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On the Unique Solvability of a Volevič System
of Linear Equations with General Singularity

Jose Ernie C. Lope, Jose Maria L. Escaner IV
and Carlene P. Arceo

Abstract. We consider a Volevič system of linear partial differential equations with
general singularity, for which we establish existence and uniqueness theorems that are
analogues of the Cauchy-Kowalevsky and Holmgren Theorems. Our results are gen-
eralizations of those of Elschner [Beiträge Anal. 12 (1978), 185 – 198], Lope [J.Math.
Sci. Univ. Tokyo, 6 (1999), 527 – 538] and Tahara [J.Math. Soc. Japan 34
(1982), 279 – 288], which are in turn generalizations of the results of Baouendi and
Goulaouic [Comm. Pure Appl. Math. 26 (1973), 455 – 475].
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1. Statement of the Problem and Main Results

Let Ω be a bounded set in Rn. Given any r ∈ (0, R], we denote by D(a, r) the
disk {z ∈ Cn; |zi − ai| < r, i = 1, 2, . . . , n} and we define a neighborhood of
Ω by Ωr =

⋃
a∈ΩD(a, r). The set of all functions u(z) holomorphic in Ωr and

continuous up to Ωr is a Banach space with norm given by

‖u‖r = max
z∈Ωr

|u(z)|. (1)

This space will be denoted by A (Ωr), or simply by Ar.
Consider now the system of linear partial differential equations in indepen-

dent variables (t, z) ∈ R× Cn given by

ρ(t)Dtu+ A(t, z, µ(t)Dz)u = f(t, z). (2)

Here, Dt and Dz denote the derivatives ∂/∂t and (∂/∂z1, . . . , ∂/∂zn), respec-
tively; u = (u1, . . . , um)T is the unknown; f = (f1, . . . , fm)T belongs to the
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space C 0([0, T ],AR), i.e., each fi is a continuous function on some interval
[0, T ] that is valued in the space AR; and A(t, z, µ(t)Dz) = (Aij(t, z, µ(t)Dz)) is
an m×m matrix of linear operators. All throughout this paper, we will assume
the following:

(A1) The function ρ(t) is continuous, positive on (0, T ], and satisfies∫ T

0

1

ρ(t)
dt = +∞.

(A2) The function µ(t) is continuous, positive and nondecreasing on (0, T ],
and satisfies the integrability condition∫ T

0

µ(t)

ρ(t)
dt < +∞. (3)

(A3) The system (2) is a Volevič system of linear partial differential equations,
i.e., there exists an m-tuple of nonnegative integers (n1, . . . , nm) such that
for each (i, j), the order of Aij is at most ni − nj + 1. Thus the operator
Aij has the form

Aij(t, z, µ(t)Dz) =
∑

|α|≤ni−nj+1

aij,α(t, z)(µ(t)Dz)
α.

We will further assume that each of the coefficients aij,α belongs in the
space C 0([0, T ],AR).

(A4) There is a constant c > 0 such that

Reαj(z) ≥ 2c (4)

holds on ΩR for each eigenvalue αj(z) of the matrix A(0, z, 0).

Note that since the function µ(t) is nondecreasing and satisfies (3), we must
have limt→0 µ(t) = 0. In [7], Tahara considered (2) with singularity ρ(t) equal
to tσ (σ ≥ 1). In the specific case when ρ(t) = t, any function µ(t) satisfying
assumption (A2) is referred to as a weight function by Tahara [8] (see also
Lope [5]).

Under these assumptions, we can prove the following analogue of the well-
known Cauchy-Kowalevsky Theorem.

Theorem 1.1. Given any r ∈ (0, R), there is a positive number ε ∈ (0, T )
such that for any f ∈ C 0([0, T ],AR), Equation (2) has a unique solution u ∈
C 0([0, ε],Ar) ∩ C 1((0, ε],Ar) satisfying ρ(t)Dtu ∈ C 0([0, ε],Ar).

