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Fractal Polynomial Interpolation

M. A. Navascués

Abstract. A general procedure to define non-smooth versions of classical approxi-
mants by means of fractal interpolation functions is proposed. A complete and explicit
description in the frequency domain of the functions constructed is obtained through
their exact Fourier transforms. In particular, the generalization of the polynomial
interpolation is developed. The Lagrange basis of the space of polynomials of degree
lower or equal than N is generalized to a basis of fractal polynomials. As a conse-
quence of the process, the density of the polynomial fractal interpolation functions
with non-null scale vector in the space of continuous functions in a compact interval
is deduced. Furthermore, a method for the interpolation of real data is proposed, by
the construction of a fractal function coming from any classical approximant. The
convergence of the process when the partition is refined is proved, supposing the
convergence of the smooth interpolant.
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1. Introduction

Up to now, the interpolation and approximation of functions have been per-
formed by means of smooth functions, sometimes indefinitely differentiable.
However, the signals coming from the real world do not share the nice aspect
of those. In general, the natural phenomena recorded in a time series suggest
original functions with abrupt changes, whose derivatives possess sharp steps
or even do not exist at all. The fractal interpolation functions represent an
important advance because the interpolants considered are not necessarily dif-
ferentiable and, in some cases, they are not at any point ([5]). In words of M.
Barnsley [1]: “... (they) appear ideally suited for the approximation of natu-
rally occurring functions which display some kind of geometrical self-similarity
under magnification”.
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This paper proposes the construction of fractal interpolants which are per-
turbations of the classical polynomials. The purpose is to define non-smooth
fractal versions of conventional approximants. For that fractal functions, a com-
plete description in the frequency domain is obtained by means of their exact
Fourier transforms. This fact is particularly important as the functions of that
kind are defined implicitly in the time domain by a functional equation.

The generalization of the polynomial interpolation is also broached here,
defining bases of “fractal polynomials”. As a consequence of the process, the
density of polynomial fractal interpolation functions in the space of continu-
ous functions in a compact interval is deduced. Later on, a method for the
interpolation of real data is proposed, by means of the construction of a fractal
interpolation function coming from a classical approximant. The convergence
of the process when the partition is refined is proved, assuming the convergence
of the smooth interpolant.

2. A fractal interpolation operator

2.1. o-Fractal functions. Let {; < t; < ... < ty be real numbers, and I =
[to, tv] the closed interval that contains them. Let a set of data points {(t,, z,) €
IxR: n=0,1,2,..,N} be given. Set I,, = [t,_1,t,] and let L, : [ — I,
n € {1,2,..., N}, be contractive homeomorphisms such that

Ln(to) =tn_1, Ln(ty) =ty (1)
|Ln(c1) — Lu(co)| <ller—eco| Ve,cel (2)
for some 0 < I < 1. Let -1 < a, < 1;n =1,2,..,N, F = I X [¢,d] for
some —o0 < ¢ < d < +o0 and N continuous mappings F, : F' — R be given
satisfying:

Fo(to, 20) =2n_1, Fu(tn,rn) = 2y, (3)
[Fult, ) — Fu(ty) < |amllz—yl, te€l, z,yeR (4)

Now define functions wy,(t,z) = (Ly(t), Fu(t,z)),n =1,2,...,N.
Theorem 1 (Barnsley [1]). The iterated function system (IFS) [8] {F,w, :

n=1,2,..., N} defined above admits a unique attractor G. G is the graph of a
continuous function f: I — R which obeys f(t,) =z, forn=10,1,2,...,N.

