Mackey Topologies on Vector-Valued Function Spaces

Marian Nowak

Abstract. Let E be an ideal of L^0 over a σ -finite measure space (Ω, Σ, μ) , and let $(X, \|\cdot\|_X)$ be a real Banach space. Let E(X) be a subspace of the space $L^0(X)$ of μ -equivalence classes of all strongly Σ -measurable functions $f : \Omega \to X$ and consisting of all those $f \in L^0(X)$ for which the scalar function $\|f(\cdot)\|_X$ belongs to E. Let $E(X)_n^{\sim}$ stand for the order continuous dual of E(X). We examine the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ in case when it is locally solid. It is shown that $\tau(E(X), E(X)_n^{\sim})$ is the finest Hausdorff locally convex-solid topology on E(X)with the Lebesgue property. We obtain that the space $(E(X), \tau(E(X), E(X)_n^{\sim}))$ is complete and sequentially barreled whenever E is perfect. As an application, we obtain the Hahn-Vitali-Saks type theorem for sequences in $E(X)_n^{\sim}$. In particular, we consider the Mackey topology $\tau(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim})$ on Orlicz-Bochner spaces $L^{\Phi}(X)$. We show that the space $(L^{\Phi}(X), \tau(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim}))$ is complete iff L^{Φ} is perfect. Moreover, it is shown that the Mackey topology $\tau(L^{\infty}(X), L^{\infty}(X)_n^{\sim})$ is a mixed topology.

Keywords: Vector-valued function spaces, Orlicz-Bochner spaces, locally solid topologies, Lebesgue topologies, Mackey topologies, mixed topologies, sequential barreledness

MSC 2000: 46E40, 46E30, 46A20, 46A70

1. Introduction and preliminaries

Given a topological vector space (L,ξ) by $(L,\xi)^*$ we will denote its topological dual. We denote by $\sigma(L,K)$ and $\tau(L,K)$ the weak topology and the Mackey topology on L with respect to a dual pair $\langle L,K\rangle$. In the theory of topological function spaces the Mackey topology $\tau(E, E_n^{\sim})$ on a function space E is of importance (see [8, 7, 14]). It is well known that $\tau(E, E_n^{\sim})$ is the finest Hausdorff locally convex-solid topology on E with the Lebesgue property.

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

Marian Nowak: Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland; M.Nowak@wmie.uz.zgora.pl

In this paper we consider the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ on a vectorvalued function space E(X) whenever E is an ideal of L° (over a σ -finite measure space), X is a Banach space and $E(X)_n^{\sim}$ stand for the order continuous dual of E(X). In Section 2 we examine some properties of solid sets in the order continuous dual $E(X)_n^{\sim}$ of E(X). We examine the properties of $\tau(E(X), E(X)_n^{\sim})$ in case it is locally solid. In Section 3 we show that $\tau(E(X), E(X)_n^{\sim})$ is the finest Hausdorff locally convex-solid topology on E(X) with the Lebesgue property (see Theorem 3.2). We obtain that the space $(E(X), \tau(E(X), E(X)_n))$ is complete and sequentially barreled whenever E is perfect (see Theorem 3.3 and Theorem 3.5). As an application, we obtain that $E(X)_n^{\sim}$ is $\sigma(E(X)_n^{\sim}, E(X))$ -sequentially complete (see Theorem 3.6). In Section 4 we consider the Mackey topology $\tau(L^{\Phi}(X), L^{\Phi}(X)_n)$ on Orlicz-Bochner spaces $L^{\Phi}(X)$ (Φ is not necessarily convex). It is shown that the space $(L^{\Phi}(X), \tau(L^{\Phi}(X), L^{\Phi}(X)))$ is complete if and only if L^{Φ} is perfect (see Theorem 4.4). In particular, we obtain that $\tau(L^{\infty}(X), L^{\infty}(X)_n)$ is a mixed topology (see Theorem 4.5).

First we establish terminology concerning function spaces (see [2, 10, 27]). Let (Ω, Σ, μ) be a complete σ -finite measure space. Let L^0 denote the space of μ -equivalence classes of all Σ -measurable real valued functions defined and finite a.e. on Ω . For a subset M of L^0 by supp M we denote the support of M, i.e., the smallest set in Σ containing (a.e.) the supports of all $u \in M$ (see [10, Chapter 1.6]). Let χ_A stand for the characteristic function of a set A, and let \mathbb{N} and \mathbb{R} denote the sets of all natural and real numbers.

Let E be an ideal of L^0 with $\operatorname{supp} E = \Omega$, and let E' stand for the Köthe dual of E, i.e., $E' = \{v \in L^0 : \int_{\Omega} |u(\omega)v(\omega)| \, d\mu < \infty \text{ for all } u \in E\}$. Throughout the paper we assume that $\operatorname{supp} E' = \Omega$. Let E^{\sim} , E_n^{\sim} and E_s^{\sim} stand for the order dual, the order continuous dual and the singular dual of E, respectively. Then E_n^{\sim} separates points of E and it can be identified with E'through the mapping: $E' \ni v \mapsto \varphi_v \in E_n^{\sim}$, where $\varphi_v(u) = \int_{\Omega} u(\omega)v(\omega) \, d\mu$ for all $u \in E$. E is said to be *perfect* whenever the natural embedding from Einto $(E_n^{\sim})_n^{\sim}$ is onto, i.e., E'' = E.

Now we collect notation along with some basic facts concerning vectorvalued function spaces E(X) and locally solid topologies on E(X) as set out in [3-5], [9] and [19-21].

Let $(X, \|\cdot\|_X)$ be a real Banach space, and let S_X and B_X denote the unit sphere and the unit ball in X. Let X^* stand for the Banach dual of X. By L^0 we will denote the set of μ -equivalence classes of strongly Σ -measurable functions $f: \Omega \to X$. For $f \in L^0(X)$ let $\tilde{f}(\omega) = \|f(\omega)\|_X$ for $\omega \in \Omega$. Let

$$E(X) = \{ f \in L^0(X) : f \in E \}.$$

A subset H of E(X) is said to be *solid* whenever $\tilde{f}_1 \leq \tilde{f}_2$ and $f_1 \in E(X)$, $f_2 \in H$ imply $f_1 \in H$. A linear topology τ on E(X) is said to be *locally solid* if it has a local base at 0 consisting of solid sets. A linear topology on E(X) that is at the same time locally solid and locally convex will be called a *locally convex-solid topology* on E(X). A pseudonorm ρ on E(X) is called *solid* if $\rho(f_1) \leq \rho(f_2)$ whenever $f_1, f_2 \in E(X)$ and $\tilde{f}_1 \leq \tilde{f}_2$. It is known that a linear topology τ on E(X) is locally solid (resp. locally convex-solid) if and only if it is generated by some family of solid pseudonorms (resp. solid seminorms) defined on E(X) (see [9, Theorems 2.2 and 2.4]).