We can also formulate a dual version of Theorem 1.1 for analytic functionals.
Using this dual version, we can follow the arguments of Baouendi and Goulaouic
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in [1] in order to prove an analogue of Holmgren’s Theorem. Let Ω contain the
origin in Rn, let A(t, x, µ(t)Dx) be the restriction of the operator A(t, z, µ(t)Dz)
on [0, T ]× Ω, and let us consider the system

ρ(t)Dtu+ A(t, x, µ(t)Dx)u = 0 (5)

in real independent variables (t, x) and in the space C 0([0, T ],D ′(Ω)). Here,
D ′(Ω) denotes the space of all distributions on Ω. Then we have the following
uniqueness result concerning distribution solutions of (5).

Theorem 1.2. Let u ∈ C 0([0, T ],D ′(Ω)) ∩ C 1((0, T ],D ′(Ω)) be any solution
of (5). Then u has to be zero in some neighborhood of (0, 0) ∈ [0, T ]× Rn.

Remark 1.3. The case when ρ(t) = tσ (σ ≥ 1) and µ(t) = tρ (ρ > σ − 1) has
been considered by Elschner [2] and later by Tahara [7]. Our theorems also
apply to higher-order scalar equations since such equations can be rewritten as
a Volevič system of equations. In particular, the scalar equation

(ρ(t)Dt)
mu+

∑
j+|α|≤m

j<m

ajα(t, x)(µ(t)Dz)
α(ρ(t)Dt)

ju = f(t, z) (6)

can be written in the form (2) with (n1, . . . , nm) = (1, . . . ,m). Existence and
uniqueness theorems have been proved for (6) by Baouendi and Goulaouic [1]
for the case when ρ(t) = t and µ(t) = ta (a > 0), and by Lope [5] for the case
when ρ(t) = t and for a general weight function µ(t). Hence, our theorems are
generalizations of these previous results.

Remark 1.4. Towards the completion of this manuscript, the authors learned
that Koike had established in [4] a local existence and uniqueness theorem in
the ultradifferentiable class with respect to the space variable for a Volevič
system of nonlinear equations. The linear version of his system is very similar
to ours – it is our system with the Aij’s given instead by

Aij(t, z, µ(t)Dz) =
∑

β∈∆ij(λ)

aij,β(t, z)(µ(t)Dz)
β.

In the equation above, λ ≥ 1 is a fixed number chosen a priori for the whole
system and ∆ij(λ) is the set of multi-indices {β ∈ Nn; λ|β| ≤ ni − nj + 1}. He
then proved existence and uniqueness under the following assumption on the
functions µ(t) and ρ(t):∫ T

0

µ(t)κ

ρ(t)
dt < +∞ for some κ ∈

(
0,

1

λ

)
.

This integrability condition is stronger than the one stated in (3). One can
easily verify that our theorem covers, for example, the case when ρ(t) = t and
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µ(t) = (− log t)−1(log(− log t))−ν where ν > 1, but the result in [4] does not.
So while Remark 2 in § 2 of the paper says that the main theorem also applies
to the class of analytic maps, the assumptions on the differential equations are
strictly stronger than ours; we are therefore dealing with a more general system
of linear equations.

2. Preliminaries

Our starting point is the system

ρ(t)Dtu+ A(t, z, 0)u = f(t, z) (7)

of ordinary differential equations. We can use standard techniques to see that
this system is uniquely solvable, thus making it possible to define the inverse
of the operator ρ(t)Dt + A(t, z, 0). It is however important to go beyond es-
tablishing unique solvability; we have to establish estimates, similar to the ones
obtained in [7], for the image of the inverse operator.

We begin by giving a precise statement of the existence and uniqueness
result for (7). The proof is very similar to that in [7] and hence may be omitted.

Lemma 2.1. Let ε > 0 be sufficiently small and let r ∈ (0, R]. Then for
any given function f ∈ C 0([0, ε],Ar), the system (7) has a unique solution
u ∈ C 0([0, ε],Ar) ∩ C 1((0, ε],Ar) satisfying ρ(t)Dtu ∈ C 0([0, ε],Ar).

Let R be the inverse operator of ρ(t)Dt + A(t, z, 0), that is, given f ∈
C 0([0, ε],Ar), we define R[f ] to be the unique solution u of (7). We can view
R as an m × m matrix of operators on the space C 0([0, ε],Ar). The (i, j)-th
component of R will be denoted by R ij.