The previous function is called a fractal interpolation function (FIF) corre-
sponding to {(L,(t), F,(¢,z))}_,.
Let G be the set of continuous functions f : [ty,ty] — [c,d] such that
f(to) = zo; f(ty) = zn. G is a complete metric space respect to the uniform

norm. Define a mapping 7' : G — G by
(TF)#) = Fo(LH (1), fo LM () Vt€[tat,ta], n=1,2,..., N,

n
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T is a contraction mapping on the metric space (G, || - ||oo):

ITf = Tglloo < [etloolf = glloos (5)

where |a| = max {|a,|; n=1,2,..., N}. Since |a|s < 1, T possesses a unique
fixed point on G, that is to say, there is f € G such that (Tf)(¢t) = f(¢) for all
t € [to,ty]. This function is the FIF corresponding to w, and it is the unique
f € G satisfying the functional equation [1]:

f@)=F,(L'®t),foL,'(t), n=1,2,...,N, t€l,=[tn 1,ts]. (6

The most widely studied fractal interpolation functions so far are defined
by the IFS
L,(t) =ant +b,
F.(t,z) = apz + ¢ (1),

(7)

where «, is called a wvertical scaling factor of the transformation w, and o =
(v, ..., ay) is the scale vector of the IFS. If ¢,(¢) is a polynomial, the FIF is
termed polynomial.

M. Barnsley proposes, in the reference [1], the generalization of a continuous
function h by means of a fractal interpolation defined by the IFS (7) with ¢, (t) =
ho L,(t) — a,b(t) where b is continuous and such that b(ty) = o, b(tny) = zn.
At first we consider here the case b = h o ¢, where c is continuous, increasing
and c(ty) = to, c(ty) = ty. For instance, the family c(t) = (e* —1)/(e* — 1),
A > 0, can be considered in the interval [0, 1].

Proposition 1. Let h: I = [a,b] — R be continuous, A :a =1ty <t < .. <
ty =b, N > 1, a € RN and such that |a|e < 1. The IFS (7), where a, =
(tn _tn—l)/(tN —to), bn = (tNtn—l —totn)/(t]\[ —to), qn(t) = hOLn(t) — anhoc(t)
and ¢ an increasing continuous function such that c(ty) = to; c(tn) = tn, defines
a FIF h®(t) such that h*(t,) = h(t,) for alln =0,1,2,..., N.

Proof. In the first place, we check the conditions of the theorem of Barnsley
for L,, F,. By definition, L,(ty) = t, 1, L,(tny) = t, and L, is a contractive
homeomorphism. Let z, = h(t,),n=0,1,...N:

Fo(to, o) = oo + gn(to)
= au T + h o Ly(ty) — anh o c(ty)

= apTp + h(tnfl — Ty = Tp-1

Fo(tn,zn) = ooy + gu(tn)
anZy +hoL,(ty) — a,hoc(ty)

anxy + h(ty) — anxy = Ty -
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F,, is uniformly Lipschitz in the second variable with constant |a|. < 1. For
G ={g € C([a,0]) : g([a,b]) C [c,d], g(a) = m0,9(b) = zn} define To, : G — G
according to

Tof(t) = Fu(Ly'(t), fo Ly (1) (t€ 1)

By Theorem 1, T, admits a unique fixed point in G, denoted by A® in the follow-
ing, continuous on I. The function h* is defined by the fixed point equation (6),
that is h*(t) = a,h® o L, '(t) + g, o L;*(¢) for all ¢ € I,,. Using the expression
of g,, one has

he(t) = h(t) + an(h* —hoc)o L (t)  (t€l,). (8)
Now, h® passes through the points (¢,,x,) as
h,a(tn) = Fn(L;I(tn), ]’La e} L;l(tn)) = Fn(tN, ha(tN)) = Fn(tN,.IN) = Ty - [ |

Definition 1. Let h € C(I), A, ¢ and « as in Proposition 1. The FIF A%,
defined in this proposition is termed «-fractal function of h with respect to A
and c (the dependence on A and ¢ will be omitted if not necessary). Define the
a-fractal operator respect to A and ¢ by

Act CU) — Cc(I)
h <— h®

i
U‘%UWZ .4 0.6 0.8 2 0.4 0.6 0.8

Figure 1: The left figure represents the graph of the function h(t) =t cos(3;)
if t # 0, h(0) = 0. The right figure shows the corresponding a-function, with
1 1 1 1 1 1 1

respect t0 A : 0 < 3 < 2 < 5 < 3 <7 <3 <3 <1, ca quadratic in the

interval [0,1] and o, = 0.2 foralln=1,...,8.