Recall that a locally solid topology τ on E(X) is said to be a *Lebesgue* topology whenever for a net (f_{α}) in E(X), $\tilde{f}_{\alpha} \xrightarrow{(0)} 0$ in E implies $f_{\alpha} \xrightarrow{\tau} 0$ (see [9, Definition 2.2]).

In the case when E is provided with a locally solid topology (resp. locally convex-solid topology) ξ one can topologize E(X) as follows. Let $\{p_t : t \in T\}$ be a family of Riesz pseudonorms (resp. Riesz seminorms) on E that generates ξ . By putting

$$\overline{p}_t(f) := p_t(\tilde{f}) \text{ for } f \in E(X) \quad (t \in T)$$

we obtain a family $\{\overline{p}_t : t \in T\}$ of solid pseudonorms (resp. solid seminorms) on E(X) that defines a locally solid (resp. locally convex-solid) topology $\overline{\xi}$ on E(X) (called the *topology associated* with ξ).

Now we recall "vector valued analogues" of E^{\sim} , E_n^{\sim} and E_s^{\sim} as set out in [5, 20].

For a linear functional F on E(X) let us set

$$|F|(f) = \sup \{ |F(h)| : h \in E(X), \tilde{h} \le \tilde{f} \} \text{ for all } f \in E(X).$$

Then the set

$$E(X)^{\sim} = \{ F \in E(X)^{\#} : |F|(f) < \infty \text{ for all } f \in E(X) \}.$$

will be called the *order dual* of E(X) (here $E(X)^{\#}$ denotes the algebraic dual of E(X)) (see [5, §§3, 18]).

It is well known that the Mackey topology $\tau(E, E^{\sim})$ is locally solid (see [1]). Moreover, one can show that the Mackey topology $\tau(E(X), E(X)^{\sim})$ is locally solid and $\tau(E(X), E(X)^{\sim}) = \overline{\tau(E, E^{\sim})}$ (see [21, Theorem 3.3]).

Making use of the concept of |F| we can define in a natural way a positive linear functional φ_F on E. Let $F \in E(X)^{\sim}$ and $x_0 \in S_X$ be fixed. For $u \in E^+$ let us set

$$\varphi_F(u) := |F|(u \otimes x_0) = \sup \{|F(h)|: h \in E(X), \tilde{h} \le u\},\$$

where $(u \otimes x_0)(\omega) := u(\omega)x_0$ for $\omega \in \Omega$. Clearly $|F|(f) = \varphi_F(\tilde{f})$ for all $f \in E(X)$. Then $\varphi_F : E^+ \to \mathbb{R}^+$ is an additive mapping and φ_F has a unique positive extension to a linear mapping from E to \mathbb{R} (denoted by φ_F again) and given by

$$\varphi_F(u) := \varphi_F(u^+) - \varphi_F(u^-) \text{ for all } u \in E$$

(see [5, Lemma 7], [2, Lemma 3.1]).

Now we are ready to consider the concept of solidness in $E(X)^{\sim}$. For $F_1, F_2 \in E(X)^{\sim}$ we will write $|F_1| \leq |F_2|$ whenever $|F_1|(f) \leq |F_2|(f)$ for all $f \in E(X)$. A subset A of $E(X)^{\sim}$ is said to be *solid* whenever $|F_1| \leq |F_2|$ with $F_1 \in E(X)^{\sim}$ and $F_2 \in A$ imply $F_1 \in A$. A linear subspace I of $E(X)^{\sim}$ will be called an *ideal* of $E(X)^{\sim}$ whenever I is solid. It is known that $(E(X), \tau)^*$ is an ideal of $E(X)^{\sim}$ whenever τ is a locally solid topology on E(X) (see [19, Theorem 3.2]).

Every subset A of $E(X)^{\sim}$ is contained in the smallest (with respect to inclusion) solid set called the *solid hull* of A and denoted by S(A). One can note that $S(A) = \{F \in E(X)^{\sim} : |F| \leq |G| \text{ for some } G \in A \}.$

Recall that a functional $F \in E(X)^{\sim}$ is said to be *order continuous* whenever for a net (f_{α}) in E(X), $\tilde{f}_{\alpha} \stackrel{(0)}{\longrightarrow} 0$ in E implies $F(f_{\alpha}) \to 0$. The set $E(X)_{n}^{\sim}$ consisting of all order continuous linear functionals on E(X) is called the *order continuous dual* of E(X). $E(X)_{n}^{\sim}$ is an ideal of $E(X)^{\sim}$ (see [19]).

A functional $F \in E(X)^{\sim}$ is said to be *singular* if there is an ideal B of E with supp $B = \Omega$ and such that F(f) = 0 for all $f \in E(X)$ with $\tilde{f} \in B$. The set consisting of all singular functionals on E(X) will be denoted by $E(X)_s^{\sim}$ and called the *singular dual* of E(X) (see [6, 18]). $E(X)_s^{\sim}$ is an ideal of $E(X)^{\sim}$ (see [19]).

Let $L^{0}(X^{*}, X)$ be the set of weak*-equivalence classes of all weak*-measurable functions $g : \Omega \to X^{*}$. One can define the so called *abstract norm* $\vartheta : L^{0}(X^{*}, X) \to L^{0}$ by $\vartheta(g) = \sup\{|g_{x}| : x \in B_{X}\}$, where $g_{x}(\omega) = g(\omega)(x)$ for $\omega \in \Omega$ and $x \in X$. One can show that $\vartheta(\lambda g) = |\lambda| \vartheta(g)$ and $\vartheta(g_{1} + g_{2}) \leq \vartheta(g_{1}) + \vartheta(g_{2})$ for $g, g_{1}, g_{2} \in L^{0}(X^{*}, X)$ and $\lambda \in \mathbb{R}$. Then for $f \in L^{0}(X)$ and $g \in L^{0}(X^{*}, X)$ the function $\langle f, g \rangle : \Omega \to \mathbb{R}$ defined by $\langle f, g \rangle(\omega) := \langle f(\omega), g(\omega) \rangle$ is measurable, and $|\langle f, g \rangle| \leq f \vartheta(g)$. Moreover, $\vartheta(g) = \tilde{g}$ for $g \in L^{0}(X^{*})$.

