sequence of positive numbers, forms a local base at 0 (consisting
of solid subsets of L*(X)) for a linear topology 74 (X) on L®(X), called the
modular topology (see [9]).

In particular, for X = R we will write 7§ instead of 74(R). The basic
properties of the modular topology 74 are included in the following theorem
(see [15, Theorem 1.1], [17, Theorems 2.5 and 3.2], [18, Theorem 2.2]):

Theorem 4.1. Let ® be an Orlicz function. Then:
(1) 74 = 7o holds if and only if ® satisfies the Ay-condition.
(ii) 74 is the finest Lebesque topology on L*.
(iii) The Mackey topology T(L®, L*") is the finest of all locally convex topolo-

gies on L* that are weaker than tj. Moreover, T(L®,L®") = 15 when-
ever ® s convex.

(iv) 7(L*,L*") coincides with the restriction of the Mackey topology
T(L®,L*") on L2, i.e., 7(L® L®) = 7(L® L®)| .
(v) The completion of (L®,7(L*, L*")) equals (L®, 7(L®, L*")).

Now we pass on to Orlicz-Bochner spaces. Then L*(X)y = {F, : g €
L*(X*,X)} and we can write 7(L*(X),L* (X*,X)) instead of
T(L*(X), L*(X)7)-

Theorem 4.2. Let ® be an Orlicz function and X be a Banach space. Assume
that the Mackey topology 7(L®(X),L® (X*, X)) is locally solid. Then:
(i) 745(X) is the finest Lebesque topology on L*(X).
(i) 75(X) = 7.
(iif) (L*(X),75(X))" = L*(X)}.
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Proof. (i): The assertion follows from [9, Theorem 6.3].

(ii): Since 74 is the finest Lebesgue topology on L® (see Theorem 4.1(ii)),
by making use of [9, Theorem 5.7] 74 is the finest Lebesgue topology on L*(X).
Hence, in view of (i) 75(X) = 74 as desired.

(iii): In view of (i) we have that (L*(X),74(X))* € L*(X)7. On the other
hand, by making use of Theorem 3.2 and Theorem 4.1(iii) we get

T(L®(X), L™ (X", X)) = 7(L*,L?") C 7§ = 75(X).
It follows that L®(X)~ C (L?(X),75(X))*, and the proof is complete. |
Now we are ready to characterize the Mackey topology 7(L*(X), L®(X)x).

Theorem 4.3. Let ® be an Orlicz function and X be a Banach space. Assume
that the Mackey topology 7(L®(X), L* (X*, X)) is locally solid. Then:

(i) 7(L®(X), L (X*, X)) is the finest of all locally convex topologies on
L®(X) that are weaker than 75(X). In particular, 7(L*(X), L* (X*, X))
= 74(X) whenever ® is conver.

(if) m(L*(X), L* (X", X)) = 7(L(X), L* (X", X))o x) = m5(X)[e(x)

Proof. (i): We know that 7(L®(X), L*(X)>) C 74(X) (see the proof of (iii) of
Theorem 4.2). Now, let 1 be a locally convex topology on L®(X) that is weaker
than 75(X). Then (L®(X),n)* C (L*(X),75(X))* = L*(X); (see Theorem
4.2 (iii)). Hence o(L*(X), (L*(X),n)*) C o(L*(X), L*(X);) and it follows
that n C 7(L*(X), L*(X)r) (see [23, Proposition 3.7.14]).

Moreover, if & is convex, then by Theorem 4.1 (iii) we get

T(LP(X), LY (X", X)) = 7(L* L?") = 73 = 75(X).
(ii): By making use of Theorem 3.2 and Theorem 4.1 (iv) we get:

T(L*(X), L* (X*, X))

7(L® L)

7(L¥, LYo

(L L®)|pe(x)

T(LP(X), L (X", X))o (x)

7'%( )’L‘D n

Il H
\]

»

Theorem 4.4. Let ® be an Orlicz function and X be a Banach space. Assume
that the Mackey topology T(L®(X), L (X*, X)) is locally solid. Then:

(i) The completion of (L*(X),7(L*(X),L* (X*,X))) equals (L®(X),
T(L*(X), L* (X", X))).
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(ii) The space (L*(X), 7(L*(X), L* (X*, X))) is complete if and only if L®
is perfect.