Proposition 2. Let A, ¢ and o be defined as in Proposition 1, the operator
F* = Fg, is linear and verifies the following properties:
2.1. F° = Id (identity).
2.2. 1 € 0,(F?*), where o, is the point spectrum of F* for any « fulfiling the
hypotheses.
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Proof. The continuous functions h and g give rise to h* and ¢g® such that by (8)

he(t)
9 (t) =

for all t € I,. If the first equation is multiplied by A and the second one
by u, by the uniqueness of the solution of the fixed point equation, one has
(Ah + ug)® = Ah® + pug®, A\, € R. As consequence, F°(fy) = fo, where fo is
the zero function.

Case 2.1: If « =0 € RY is chosen, by the equation (8), h®(t) = h(t) for
allt € I, F°(h) = h and F° = Id.

Case 2.2: If h is a constant function on I, h(t) = k for all ¢ € I, the
following equality is verified by (8):

h(t) + an(h* — hoc)o L *(t)
9(t) + an(g® — goc)o L, (t)

R*(t) =k + a,h®o LY (t) —ank  (t€1,).

But this equation is fulfiled by h%(t) = k£ and, by the uniqueness of the FIF,
F*(h) = h and the result is deduced. |

By the Property 2.1 of Proposition 2, every continuous function can be consid-
ered a FIF of Barnsley, with scaling factors equal to zero.

2.2. Error representation of a-fractal functions. Consider the mapping
T :JxG — G according to (a, f) = T, f with J =[0,7] x [0,7] x --- x [0,7] C
RYN;0<r<1,r fixed and [ty,ty] = I. For t € I,, = [t,_1,t,] define

Tof(t) = Fy" (L' (t), f o Ly (1) = anf o Ly (1) + 427 © Ly (2)

with ¢ (t) = f o L,(t) — anf o c(t); c(t) verifying the conditions described in
Proposition 1.

Theorem 2. The uniform distance between h and h® € C(I) verifies

2|0

[1P% = Rl < [17lloo » (9)

1 — |aoo
where |t|o = mazi<p<n{|om|}.
Proof. Let f € G be given, then for each value of ¢t € I,
Tof(t) —Tpf(t)]
= lanf o L, (t) + gm0 L, (t) — Buf o LM (8) — i o L, (1))
<lanf o Lt (t) — Buf o L (8)] + g2 o LM (t) — g2 o L' (1))
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The first term is bounded by |y, — Bu||f|leo- The second one is reduced to
lan — Bul - [foco L ()] < |a = Blell flloo, from which it folllows

1 Taf = Tpflloo < 2l = Blool| flloo - (10)

On the other hand, h“ is the fixed point of 7,, corresponding to ¢~ (t) =
ho L,(t) — anhoc(t). Then ||h® — hP||oo = ||[Tuh® — Tuh? + Toh? — Tph? || -
Applying the inequalities (5) and (10) we get

15 = 1loo < laloollh® = B ]loe + 2l = BlaoI?loc

and so

2|la = Bl
1

”ha - h/B“oo <
- |O‘|oo

12 ]oo -

Setting 3 = 0 € RY, according to Property 2.1 of Proposition 2, h° = h and
the result is deduced. |

Corollary 1. F® is a linear and continuous operator of C(I), as by (9)

2|00 1+ |0

h* oo — ||P]loe < —————||h F(h < h|lso -
[17%]le0 = llAlloc < 1_|O{|OOII oo IF*(A)]leo < 1—\0400” oo
Furthermore, by Property 2.2
1 0
1< Fef < LE
1 = |afe

The set {F*;|alo < 1} constitutes a N-parametric family of linear bounded
operators of C(I).

Proposition 3. Let A and c be given as in Proposition 1, let o™ € RY a
sequence of scale vectors such that |a™|, < 1 for allm > 1 and o™ — 0 € RN
as m — oco. Then, the sequence of operators F®" converges in norm towards
the identity.