Let

$$E'(X^*, X) = \{ g \in L^0(X^*, X) : \vartheta(g) \in E' \}.$$

Due to A. V. Bukhvalov (see [4, Theorem 4.1]) $E(X)_n^{\sim}$ can be identified with $E'(X^*, X)$ through the mapping $E'(X^*, X) \ni g \mapsto F_g \in E(X)_n^{\sim}$, where

$$F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle \,\mathrm{d}\mu \quad \text{for all } f \in E(X)$$
(1.1)

and moreover,

$$|F_g|(f) = \int_{\Omega} \tilde{f}(\omega)\vartheta(g)(\omega) \,\mathrm{d}\mu \quad \text{for all } f \in E(X).$$

It is known (see [19, Corollary 2.5]) that for $g_1, g_2 \in E'(X^*, X)$

$$|F_{g_1}| \le |F_{g_2}| \quad \text{if and only if} \quad \vartheta(g_1) \le \vartheta(g_2). \tag{1.2}$$

Due to A. V. Bukhvalov and G.Y. Lozanowskii (see [5, §3, Theorem 2]) the following Yosida-Hewitt type decomposition holds

$$E(X)^{\sim} = E(X)_n^{\sim} \oplus E(X)_s^{\sim}$$
(1.3)

and moreover, if $F = F_g + F_s$, where $g \in E'(X^*, X)$ and $F_s \in E(X)_s^{\sim}$, then $\varphi_F = \varphi_{F_g} + \varphi_{F_s}$, where $\varphi_{F_g}(u) = \int_{\Omega} u(\omega)\vartheta(g)(\omega) \,\mathrm{d}\mu$ for $u \in E$ and $\varphi_{F_s} \in E_s^{\sim}$.

Proposition 1.1. Let E be an ideal of L° . Then the following statements are equivalent:

- (i) $E(X)^{\sim} = E(X)_{n}^{\sim}$
- (ii) $E(X)_s^{\sim} = \{0\}$
- (iii) $E_s^{\sim} = \{0\}$
- (iv) $E^{\sim} = E_n^{\sim}$.

Proof. (i) \iff (ii): It follows from (1.3).

(iii) \iff (iv): This is obvious, because $E^{\sim} = E_n^{\sim} \oplus E_s^{\sim}$.

(ii) \Longrightarrow (iii): Assume that $E(X)_s^{\sim} = \{0\}$ and let $\varphi \in E_s^{\sim}$. Then there is an ideal B of E with supp $B = \Omega$ and such that $\varphi(u) = 0$ for all $u \in B$. Let $x_0 \in S_X$ and let $x_0^* \in S_{X^*}$ be such that $x_0^*(x_0) = 1$. Define a linear functional F_{φ} on E(X) by setting $F_{\varphi}(f) = \varphi(x_0^* \circ f)$ for $f \in E(X)$. To show that $F_{\varphi} \in E(X)^{\sim}$, let $u \in E^+$. Then for $f \in E(X)$ with $\tilde{f} \leq u$ we have $|x_0^* \circ f| \leq \tilde{f}$, so

$$\sup \{ |F_{\varphi}(f)| : f \in E(X), \ \hat{f} \le u \} = \sup \{ |\varphi(x_0^* \circ f)| : f \in E(X), \ \hat{f} \le u \} \\ \le \sup \{ |\varphi(w)| : w \in E, \ |w| \le u \} < \infty.$$

It is seen that $F_{\varphi}(f) = 0$ for $f \in E(X)$ with $\tilde{f} \in B$, because $x_0^* \circ f \in B$. Hence $F_{\varphi} \in E(X)_s^{\sim} = \{0\}$, so $F_{\varphi} = 0$. Then for $u \in E$, we get $\varphi(u) = \varphi(x_0^*(u \otimes x_0)) = F_{\varphi}(u \otimes x_0) = 0$. Hence $\varphi = 0$, as desired.

(iii) \implies (ii): Assume that $E_s^{\sim} = \{0\}$ and let $F \in E(X)_s^{\sim}$. Then $\varphi_F \in E_s^{\sim} = \{0\}$ (see 1.3), so F = 0.

2. Solid sets in the order continuous dual

In this section we shall show that the convex hull (conv A) of a solid subset A of $E(X)_n^{\sim}$ is also solid in $E(X)_n^{\sim}$. For this purpose we will need the following two lemmas.

Lemma 2.1. Let $g \in L^0(X^*, X)$ and $g_i \in L^0(X^*, X)$ for n = 1, 2, ..., n, and assume that $\vartheta(g) \leq \vartheta(\sum_{i=1}^n g_i)$. Then there exist $g'_i \in L^0(X^*, X)$ for i = 1, 2, ..., n such that $g = \sum_{i=1}^n g'_i$ and $\vartheta(g'_i) \leq \vartheta(g_i)$ for i = 1, 2, ..., n. **Proof.** By using induction it is enough to establish this result for n = 2. For i = 1, 2 let us put

$$u_i(\omega) = \begin{cases} \frac{\vartheta(g_i)(\omega)}{\vartheta(g_1)(\omega) + \vartheta(g_2)(\omega)} & \text{if } \vartheta(g_1)(\omega) + \vartheta(g_2)(\omega) > 0, \\ 0 & \text{if } \vartheta(g_1)(\omega) + \vartheta(g_2)(\omega) = 0. \end{cases}$$

It is seen that u_i are μ -measurable, and let $g'_i = u_i g$ for i = 1, 2. Then $g'_1 + g'_2 = u_1 g + u_2 g = g$ and since $\vartheta(g_1 + g_2) \le \vartheta(g_1) + \vartheta(g_2)$ for i = 1, 2 we have

$$\begin{split} \vartheta(g'_i) &= \sup \left\{ \left| (u_i g)_x \right| : \ x \in B_X \right\} \\ &= \sup \left\{ u_i |g_x| : \ x \in B_X \right\} \\ &\leq u_i \sup \left\{ \left| g_x \right| : \ x \in B_X \right\} = u_i \vartheta(g) \\ &\leq u_i \vartheta(g_1 + g_2) \\ &\leq u_i \left(\vartheta(g_1) + \vartheta(g_2) \right) = \vartheta(g_i). \end{split}$$

Thus the proof is complete.