We will state an estimate for the image of R in terms of another operator
which we will introduce shortly. Define κ(t) on (0, T ) by

κ(t) = −
∫ T

t

1

ρ(η)
dη.

Since ρ is strictly positive, we see that κ(t) strictly decreases from −∞ to 0 on
(0, T ]. This implies the existence of its inverse function which increases from 0
to T over the interval (−∞, 0].

Now, given a function g(t) that is continuous on [0, T ], we define

H [g](t) =

∫ ∞

0

e−csg(ψ(t, s)) ds (0 ≤ t ≤ T ), (8)

where c is the constant in (4) and ψ(t, s) is equal to κ−1(κ(t)−s). The function
ψ(t, s) takes the place of φσ(t, s) in [7], and also possesses those properties
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of φσ(t, s) that are of interest to us. It is, for example, easy to check that
ψ(ψ(t, s1), s2) = ψ(t, s1 + s2) holds, so that we have the following formula for
the composition of H with itself k times:

H k[g](t) =
1

(k − 1)!

∫ ∞

0

sk−1e−csg(ψ(t, s)) ds. (9)

Note further that ψ(t, s) ≤ t for any s ∈ (0,∞), and this maximum value is
attained at s = 0. Hence, if g(t) is real-valued, nonnegative and increasing,
then the estimate

H [g](t) ≤ 1

c
g(t) (10)

holds for all t ∈ [0, T ]. Finally, using a change of variable, we can also rewrite
(8) as

H [g](t) =

∫ t

0

e−c[κ(t)−κ(s)]g(s)
ds

ρ(s)
(0 ≤ t ≤ T ).

Since κ is increasing, the exponential above is always less than 1, and so we
also have this estimate for any nonnegative real-valued function g:

H [g](t) ≤
∫ t

0

g(s)
ds

ρ(s)
. (11)

We now state the following lemma which gives an estimate in terms of the
operator H of the image of a function g under R. This is essentially Lemma 2
of Tahara [7] adapted to the operator ρ(t)Dt + A(t, z, 0).

Lemma 2.2. Let ε > 0 be sufficiently small. There exists a constant C > 0
such that the estimate

‖Rij[g](t)‖r ≤ CH p(i,j)[ |||g|||r ](t)

holds for any r ∈ (0, R], for any function g ∈ C 0([0, ε],Ar) and for all t ∈ [0, ε].
Here, p(i, j) = max(1, nj−ni +1) and |||g|||r(t) = sup0≤τ≤t ‖g(τ, ·)‖r, where ‖ ·‖r

is the norm defined in (1).

Proof. In view of (9), we can simply follow the arguments in the proof of
Lemma 2 in [7] with φσ(t, s) replaced by ψ(t, s).

Define the function ϕ(t) on the interval [0, T ] by

ϕ(t) =

∫ t

0

µ(s)

ρ(s)
ds.

This definition makes sense in view of the integrability condition on µ(t). It
is clear that ϕ(t) is continuous and increasing on [0, T ] with ϕ(0) = 0, and is
differentiable in (0, T ).

The following corollary to Lemma 2.2 plays a very important role in the
proof of Theorem 1.1. It gives an estimate of the action of the operator R
when g(t) satisfies a certain estimate in terms of µ and ϕ.
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Corollary 2.3. Suppose that for some K ≥ p(i, j) and L ≥ 0, the function
g ∈ C 0([0, ε],Ar) satisfies the estimate ‖g(t)‖r ≤ µ(t)Kϕ(t)L for all t ∈ [0, ε].
Then there is a constant C > 0 such that for any integer l = 0, 1, . . . , p(i, j), we
have

‖R ij[g](t)‖r ≤ C
(1

c

)p(i,j)−l µ(t)K−lϕ(t)L+l

(L+ 1)l

(t ∈ [0, ε]).

Here, we have employed the notation (q)n = q(q + 1) . . . (q + n).