Proof. The assertion is an immediate consequence of Theorem 2 as

2|a™| o

1— 0™

I(F" = Id)hls < [172lloo - u

2.3. Construction of non-smooth interpolants. Nowadays, almost all the
interpolants being used are smooth. Altough it is obvious that these techniques
are very useful for the representation of many phenomena, some essential fea-
tures of the considered signals are omitted by this kind of procedures. For
instance, in the reference [4], a paper of Besicovitch and Ursell proves that if
a real function is smooth, the fractal dimension of its graph is one. In this
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case, this parameter cannot be used as an index of the complexity of the signal.
The fractal techniques can represent better the function because they provide
numerical characterizations of the geometry of the represented curve, allow-
ing to compare and discriminate experimental processes. Our group has used
this procedure in order to detect significant changes in the complexity of elec-
troencephalographic signals during the execution of several cognitive tests and
in order to discriminate an attention disorder (see [12]). Other applications
can be found in the reference [3]. In this paragraph we approach the problem
of constructing non-differentiable approximation functions by means of fractal
interpolation.

From here on, we consider the continuity and differentiability of a function
in a compact interval globally or laterally depending on the position of the point
(inner or extreme) and we write, for instance, f € C!(I) considering only the
behaviour of f in the interval.

Lemma 1. If f € C'[0,1], f1.(0) # 0 and c(t) = t*, where 0 < a < 1, then foc
is not differentiable (at right) at t = 0.

Proof. Let us consider g = f o ¢. Applying the mean-value theorem

f(*) — £(0) [

1 = 1imt—>0+ 1 )

where £ € (0,t%). As f'is continuous and f’(0) # 0, it follows ¢ (0)
f1(0) limy_,g+2% " = Foo0.

The following proposition illustrates the construction of non-smooth inter-
polants, coming from classical functions (another approach is given in Section 5).

Proposition 4. Let h € C'[a,b], where b, (a) # 0 or h'_(b) # 0, be a smooth
function. For any partition of the interval I, there exists a non-differentiable
fractal interpolation function h® arbitrarily close to h.

Proof. Let A be a partition of the interval with N + 1 points (N > 1) and let
a € (—=1,1)¥ be such that a,, 0 forallm =1,--- | N.

Let us assume that A’ (tp) # 0. Without loss of generality we can assume
that I = [0,1]. Let ¢(t) = t*, where 0 < a < 1, be the function chosen to
construct h®. By Lemma 1, h o c is not differentiable at right at ¢t = 0.

Let us assume that h® is differentiable at every point of the interval I. For
t€[0,0) and any n € {1,2,--- , N}, L,(t) € I, (see (1), (7)), and we can apply
equation (8) for L,(t) obtaining

hoc(t) = h*(t) + L(h —h®) o L,(t).

O,
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As the right hand is differentiable at any point, h o ¢ would be differentiable at
right at t = 0. As a consequence, h® can not be differentiable on I. The vector
« can be chosen small enough (in norm) in order to define h* so close to h as
required (Theorem 2).

If A, (ty) = 0 but h_(tn) # 0, we can choose c(t) = 1 — (1 —t)*, where
0 < a < 1, giving a similar result for the upper extreme. |

3. a-Fractal polynomials

Let Ppla,b] be the set of polynomials of degree lower or equal than m on
I = [a,b] and Pla,b] = U,._, Pmla,b]. The set {1,,%%, ...} constitutes a basis
of Pla, b].

Definition 2. Let A, ¢ and « be given as in Proposition 1, an a-fractal polyno-
mial is an element p®(t) € C(I) such that there is polynomial p € Pla, b] with
F*(p) = p®. If p has degree m, then p® is an a-fractal polynomial of degree m.

Notation: PZ[a,b] = F*(Pnla, b)), P*a,b] = F*(Pla,b]).

By the properties described in Proposition 2, P%[a,b] is linearly spanned
by {1,t%, (t*)%,..., (t™)*} and consequently dim (P2 [a,b]) < +oo. P2[a,b] is a
closed and complete linear subspace of Cla, b].

In the following, the theorem of uniform approximation of Weierstrass is
generalized to a-fractal polynomials.

Theorem 3. Let h € Cla,b] be given. For all € > 0, any partition A of the
interval I with N+1 points (N > 1) and any function ¢ verifying the hypotheses
of Proposition 1, there exists an a-fractal polynomial p* with o # 0 € RN such
that

h(t) =p*(t) <e  (tel).