Proof. (i): We know that the space (L®(X),7(L®(X),L* (X* X)) is com-
plete, because L® is perfect (see Theorem 3.3). In view of Theorem 4.3
it is enough to show that L®(X) is dense in (L®(X),r 72(X)). Indeed, let
f € L®(X). Then there exists a sequence (£2,) in X such that Q, 1 Q,
w(Q,) < oo and xq, € L* for n € N (see [27, Theorem 86.2]). For n € N let
us put

0 elsewhere.

fulw) = { fw) if flw) <nand weQ,

Then f, € L*(X) for n € N and f(w) 1 f(w) for w € Q. Moreover, we have

0 if f(w)<n and we Q,

f— fn(w) = f(w) - fn(w) = { f(w) elsewhere.

—_——

Hence f— f, | 0 in E, and since 7£(X) is a Lebesgue topology on L?(X)

we get f, — f for 72(X), as desired.

(ii): Assume that the space (L*(X),7(L*(X),L* (X*,X))) is complete.
Then by (i) L*(X) = L*(X), and this means that L? is perfect. Hence in
view of Theorem 3.3 the proof is complete. [ |

Now we consider the Mackey topology 7(L>*(X),L>*(X)y). The Riesz
F-norm (o)
u(w
ullp = | —————w(w)d foru € L°,
full = [ ) dn
where w : Q — (0,00) is a Y-measurable function with [, w(w)dy = 1,
determines the Lebesgue topology 7, on L° of the convergence in measure on
subsets of finite measure. Recall the mixed topology 7[Teo, Tojzee] (briefly ) is
the finest Hausdorff locally convex-solid topology with the Lebesgue property
on L*  i.e., 7 coincides with the Mackey topology 7(L*>, L') (see [16]).
Now we consider the mixed topology [T (X), 7o(X)|1e(x)] (briefly vx) on
L>(X) (here 7o(X) stands for the topology of the norm || f||z(x) := || flloc =
ess sup,eq f(w) and 7,(X) denotes the topology of the F-norm || f||Lo(x)
I fllo on L°(X)). For a sequence (e,) of positive numbers and r > 0 let

U (z Vi(e) NiBs (1))
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where Bx(r) = {f € L=(X) : [[flle=x) < 7} and Vx(e) = {f € L°(X) :
| fllLocxy < e}. Then the family of all such W (e,,r) forms a local base at 0
for v, (see [20, 26] for more details). One can show that v, =7 (see [20,
Theorem 4.2]).

Hence, by Theorem 3.2 we get:

Theorem 4.5. Assume that the Mackey topology T(L>(X), L}Y(X*, X)) is lo-
cally solid. Then 7(L>®(X), LY(X*, X)) coincides with the mized topology ~x.

Remark. The Mackey topology 7(L>®(X), L'(X*, X)) and the mixed topology
vx on L*®(X) are closely related to the theory of operator valued measures
m : ¥ — B(X,Y), where Y is a Banach space and B(X,Y) stands for the
space of all bounded linear operators from X to Y. One can show (see [22])
that if 7(L>(X), L}'(X*, X)) is locally solid (i.e., 7(L>(X), L'(X*, X)) = 7x)
then for every Banach space Y an operator valued measure m : ¥ — B(X,Y)
is countably additive in the uniform operator topology if and only if m is vari-
ationally semiregular (see [11] for more details).

On the other hand, I. Dobrakov [6, Example 7] defined a measure m : 2% —
B(I', cy) which is countably additive in the uniform operator topology but it is
not variationally semiregular. It follows that for X = [' the Mackey topology
7(L>(X), L} (X*, X)) is not locally solid.

Acknowledgement. The author wishes to thank the referees for their remarks.
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