Lemma 2.2. Let $F \in E(X)_n^{\sim}$ and $F_i \in E(X)_n^{\sim}$ for $i = 1, 2, \ldots, n$, and assume that $|F| \leq |\sum_{i=1}^n F_i|$. Then there exist $F'_i \in E(X)_n^{\sim}$ for $i = 1, 2, \ldots, n$ such that $F = \sum_{i=1}^n F'_i$ and $|F'_i| \leq |F_i|$ for $i = 1, 2, \ldots, n$.

Proof. In view of (1.1) there exist $g \in E'(X^*, X)$ and $g_i \in E'(X^*, X)$ for $i = 1, 2, \ldots, n$ such that $F = F_g$ and $F_i = F_{g_i}$ for $i = 1, 2, \ldots, n$. Then $|F_g| \leq |\sum_{i=1}^n F_{g_i}| = |F_{\sum_{i=1}^n g_i}|$, so $\vartheta(g) \leq \vartheta(\sum_{i=1}^n g_i)$ by (1.2). Then in view of Lemma 2.1 there exist $g'_i \in L^0(X^*, X)$ for $i = 1, 2, \ldots, n$ such that $g = \sum_{i=1}^n g'_i$ and $\vartheta(g'_i) \leq \vartheta(g_i)$. Then $g'_i \in E'(X^*, X)$ for $i = 1, 2, \ldots, n$ and let $F'_i = F_{g'_i}$ for $i = 1, 2, \ldots, n$. Then $F = F_g = F_{\sum_{i=1}^n g'_i} = \sum_{i=1}^n F_{g'_i} = \sum_{i=1}^n F'_i$ and $|F'_i| = |F_{g'_i}| \leq |F_{g_i}| = |F_i|$ for $i = 1, 2, \ldots, n$.

Now we are ready to state our desired result.

Proposition 2.3. Let A be a solid subset of $E(X)_n^{\sim}$. Then conv A is also a solid set in $E(X)_n^{\sim}$.

Proof. Assume that $|F_0| \leq |F|$ where $F_0 \in E(X)_n^{\sim}$ and $F \in \operatorname{conv} A$. Then there exist $F_i \in A$ and $\alpha_i \geq 0$ for $i = 1, 2, \ldots, n$ with $\sum_{i=1}^n \alpha_i = 1$ such that $F = \sum_{i=1}^n \alpha_i F_i$. Hence by Lemma 2.2 there exist $F'_i \in E(X)_n^{\sim}$ for $i = 1, 2, \ldots, n$ such that $|F'_i| \leq |\alpha_i F_i| = \alpha_i |F_i|$ for $i = 1, 2, \ldots, n$ and $F_0 = \sum_{i=1}^n F'_i$. Putting $G_i = \alpha_i^{-1} F'_i$ we get $|G_i| \leq |F_i|$ for $i = 1, 2, \ldots, n$, so $G_i \in A$ for $i = 1, 2, \ldots, n$. Hence $F_0 = \sum_{i=1}^n \alpha_i G_i \in \operatorname{conv} A$, and this means that $\operatorname{conv} A$ is solid in $E(X)_n^{\sim}$.

3. Mackey topologies on vector-valued functions spaces

One can observe that $(E(X), \tau)^* \subset E(X)_n^\sim$ whenever τ is a Lebesgue topology on E(X). Moreover, it is known that a locally convex-solid topology τ on E(X) has the Lebesgue property whenever $(E(X), \tau)^* \subset E(X)_n^\sim$ (see [20, Theorem 2.4]). In [20, Theorem 3.4] it is shown that if an ideal E is perfect and a Banach space X is reflexive, then the Mackey topology $\tau(E(X), E(X)_n^\sim)$ is locally solid and it is the finest Hausdorff locally convex-solid topology on E(X) with the Lebesgue property.

In this section we extend this result to the setting whenever the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is locally solid. This property is characterized by the following result:

Theorem 3.1. Let E be an ideal of L° , and let X be a Banach space. Then the following statements are equivalent:

- (i) $\tau(E(X), E(X)_n^{\sim})$ is locally solid.
- (ii) Every absolutely convex σ(E(X)_n[~], E(X))-compact subset of E(X)_n[~] is contained in a solid absolutely convex σ(E(X)_n[~], E(X))-compact subset of E(X)_n[~].

Proof. It is enough to repeat the reasoning of the proof of [14, Lemma 2.1] and use the fact that the polar sets of subsets of E(X) and $E(X)_n^{\sim}$ with respect to the dual pair $\langle E(X), E(X)_n^{\sim} \rangle$ are solid (see [19, Theorem 3.3]).

Remark. In Section 4 we note that for $X = l^1$ the Mackey topology $\tau(L^{\infty}(X), L^{\infty}(X)_n^{\sim})$ is not locally solid.

Now we are in position to prove our main result.

Theorem 3.2. Let E be an ideal of L^0 and X be a Banach space. Assume that the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is locally solid. Then $\tau(E(X), E(X)_n^{\sim})$ is the finest locally convex-solid on E(X) with the Lebesgue property and

$$\tau(E(X), E(X)_n^{\sim}) = \overline{\tau(E, E_n^{\sim})}$$

Proof. We shall show that

$$\tau(E(X), E(X)_n^{\sim}) = \overline{\tau(E, E_n^{\sim})}.$$

Indeed, assume that $\tau(E, E_n^{\sim})$ is generated by a family $\{p_t : t \in T\}$ of Riesz seminorms on E. In view of [9, Theorem 5.7] $\overline{\tau(E, E_n^{\sim})}$ is the finest locally convex Hausdorff Lebesgue topology on E(X). It follows that $\tau(E(X), E(X)_n^{\sim}) \subset \overline{\tau(E, E_n^{\sim})}$.