Proof. For any € > 0, the quantity § > 0 is considered. Applying the theorem
of Weierstrass [6], there is a p € Pla, b] such that

O -pOl <5 (teD). (11)

For a partition A :a =ty < t; < ... < ty = b, we choose o € RY, o # 0, such
that ||, < 1 and

2|t o €
< 12
e ple < (12)
Then, by (9), (11) and (12) it follows
€ 2|0

h(t) —p* ()] < [h(t) — p(t)] + [p(t) —p*(1)] < 5 +

—_— <e. 1
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If the function c is polynomial, p* is a polynomial FIF. As a consequence
of Theorem 3 one has

Theorem 4. The set of polynomial FIFs with non-null scale vector is dense in
the set of continuous functions Cla, b).

4. Lagrange fractal interpolation

Let A:a =1 <ty <..<ty=>bbe given. The basis of Lagrange associated
to the mesh is given by

(t—to)(t—t1) oo (t—ti)(t —tir)) ... (t—tn)
(ti—to)(ti — 1) - (s — i) (ts —tinn) - (f — tn)

Pi, n(t) =

The interpolant polynomial of Lagrange with respect to data {(t,,z,);n =
0,1,...,N} adopts the expression py(t) = Zi]\io zipin(t). We define the a-
fractal interpolant of Lagrange as

pi(t) = F*(pw) sz%N

where ¢f'y is the a-fractal polynomial of ¢; xy with respect to the partition A.
The function p$; passes through the points (¢,, z,) according to Proposition 1.

If £y represents the Lagrange operator, which assigns to a function f its
interpolant polynomial with respect to {(t,, f(tn) }2_y, then p% = F® o Ln(f).
The basis polynomials of Lagrange ¢; x are orthogonal with respect to the form

(f.g) = ZLO f(tn)g(ts) This property is inherited by ¢f as

(PN PNy = Z%N )N Z(S"ay,

where 67 is the delta of Kronecker. If p* € P%[a,b], by the linearity of the
operator F<, p* = Zﬁ\io Aipg . Furthermore, the orthogonality of ¢f y implies
the linear independence, so that {¢fy} constitutes a basis for the space Py/a, b]
of a-fractal polynomials on the partition A. The fact that P$[a, b] is finite-
dimensional allows to obtain for each h € C[a, b] a p®* such that ||h — p®*||oc =

inf{[[h — p*{|oo; p* € P a, b]} -

4.1. Bounding the interpolation error. In this section, the error of interpo-
lation is bounded in terms of the derivatives of the original function, the scaling
factors of the transformation and the Lebesgue constant of the associated par-
tition.
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Theorem 5 (Cauchy remainder for polynomial interpolation [7]). Let
f € CN|a,b] and suppose that fNTV(t) exists at each point of (a,b). Ifa <ty <

t <..<ty <b, then
F0) = pa(e) = IS 2 v,

where min (¢,tg, t1,...,tn) < & < max (t,to,t1,-..,tn). The point £ depends
upon t,tg,t1,...,ty and f.

In practice, to estimate this error it is necessary to have an expression for
the derivatives of high order and to obtain a bound for them. Another kind
of inequalities can be found in the book of Davis [7, Chapters II — IV]. The
size of the interpolation error depends on the properties of the function to be
approximated as well as the distribution of the nodes.

Definition 3. [15] A scheme of interpolation nodes
tio tn

tao To1 too

K= tzo0 T31 132 133

which is fixed a priori (independently of the functions to be approximated) is
called a node matriz.

Definition 4. [15] The Lebesgue function of K of order N is given by

An(t; K) = Z lpin ()],

and Ay (K) = ||An(t; K)|| is the Lebesgue constant of K of order N.

Theorem 6. Let h € C¥*'[a,b] be given, ||hV V|0 = Myy1, wyii(t) =
(t—to)(t —t1)...(t —tn); @ € RN such that |a|e < 1 and p% the a-fractal
polynomial of interpolation respect to A:a =1y <ty <..<ty=Db, then

My IllooAn(K).