Proof. We only have to use (10) and (11) in conjunction with Lemma 2.2. We
further take note of the fact that ϕ′(t) is, by definition, equal to µ(t)/ρ(t).

Finally, we mention a lemma which is fundamental in estimating functions
in a scale of Banach spaces.

Lemma 2.4 (Nagumo). Let f(z) be holomorphic in ΩR. Suppose there are
constants K > 0 and a > 0 such that

‖f‖r ≤
K

(R− r)a
for all r ∈ (0, R).

Then ∥∥∥ ∂f
∂zi

∥∥∥
r
≤ Ke(a+ 1)

(R− r)a+1
for all r ∈ (0, R).

Here, e is the base of the natural logarithm.

This type of estimate was first used by Nagumo in his seminal 1942 paper [6]
where he considered the classical Cauchy-Kowalevsky Theorem from a new
viewpoint. His functional-analytic approach was sufficiently powerful to con-
sider equations that are analytic with respect to the space variable but merely
continuous with respect to time. The reader may also refer to Hörmander [3]
(see Lemma 5.1.3) for another proof of the lemma.

3. Proof of Theorem 1.1

Before we begin with the proof, we point out that the proof of the dual version
of Theorem 1.1 is very similar to the one presented in this section. Now, with
the dual version on hand, we can simply follow the arguments in [1] (as has
been done in [7]) to prove Theorem 1.2. Hence, it is enough to present only the
proof of unique solvability.

We will use the method of successive approximations to solve (2). Let
f ∈ C 0([0, T ],AR) be given, and let ε > 0 be chosen sufficiently small so that
Lemma 2.1 applies and both µ(t) and ϕ(t) are less than 1.
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We now define approximate solutions to (2) as follows: let u(0) = R[f ], and
for p ≥ 1,

u(p) = R
[
Bu(p−1) + f

]
.

Here, R is the inverse operator of ρ(t)Dt + A(t, z, 0) and B is the matrix of
operators defined by A(t, z, 0) − A(t, z, µ(t)Dz). Denote by v(p) the difference
of the successive approximate solutions, i.e., v(p) = u(p) − u(p−1) for all p ≥ 0,
with the understanding that u(−1) ≡ 0.

Note that the convergence of the sequence {u(p)} is equivalent to the con-
vergence of the series

∑
p≥0 v

(p). Following the approach in [7], we next observe

that
∑

p≥q v
(p) may be expressed formally as∑

p≥q

v(p) =
(
1 + (RB) + . . .+ (RB)d−1

) ∑
p≥0

v(dp+q),

where d and q are any two positive integers. Hence, in order to prove that
the series

∑
p≥0 v

(p) converges, it is sufficient to prove the series
∑

p≥0 v
(dp+q)

converges for an appropriate choice of integers d and q. We will proceed with
the following values of the said integers. Set

d = max(ni − nj + 1; 1 ≤ i, j ≤ m), γ = max(ni; 1 ≤ i ≤ m)

and let q = d2 + 2γ.
Observe further that the difference A(t, z, 0)−A(t, z, µ(t)Dz) takes the form∑d

l=1

∑
|α|=l Aα(t, z)(µ(t)Dz)

α for some Aα(t, z). Hence we can write B as the

sum
∑d

l=1B
(l), where B(l) is a matrix of differential operators of order l given

by
∑

|α|=l Aα(t, z)(µ(t)Dz)
α. (That each operator B(l) is at most of order d is

clear from our choice of d.) This representation of B allows us to write v(dp+q)

as
v(dp+q) =

∑
1≤l1,...,ld≤d

RB(l1) . . .RB(ld)v(d(p−1)+q).

This is the expression that we will later use in order to estimate the norm of
the i-th component of the vector v(dp+q).

Lemma 3.1. Let R1 ∈ (0, R). Then there is a constant C > 0 such that for
any 1 ≤ i ≤ m, for any t ∈ [0, ε] and for any r ∈ (0, R1), we have

‖v(q)
i (t)‖r ≤ Cµ(t)d2+niϕ(t)γ.