To prove that $\overline{\tau(E, E_n^{\sim})} \subset \tau(E(X), E(X)_n^{\sim})$ it is enough to show that $(E(X), \overline{\tau(E, E_n^{\sim})})^* = E(X)_n^{\sim}$. Since $\overline{\tau(E, E_n^{\sim})}$ is a Lebesgue topology, it is

enough to prove that $E(X)_n^{\sim} \subset (E(X), \overline{\tau(E, E_n^{\sim})})^*$. Indeed, let $F \in E(X)_n^{\sim}$, i.e., $F(f) = F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu$ for some $g \in E'(X^*, X)$ and all $f \in E(X)$. Since $\varphi_{\vartheta(g)} \in E_n^{\sim} = (E, \tau(E, E_n^{\sim}))^*$ there exist c > 0 and $t_i \in T$ (i = 1, 2, ..., n) such that for $f \in E(X)$

$$|F(f)| \le \int_{\Omega} \tilde{f}(\omega)\vartheta(g)(\omega) \,\mathrm{d}\mu = \varphi_{\vartheta(g)}(\tilde{f}) \le c \max_{1\le i\le n} p_{t_i}(\tilde{f}) = c \max_{1\le i\le n} \overline{p_{t_i}}(f_i).$$

This means that F is $\overline{\tau(E, E_n^{\sim})}$ -continuous, as desired.

As a consequence of Theorem 3.2 and [20, Theorem 2.6] we get the following result.

Theorem 3.3. Let E be a perfect ideal of L^0 , and let X be a Banach space. Assume that the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is locally solid. Then the space $(E(X), \tau(E(X), E(X)_n^{\sim}))$ is complete.

The topological dual of $(E(X), \tau(E(X), E(X)_n^{\sim}))$ is characterized by the next theorem.

Theorem 3.4. Let E be an ideal of L^0 , and let X be a Banach space. Assume that the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is locally solid. Then the following statements are equivalent:

- (i) F is order continuous, i.e., $F \in E(X)_n^{\sim}$.
- (ii) F is sequentially order continuous (i.e., $F(f_n) \to 0$ whenever $\tilde{f}_n \xrightarrow{(0)} 0$ in E for a sequence (f_n) in E(X)).
- (iii) F is $\tau(E(X), E(X)_n^{\sim})$ -continuous.
- (iv) F is sequentially $\tau(E(X), E(X)_n^{\sim})$ -continuous.

Proof. (i) \Leftrightarrow (ii): This assertion follows from [19, Theorem 2.3].

(i) \Leftrightarrow (iii) and (iii) \Rightarrow (iv) are obvious.

(iv) \Rightarrow (ii): Assume that F is sequentially $\tau(E(X), E(X)_n^{\sim})$ -continuous, and let $\tilde{f}_n \xrightarrow{(0)} 0$ in E for a sequence (f_n) in E(X). Then $f_n \to 0$ for $\tau(E(X), E(X)_n^{\sim})$ because $\tau(E(X), E(X)_n^{\sim})$ is a Lebesgue topology. Hence $F(f_n) \to 0$, as desired.

Recall that a Hausdorff locally convex space (L,ξ) is said to be *sequentially* barreled whenever every $\sigma(L_{\xi}^*, L)$ -convergent to 0 sequence in L_{ξ}^* is equicontinuous (see [25]).

Theorem 3.5. Let E be a perfect ideal of L° , and let X be a Banach space. Assume that the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is locally solid. Then the space $(E(X), \tau(E(X), E(X)_n^{\sim}))$ is sequentially barreled. **Proof.** In view of Theorem 3.4 we have

$$(E(X), \tau(E(X), E(X)_n^{\sim}))^* = (E(X), \tau(E(X), E(X)_n^{\sim}))^+ = E(X)_n^{\sim}$$

(here $(E(X), \tau(E(X), E(X)_n^{\sim}))^+$ denotes the sequential topological dual of $(E(X), \tau(E(X), E(X)_n^{\sim}))$. Since the space $(E(X), \tau(E(X), E(X)_n^{\sim}))$ is complete (see Theorem 3.3), by [25, Proposition 4.3] the space $(E(X), \tau(E(X), E(X)_n^{\sim}))$ is sequentially barreled.

Note that if $(E, \|\cdot\|_E)$ is a Banach function space with the norm $\|\cdot\|_E$ satisfying the σ -Fatou property (i.e., $0 \le u_n \uparrow u$ in E implies $\|u_n\|_E \uparrow \|u\|_E$), then the space $(E(X), \tau(E(X), E(X)_n))$ is barreled if and only if $\|\cdot\|_E$ is order continuous (see [21, Corollary 3.9]).

It is well known that the space E_n^{\sim} is $\sigma(E_n^{\sim}, E)$ -sequentially complete (see [2, Theorem 20.23], [10, Corollary 10.3.1]). Now, by making use of Theorem 3.5, Theorem 3.4 and [25, Proposition 4.4] we obtain the vector-valued version of this result.

Theorem 3.6. Let E be a perfect ideal of L° , and let X be a Banach space. Assume that the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is locally solid. Then the space $E(X)_n^{\sim}$ is $\sigma(E(X)_n^{\sim}, E(X))$ -sequentially complete.

As an application of Theorem 3.6 and (1.1) we get immediately the Hahn-Vitali-Saks type theorem for sequences in $E(X)_n^{\sim}$:

Corollary 3.7. Let E be a perfect ideal of L° , and let X be a Banach space. Assume that the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is locally solid. Let (g_n) be a sequence in $E'(X^*, X)$ such that for each $f \in E(X)$, $\lim_n \int_{\Omega} \langle f(\omega), g_n(\omega) \rangle d\mu$ exists. Then there is a $g \in E'(X^*, X)$ such that

$$\lim_{n} \int_{\Omega} \langle f(\omega), g_n(\omega) \rangle \, \mathrm{d}\mu = \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, \mathrm{d}\mu \quad \text{for every } f \in E(X).$$

4. Mackey topologies on Orlicz-Bochner spaces

In this section we examine the Mackey topology $\tau(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim})$ on Orlicz-Bochner spaces $L^{\Phi}(X)$ whenever Φ is an Orlicz function (not necessarily convex) and X is a general Banach space. Throughout this section we will assume that the measure space (Ω, Σ, μ) is atomless.

First we establish notation and basis results concerning Orlicz spaces (see [13, 24] for more details). By an *Orlicz function* we mean here a map Φ : $[0, \infty) \rightarrow [0, \infty)$ that is non-decreasing left continuous, continuous at 0, vanishing only at 0 and $\lim_{t\to\infty} \inf(\Phi(t)/t) > 0$. Let Φ^* stand for the convex Orlicz function complementary to Φ in the sense of Young. Then the function $\overline{\Phi}(t) = (\Phi^*)^*(t)$ for $t \ge 0$ is called a *convex minorant* of Φ , because it is the largest convex Orlicz function that is smaller than Φ on $[0, \infty)$.