1 =Pl < ( ),Ilwzv+1||oo+
Proof. For any ¢t € [a,b], |h(t) — p% ()] < |h(t) — pn(t)| + |pN(t) — % ()]
Theorem 5 bounds the first term. For the second, according to Theorem 2,

2|0
1- |04|oo

o 2|00
ow (8) = pfy (1)) < 20

If z, = h(t,)(n=0,1,...,N), then

e [

N N
I lloo = max| Zowisoi,zv(tﬂ < Iglealx; |zillpin ()] < |AllocAn (K)
7= 1=

and the result is deduced. [ |
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4.2. The condition of function values. The condition of function values
describes the sensitivity of the values py(t) to perturbations of the data. This
condition is, unlike the condition of the coefficients, independent of the basis
used (Lagrange, Bernstein, Chebyshev).

Let zg, x4, ..., xnx be unperturbed data and Zg, Z1, ..., Ty be perturbed data,
pn(t) = N zipin(t) and py(t) = 2N, Fipin(t). The polynomial interpo-
lation operator Ly : Cla,b] — Pyla,b] is linear and ||[Lx(h) — Ly (h)|lse <
1L ||| — Allso- The absolute condition can be characterized by ||Lx||. The
condition number of Lagrange interpolation

[£n [l
”‘CN” Sup g ||f||oo
can be estimated using the Lebesgue constant (see, e.g., [15]). Thus py =
> zip; n implies ||Ln(h)|lo < ||hlleoAn(K) and ||Ln]| < An(K). Then

N ~ 14 oo
195 — 3l = 177 0 Lar() — F 0 Loy ()] oo < 1%

AN(E)||h = A -
S T ol N (Kl |

4.3. Piecewise polynomial interpolation. An alternative to use a uniformly
defined polynomial is the approximation by means of piecewise polynomial func-
tions in [a, b]:
pg, (1) t€la,ty)
pa, () tEt,ts)
g(t) =

Ph () t € [te1, 0]

This is a method of local approximation (the data in an interval have no in-
fluence on the others). Choosing a suitable breakdown of the interval, and
choosing the degrees d, do, ..., d; appropriately, the interpolation can be well
adapted to local differences in the shape of the function f. In particular, step
discontinuities of the derivatives can be simulated.

The following theorem proves that the approximation error of the function
and its derivatives can satisfy any precision requirement, assuming that the
nodes are suitably chosen and the original function is smooth.

Theorem 7. ([15], [10]) For a function f € C%[a,b] with ||fV|e = M; on
[a,b], 1 =1,2,...,d+1, and a piecewise polynomial interpolation g with degrees
d; = d and subinterval length h, the following error estimate holds for j =
0,1,...,d:

J
99 (t) = FOO) < caph™ ™ Myyr4i
1=0

where the constants cq; can be consulted in the references [10] and [15].
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It must be borne in mind that in the case of piecewise polynomial inter-
polation, the improvement of the approximation precision is not fulfilled by
increasing the degree but the number of polynomial pieces. The degree d re-
mains constant, and h — 0 indicates that the number of subintervals, and so
the number of pieces, increases.

As a consequence of Theorem 7, the next result for fractal piecewise poly-
nomial interpolation is verified.

Theorem 8. For a function f € C*'[a,b] with ||fV| = M; on [a,b], | =
1,2,...,d+ 1, and a piecewise polynomial interpolation g with degrees d; = d
and subinterval length h, the following error estimate holds:

2|0/ oo

1f = 9%loo < €caoo h** May1 + [[fllocAa(K)

1 — ol
where cqoo 1S the constant of Theorem 7.

The proof is similar to that of Theorem 6, setting 5 = 0 in Theorem 7.

5. Interpolation of real data

The description of a procedure to build fractal interpolation functions for a set of
real data with equidistant nodes is developed here. This function is constructed
as a deformation (perturbation) of a smooth classical interpolant h. h would
represent a “long-term trend curve” and h® would add the irregular oscillations
characteristic of the “real-world” signals.

We consider here the general case proposed by M. Barnsley, where the FIF
is defined by the IFS (7) with g,(t) = ho L, (t) — a,b(t), b continuous and such
that b(to) =2y and b(tN) =IN-

Let {(tn,z,),n = 0,1,...,N} be a set of data points with equidistant
nodes and suppose N to be even. Consider the subset P = {(tom, Tom), m =
0,1,...,N/2}, and let h be a classical interpolation function (polynomial, for
instance) passing through P. From h, an IFS w,, = (L,, F,,) is defined by

L (t) = amt + by

Fo(t, ) = amx + gm(t)
form =1,2,..., N/2 in such a way that the corresponding FIF passes through
the points (tom, Tom) and ¢, (t) = h o L, (t) — ap,b(t). The intermediate data

points (odd index) will be used for the definition of o, in order the FIF to pass
through them.

If I, = [ta(m—1), tam] and ouy, is the scale factor, we impose the condition of
passing through (tom, 1, Zom 1). By (8), for ¢, = h o L, — a,;b it holds

Tom—1 = h®(tom—1) = h(tom—1) + am(h* —b) o L;ll (tom—1) -
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If the nodes are equidistant, then L_'(ty, 1) = tn ny2 and Topm 1 = h(tam—1) +
am (h® — b)(tn/2). Imposing the condition A*(tn/2) = xn/2 leads to

Tom—1 — h(tom— 1)

zn/2 — b(tny2)

If the interpolant i converges towards the original function, the numerator tends
to zero as the partition is refined and |y, | < 1 can be obtained. In any case
\oum| = CE(tom—1) with C = |zn/2 — b(tny2)|™", and E(tym—1) is the absolute
value of the interpolation error of A in ¢5,,_1. The function b must be chosen in
such a way that the denominator of «,, is large enough in order the scale factor
to be lower than 1, and always non-null. If A is piecewise linear and b is a line,
the method of Strahle [14] is obtained as a particular case.

0.3 0.4 al6 O.

Figure 2: In the left frame, the function f(t) = 3,2 ksin(6%t) is represented in
the interval I = [r/12,37/12] . At right, the polynomial p of Lagrange defined
from 7 equidistant nodes (smooth curve) along with the fractal interpolant
constructed by the method described in the paragraph 5 (rough line), with
b=pocand c(t) = (e —1)/(e* - 1).

To construct non-smooth interpolating functions one can proceed in the
following way. Let h be a classical (smooth) interpolant of the data. Choose a
nowhere differentiable function b (for instance, a Weierstrass’s function; see, e.g.,
[9], [16]) and v, non-null for all n. For the general case g, (t) = ho L, (t) —ay,b(t),
the fixed point equation (6) defining the fractal interpolation function adopts
the expression

R*(t) = h(t) + an(h* —b)o L, '(t)  (t€1,).

As h is smooth, h* cannot be differentiable at every point because if it were,
for any t € I, L,(t) € I,, and the former equation can be written as

1
b(t) = h*(t) + —(h — h*) o L,(t).
an
As a consequence, b would be differentiable at some point.
For non-smooth functions we have the following result.
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Proposition 5. For any partition of the interval, if h is not differentiable in
some subinterval 19, there exists h* arbitrarily close to h which is not differen-
tiable at some point of the interval 1.

Proof. Let h be non-differentiable at some point of I and let b be a smooth
function (a line for instance). Let a € (—1,1)" be any scale vector. The
function A® can not be differentiable in the interval I because if it were, then

h(t) = h*(t) — an(h® = b) o L' (t) (¢t € L),

and h would be differentiable in I?. |

5.1. Convergence of fractal polynomial interpolants. In some cases, the
polynomial interpolation converges towards the function as the number of nodes
increases indefinitely. The fact that Py|a, b] has a finite dimension allows the
existence of minimum distance from any continuous function f € Cla,b| to
this subspace, di = d(f, Pn|a,b]). By the theorem of Weierstrass, dj — 0 as
N — o0. In general, one has the next result.

Theorem 9. ([15]) For a function f € Cla,b] and a sequence of polynomial
interpolants {pn(f)}X—, with respect to the node matriz K, the following in-
equality holds:

If —pn(F)llo < dy(l+An(K)) (N=1,2,...).

The Lebesgue constant (which depends on the node matrix but not on f) is
a measure of the separation of the interpolation error from the minimum error
dy. Moreover:

Theorem 10 (Jackson [6]). For every Lipschitz continuous function f on
[—1, 1] with a Lispchitz constant L:

d;‘vgl.
9N + 2

Other convergence results for equidistant and non-equidistant nodes can be
consulted in the reference (see [7, Chapter IV]).