The Orlicz space L^{Φ} can be equipped with a complete topology τ_{Φ} of the Riesz *F*-norm $||u||_{\Phi} := \inf\{\lambda > 0 : \int_{\Omega} \Phi(|u(\omega)|/\lambda) \, \mathrm{d}\mu \leq \lambda\}$. It is known that $(L^{\Phi})' = L^{\Phi^*}$ (see [11]). Clearly L^{Φ} is perfect if and only if $L^{\Phi} = L^{\overline{\Phi}}$ (i.e., Φ is equivalent to some convex Orlicz function). It is seen that $(L^{\overline{\Phi}})' = L^{\Phi^*}$ because $\overline{\Phi}^* = \Phi^*$.

The Orlicz-Bochner space $L^{\Phi}(X)$ (= { $f \in L^{0}(X) : \tilde{f} \in L^{\Phi}$ }) can be equipped with the complete topology $\tau_{\Phi}(X)$ of the solid *F*-norm $||f||_{L^{\Phi}(X)} :=$ $||\tilde{f}||_{\Phi}$ for $f \in L^{\Phi}(X)$ (i.e., $\tau_{\Phi}(X) = \overline{\tau_{\Phi}}$).

For $\varepsilon > 0$ let $V_{\Phi}(\varepsilon) = \{f \in L^{\Phi}(X) : \int_{\Omega} \Phi(\tilde{f}(\omega)) d\mu \leq \varepsilon\}$. Then the family of all sets of the form:

$$\bigcup_{n=1}^{\infty} \left(\sum_{i=1}^{n} V_{\Phi}(\varepsilon_i) \right),$$

where (ε_n) is a sequence of positive numbers, forms a local base at 0 (consisting of solid subsets of $L^{\Phi}(X)$) for a linear topology $\tau_{\Phi}^{\wedge}(X)$ on $L^{\Phi}(X)$, called the *modular topology* (see [9]).

In particular, for $X = \mathbb{R}$ we will write τ_{Φ}^{\wedge} instead of $\tau_{\Phi}^{\wedge}(\mathbb{R})$. The basic properties of the modular topology τ_{Φ}^{\wedge} are included in the following theorem (see [15, Theorem 1.1], [17, Theorems 2.5 and 3.2], [18, Theorem 2.2]):

Theorem 4.1. Let Φ be an Orlicz function. Then:

- (i) $\tau_{\Phi}^{\wedge} = \tau_{\Phi}$ holds if and only if Φ satisfies the Δ_2 -condition.
- (ii) τ_{Φ}^{\wedge} is the finest Lebesgue topology on L^{Φ} .
- (iii) The Mackey topology $\tau(L^{\Phi}, L^{\Phi^*})$ is the finest of all locally convex topologies on L^{Φ} that are weaker than τ_{Φ}^{\wedge} . Moreover, $\tau(L^{\Phi}, L^{\Phi^*}) = \tau_{\Phi}^{\wedge}$ whenever Φ is convex.
- (iv) $\tau(L^{\Phi}, L^{\Phi^*})$ coincides with the restriction of the Mackey topology $\tau(L^{\overline{\Phi}}, L^{\Phi^*})$ on L^{Φ} , i.e., $\tau(L^{\Phi}, L^{\Phi^*}) = \tau(L^{\overline{\Phi}}, L^{\Phi^*})|_{L^{\Phi}}$.
- (v) The completion of $(L^{\Phi}, \tau(L^{\Phi}, L^{\Phi^*}))$ equals $(L^{\overline{\Phi}}, \tau(L^{\overline{\Phi}}, L^{\Phi^*}))$.

Now we pass on to Orlicz-Bochner spaces. Then $L^{\Phi}(X)_n^{\sim} = \{F_g : g \in L^{\Phi^*}(X^*, X)\}$ and we can write $\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X))$ instead of $\tau(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim})$.

Theorem 4.2. Let Φ be an Orlicz function and X be a Banach space. Assume that the Mackey topology $\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X))$ is locally solid. Then:

- (i) $\tau_{\Phi}^{\wedge}(X)$ is the finest Lebesgue topology on $L^{\Phi}(X)$.
- (ii) $\tau_{\Phi}^{\wedge}(X) = \overline{\tau_{\Phi}^{\wedge}}.$
- (iii) $(L^{\Phi}(X), \tau_{\Phi}^{\wedge}(X))^* = L^{\Phi}(X)_n^{\sim}.$

Proof. (i): The assertion follows from [9, Theorem 6.3].

(ii): Since τ_{Φ}^{\wedge} is the finest Lebesgue topology on L^{Φ} (see Theorem 4.1(ii)), by making use of [9, Theorem 5.7] $\overline{\tau_{\Phi}^{\wedge}}$ is the finest Lebesgue topology on $L^{\Phi}(X)$. Hence, in view of (i) $\tau_{\Phi}^{\wedge}(X) = \overline{\tau_{\Phi}^{\wedge}}$ as desired.

(iii): In view of (i) we have that $(L^{\Phi}(X), \tau_{\Phi}^{\wedge}(X))^* \subset L^{\Phi}(X)_n^{\sim}$. On the other hand, by making use of Theorem 3.2 and Theorem 4.1(iii) we get

$$\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)) \,=\, \overline{\tau(L^{\Phi}, L^{\Phi^*})} \,\subset\, \overline{\tau_{\Phi}^{\wedge}} \,=\, \tau_{\Phi}^{\wedge}(X).$$

It follows that $L^{\Phi}(X)_n^{\sim} \subset (L^{\Phi}(X), \tau_{\Phi}^{\wedge}(X))^*$, and the proof is complete.

Now we are ready to characterize the Mackey topology $\tau(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim})$.

Theorem 4.3. Let Φ be an Orlicz function and X be a Banach space. Assume that the Mackey topology $\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X))$ is locally solid. Then:

(i) $\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X))$ is the finest of all locally convex topologies on $L^{\Phi}(X)$ that are weaker than $\tau_{\Phi}^{\wedge}(X)$. In particular, $\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)) = \tau_{\Phi}^{\wedge}(X)$ whenever Φ is convex.