Convergence: For fractal polynomial interpolants, we consider h = py in order
to define the interpolant described at the beginning of this section. If A = py
converges towards the original signal, then o — 0 in (13) as the partition is
refined. As a consequence, if Ly (f) = f, F*o Ly(f) converges to f.
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5.2. Fourier transform of a-fractal functions. One of the objectives of the
interpolation of real functions is the knowledge about the spectral content of
the signal to be analyzed. In this paragraph, an explicit formula for the F'T' of
the FIF defined by the IFS

L,(t) = a,t + b,
Fo(t,z) = anz + ¢,(t)
with ¢,(t) = ho Ly, (t) — a,b(t), where b is continuous and such that b(ty) = x;

b(tx) = 2, is obtained. The FT of A defined on I is ho(w) = [, h*(0)e?™*“do.
By equality (8) we have

N

) =Y /I (h(0) + an(h® — b) o L~ (0))e2™% do
— @)+ /I (h — b) o L= (o) 2% dor

With the change of variable L_!(o) = t, we get

/ (ha _ b) o LEI(U)EQwiade =a, /(ha _ b) (t)eQﬂ'iw(ant-l—bn)dt

I I
= a,e”™bn (f/zE(anw) — b(anw))

and
N

ﬁ(w) = h(w) + Z QU Uy €270 (ﬁ(anw) — b(anw)).
n=1
In order to simplify the computations, we consider the case of equidistant nodes
a, = 1/N, and denoting s(w) = 3" €™ one has

e (w) = h(w) + %s(w) <7ﬁ(%) - b(%)) (14)

Applying the equality (14) for }/ZE(%) and substituting

e =t ) (4(5) -4(3) )+ 3o () (7 () -4(35))

the process can be iterated as follows:
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Bearing in mind that [s(3%)| < |a|N for all j =0,1,...,p— 1, it is true that

1 w w
- _ p 5
0< ‘NPS(M)S<N> "'S<NP—1)‘ as |a|°° 0

as p — oo and

i =i+ > 5 (TG ) (1) ()

This formula provides an explicit and complete description of A® in the fre-
quency domain. The term of order p in the series is bounded by

() ~ () | < ol = bt

where T' is the length of the interval. The approximate sum S, will have an
error F, bounded by

ol

| |P+1

| Ep| < ﬁ

17 = blleT

6. Conclusions

Every continuous function h defined in a real compact interval can be gener-
alized by means of a family of fractal interpolation functions associated to a
partition of the interval. Each element h* of the set constitutes an interpolant
of h respect to the mesh given. The uniform distance between h and h® is
bounded by a quantity which depends on the uniform norm of A and . The
distance goes to zero with a.

The operator F%, which associates to each function h its a-fractal h®, is
linear and continuous in C([), and lower and upper bounds of its norm can be
defined in terms of .. F* converges to the identity when «a goes to zero.

The a-fractal polynomials where @ # 0 constitute a family of dense func-
tions in the space of continuous functions C(I). As a consequence, the density of
polynomial fractal interpolation functions with non-null scale vector is proved.

The Lagrange basis of the space of polynomials of degree lower or equal
than N can be generalized to a basis of fractal polynomials. In this way, the
fractal polynomial interpolation is defined. The condition of the function values
is fixed by the product of the norms of Lagrange and fractal operators. Likewise,
fractal piecewise polynomial interpolants can be constructed.

For any interpolant of real data, one can fixe a scale vector a so that the
corresponding fractal function passes through them. The convergence of this
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procedure when the step size tends to zero is submitted to the convergence of
the chosen interpolant.

The fractal functions h* constructed from a continuous functions are defined
explicitly in the frequency domain by means of their Fourier transforms, in terms
of the transform of A.

The preceding facts display the power of the method of fractal interpolation,
since any other conventional approximant can be generalized by means of that
kind of techniques (see, e.g., [11], [13]). At the same time, the “fractality” adds
a more real geometrical shape to the reconstruction and simulation of natural
and social phenomena.
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