(ii)
$$\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)) = \tau(L^{\overline{\Phi}}(X), L^{\Phi^*}(X^*, X))|_{L^{\Phi}(X)} = \tau_{\overline{\Phi}}^{\wedge}(X)|_{L^{\Phi}(X)}.$$

Proof. (i): We know that $\tau(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim}) \subset \tau_{\Phi}^{\wedge}(X)$ (see the proof of (iii) of Theorem 4.2). Now, let η be a locally convex topology on $L^{\Phi}(X)$ that is weaker than $\tau_{\Phi}^{\wedge}(X)$. Then $(L^{\Phi}(X), \eta)^* \subset (L^{\Phi}(X), \tau_{\Phi}^{\wedge}(X))^* = L^{\Phi}(X)_n^{\sim}$ (see Theorem 4.2 (iii)). Hence $\sigma(L^{\Phi}(X), (L^{\Phi}(X), \eta)^*) \subset \sigma(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim})$ and it follows that $\eta \subset \tau(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim})$ (see [23, Proposition 3.7.14]).

Moreover, if Φ is convex, then by Theorem 4.1 (iii) we get

$$\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)) = \overline{\tau(L^{\Phi}, L^{\Phi^*})} = \overline{\tau_{\Phi}^{\wedge}} = \tau_{\Phi}^{\wedge}(X).$$

(ii): By making use of Theorem 3.2 and Theorem 4.1 (iv) we get:

$$\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)) = \overline{\tau(L^{\Phi}, L^{\Phi^*})}$$

$$= \overline{\tau(L^{\overline{\Phi}}, L^{\Phi^*})}|_{L^{\Phi}}$$

$$= \overline{\tau(L^{\overline{\Phi}}, L^{\Phi^*})}|_{L^{\Phi}(X)}$$

$$= \tau(L^{\overline{\Phi}}(X), L^{\Phi^*}(X^*, X))|_{L^{\Phi}(X)}$$

$$= \tau_{\overline{\Phi}}^{\Lambda}(X)|_{L^{\Phi}(X)}.$$

Theorem 4.4. Let Φ be an Orlicz function and X be a Banach space. Assume that the Mackey topology $\tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X))$ is locally solid. Then:

(i) The completion of $(L^{\Phi}(X), \tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)))$ equals $(L^{\overline{\Phi}}(X), \tau(L^{\overline{\Phi}}(X), L^{\Phi^*}(X^*, X)))$.

338 M. Nowak

(ii) The space $(L^{\Phi}(X), \tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)))$ is complete if and only if L^{Φ} is perfect.

Proof. (i): We know that the space $(L^{\overline{\Phi}}(X), \tau(L^{\overline{\Phi}}(X), L^{\Phi^*}(X^*, X))$ is complete, because $L^{\overline{\Phi}}$ is perfect (see Theorem 3.3). In view of Theorem 4.3 it is enough to show that $L^{\Phi}(X)$ is dense in $(L^{\overline{\Phi}}(X), \tau_{\overline{\Phi}}^{\wedge}(X))$. Indeed, let $f \in L^{\overline{\Phi}}(X)$. Then there exists a sequence (Ω_n) in Σ such that $\Omega_n \uparrow \Omega$, $\mu(\Omega_n) < \infty$ and $\chi_{\Omega_n} \in L^{\Phi}$ for $n \in \mathbb{N}$ (see [27, Theorem 86.2]). For $n \in \mathbb{N}$ let us put

$$f_n(\omega) = \begin{cases} f(\omega) & \text{if } \tilde{f}(\omega) \le n \text{ and } \omega \in \Omega_n \\ 0 & \text{elsewhere.} \end{cases}$$

Then $f_n \in L^{\Phi}(X)$ for $n \in \mathbb{N}$ and $\tilde{f}(\omega) \uparrow \tilde{f}(\omega)$ for $\omega \in \Omega$. Moreover, we have

$$\widetilde{f - f_n}(\omega) = \widetilde{f}(\omega) - \widetilde{f_n}(\omega) = \begin{cases} 0 & \text{if } \widetilde{f}(\omega) \le n \text{ and } \omega \in \Omega_n \\ \widetilde{f}(\omega) & \text{elsewhere.} \end{cases}$$

Hence $\widetilde{f-f_n} \downarrow 0$ in E, and since $\tau_{\overline{\Phi}}^{\wedge}(X)$ is a Lebesgue topology on $L^{\overline{\Phi}}(X)$ we get $f_n \to f$ for $\tau_{\overline{\Phi}}^{\wedge}(X)$, as desired.

(ii): Assume that the space $(L^{\Phi}(X), \tau(L^{\Phi}(X), L^{\Phi^*}(X^*, X)))$ is complete. Then by (i) $L^{\Phi}(X) = L^{\overline{\Phi}}(X)$, and this means that L^{Φ} is perfect. Hence in view of Theorem 3.3 the proof is complete.

Now we consider the Mackey topology $\tau(L^{\infty}(X), L^{\infty}(X)_{n}^{\sim})$. The Riesz *F*-norm

$$\|u\|_{0} = \int_{\Omega} \frac{|u(\omega)|}{1 + |u(\omega)|} w(\omega) \,\mathrm{d}\mu \qquad \text{for } u \in L^{0},$$

where $w : \Omega \to (0, \infty)$ is a Σ -measurable function with $\int_{\Omega} w(\omega) d\mu = 1$, determines the Lebesgue topology τ_0 on L^0 of the convergence in measure on subsets of finite measure. Recall the mixed topology $\gamma[\tau_{\infty}, \tau_{0|L^{\infty}}]$ (briefly γ) is the finest Hausdorff locally convex-solid topology with the Lebesgue property on L^{∞} , i.e., γ coincides with the Mackey topology $\tau(L^{\infty}, L^1)$ (see [16]).

Now we consider the mixed topology $\gamma[\tau_{\infty}(X), \tau_0(X)|_{L^{\infty}(X)}]$ (briefly γ_X) on $L^{\infty}(X)$ (here $\tau_{\infty}(X)$ stands for the topology of the norm $||f||_{L^{\infty}(X)} := ||\tilde{f}||_{\infty} =$ ess $\sup_{\omega \in \Omega} \tilde{f}(\omega)$ and $\tau_0(X)$ denotes the topology of the *F*-norm $||f||_{L^0(X)} :=$ $||\tilde{f}||_0$ on $L^0(X)$). For a sequence (ε_n) of positive numbers and r > 0 let

$$W(\varepsilon_n, r) = \bigcup_{n=1}^{\infty} \left(\sum_{i=1}^{n} (V_X(\varepsilon_i) \cap iB_X(r)) \right)$$

where $B_X(r) = \{f \in L^{\infty}(X) : ||f||_{L^{\infty}(X)} \leq r\}$ and $V_X(\varepsilon) = \{f \in L^0(X) : ||f||_{L^0(X)} \leq \varepsilon\}$. Then the family of all such $W(\varepsilon_n, r)$ forms a local base at 0 for γ_X (see [20, 26] for more details). One can show that $\gamma_X = \overline{\gamma}$ (see [20, Theorem 4.2]).

Hence, by Theorem 3.2 we get:

Theorem 4.5. Assume that the Mackey topology $\tau(L^{\infty}(X), L^{1}(X^{*}, X))$ is locally solid. Then $\tau(L^{\infty}(X), L^{1}(X^{*}, X))$ coincides with the mixed topology γ_{X} .

Remark. The Mackey topology $\tau(L^{\infty}(X), L^{1}(X^{*}, X))$ and the mixed topology γ_{X} on $L^{\infty}(X)$ are closely related to the theory of operator valued measures $m: \Sigma \to B(X, Y)$, where Y is a Banach space and B(X, Y) stands for the space of all bounded linear operators from X to Y. One can show (see [22]) that if $\tau(L^{\infty}(X), L^{1}(X^{*}, X))$ is locally solid (i.e., $\tau(L^{\infty}(X), L^{1}(X^{*}, X)) = \gamma_{X})$ then for every Banach space Y an operator valued measure $m: \Sigma \to B(X, Y)$ is countably additive in the uniform operator topology if and only if m is variationally semiregular (see [11] for more details).

On the other hand, I. Dobrakov [6, Example 7] defined a measure $m : 2^N \to B(l^1, c_0)$ which is countably additive in the uniform operator topology but it is not variationally semiregular. It follows that for $X = l^1$ the Mackey topology $\tau(L^{\infty}(X), L^1(X^*, X))$ is not locally solid.

Acknowledgement. The author wishes to thank the referees for their remarks.

References

- Amemiya, I.: On order topological spaces. In: Proceedings of the International Symposium on Linear Spaces (Jerusalem 1961). Jerusalem: Jerusalem Academic Press 1961, pp. 14 – 23.
- [2] Aliprantis, C. D. and O. Burkinshaw: *Locally Solid Riesz Spaces*. New York: Academic Press 1978.
- [3] Aliprantis, C. D. and K. C. Border: Infinite Dimensional Analysis. A hitchhiker's guide (2nd ed). Berlin: Springer 1999.
- [4] Bukhvalov, A. V.: On an analytic representation of operators with abstract norm (in Russian). Izv. Vyss. Vceb. Zaved. 11 (1975), 21 – 32.
- [5] Bukhvalov, A. V. and G.Ya. Lozanowskii: On sets closed in measure in spaces of measurable functions. Trans. Moscow Math. Soc. 2 (1978), 127 – 148.
- [6] Dobrakov, I.: On integration in Banach spaces, I. Czechoslovak Math. J. 20 (95) (1970), 511 – 536.
- [7] Duhoux, M.: Mackey topologies on Riesz spaces and weak compactness. Math. Z. 158 (1978), 199 - 209.

- [8] Fremlin, D. H.: Abstract Köthe spaces. I. Proc. Camb. Phil. Soc. 63 (1967), 653 – 660.
- [9] Feledziak, K. and M. Nowak: Locally solid topologies on vector-valued function spaces. Collect. Math. 48 (1997)(4 - 6), 487 - 511.
- [10] Kantorovitch, L. V. and A. V. Akilov: Functional Analysis (in Russian). Moscow: Nauka 1984 (3rd ed).
- [11] Lewis, P. W.: Some regularity conditions on vector measures with finite semivariation. Rev. Roumaine Math. Pures Appl. 15 (1970), 375 – 384.
- [12] Maligranda, L. and W. Wnuk: Landau type theorem for Orlicz spaces. Math. Z. 208 (1991), 57 - 64.
- [13] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Berlin: Springer 1983.
- [14] Moore, L. C. and J. C. Reber: Mackey topologies which are locally convex Riesz topologies. Duke Math. J. 39 (1972), 105 – 119.
- [15] Nowak, M.: On the modular topology on Orlicz spaces. Bull. Polish Acad. Sci. Math. 36 (1988)(9–10), 553 – 562.
- [16] Nowak, M.: On the finest Lebesgue topology on the space of essentially bounded measurable functions. Pacific J. Math. 140 (1989)(1), 155 - 161.
- [17] Nowak, M.: Orlicz lattices with modular topology I. Comment. Math. Univ. Carolinae. 30 (1989)(2), 261 – 270.
- [18] Nowak, M.: On the strongest locally convex Lebesgue topology on Orlicz spaces. Results Math. 33 (1998), 134 – 138.
- [19] Nowak, M.: Duality theory of vector valued function spaces I. Comment. Math.
 = Prace Mat. 37 (1997), 195 215.
- [20] Nowak, M.: Lebesgue topologies on vector-valued function spaces. Math. Japonica 52 (2000)(2), 171 – 182.
- [21] Nowak, M.: Strong topologies on vector-valued function spaces. Czechosl. Math. J. 50 (125) (2000), 401 – 414.
- [22] Nowak, M.: Operator-valued measures and Mackey topologies (submitted).
- [23] Robertson, A. P. and W. J. Robertson: *Topological Vector Spaces*. London: Cambridge University Press 1973 (2nd ed).
- [24] Rao, M. M. and Z. D. Ren: Theory of Orlicz Spaces. New York: Marcel Dekker 1991.
- [25] Webb, J. H.: Sequential convergence in locally convex spaces. Proc. Camb. Phil. Soc. 64 (1968), 341 – 364.
- [26] Wiweger, A.: Linear spaces with mixed topology. Studia Math. 20 (1961), 47-68.
- [27] Zaanen, A. C.: *Riesz Spaces* II. Amsterdam: North-Holland Publ. Comp. 1983.

Received 20.04.2004