Proof. We claim that there is a constant C1 > 0 such that for any i, j,
j1, . . . , jq, k1, . . . , kq and l1, . . . , lq, we have∥∥Rij1B

(l1)
j1k1

. . .Rkq−1jqB
(lq)
jqkq

Rkqj[fj](t)
∥∥

r
≤ C1µ(t)l1+...+lq−γϕ(t)γ. (12)
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To show this, we first use the continuity of f on the compact set [0, ε] to bound
it above by a constant K. We then invoke Lemma 2.2 and (10) to see that
‖R kqj[fj](t)‖r is estimated above simply by a constant multiplied by K.

Next, we consider the action of the operator B
(lq)
jqkq

, which contains the term

µ(t)lq . Since this operator contains a derivative, we have to apply Nagumo’s
Lemma. Note, however, that we allow r to move only in the interval (0, R1) and
so the derivative becomes a bounded operator. At this point, we have Kµ(t)lq

as our bound, where we have denoted again by K the various constants that
have arisen. From here, we can now use Corollary 2.3 in estimating the action
of R kq−1jq , as well as of all the other R’s that follow, thanks to the presence of
at least one µ(t). We will apply the corollary with l = 1 to come up with the
estimate Kµ(t)lq−1ϕ(t). (This is possible because each p(i, j) is at least 1.) We
repeat the same arguments in estimating the action of the next pairs of R and
B until we have an estimate of the form Kµ(t)lq+...+lq−γ+1−γϕ(t)γ.

The remaining operators may be estimated similarly, but Corollary 2.3 will
have to be applied with l = 0. After exhausting all the operators, we arrive
precisely at the estimate stated in (12). Finally, we only have to recall that
γ ≥ ni and to note that lν ≥ 1 for each ν, so that l1 + . . .+ lq is at least q.

The next lemma is the main engine in the proof of Theorem 1.1. It gives
us a way to estimate recursively the vectors {v(dp+q)}p≥0.

Lemma 3.2. Let L be a nonnegative integer. If each component wi of the vector
w = (w1, . . . , wm)T ∈ C0([0, ε],Ar) satisfies

‖wi(t)‖r ≤ (L+ 1)niµ(t)d2+niϕ(t)γ−ni

( ϕ(t)

R1 − r

)L

for any t ∈ [0, ε] and any r ∈ (0, R1), then there is a constant M > 0 indepen-
dent of L and w such that the estimate∥∥R ij1B

(l1)
j1k1

. . .R kd−1jdB
(ld)
jdk [wk](t)

∥∥
r
≤M l1+...+ld(L+ l1 + . . .+ ld + 1)ni

· µ(t)d2+niϕ(t)γ−ni

( ϕ(t)

R1 − r

)L+l1+...+ld

holds for any i (= k0), j1, . . . , jd, k1, . . . , kd (= k) and l1, . . . , ld, and also for any
t ∈ [0, ε] and any r ∈ (0, R1).

Proof. First, note that in the following, we may assume that lν ≤ njν −nkν +1

for all 1 ≤ ν ≤ d, for the assumption on the order of Aij implies that B
(l)
jk = 0

whenever nj − nk + 1 < l.

Let us begin by considering the action of B
(ld)
jdk on wk. This operator has ld

derivatives with respect to z and accounts for the presence of µ(t)ld . To estimate
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the derivatives, we apply Nagumo’s Lemma ld times to obtain

∥∥B(ld)
jdk [wk](t)

∥∥
r
≤ Keld(L+ 1)ld(L+ 1)nkµ(t)d2+nk+ld

ϕ(t)L+γ−nk

(R1 − r)L+ld
,

which holds for any r ∈ (0, R1). The constant K above is any bound for the
norm of the coefficients of the differential operator.

Next, we apply the operator Rkd−1jd . By Corollary 2.3, we have the estimate

∥∥Rkd−1jdB
(ld)
jdk [wk](t)

∥∥
r
≤ CK

(1

c

)p(kd−1,jd)−ad eld(L+ 1)ld(L+ 1)nk

(R1 − r)L+ld

· µ(t)d2+nk+ld−ad
ϕ(t)L+γ−nk+ad

(L+ γ − nk + 1)ad

for any integer ad between 0 and p(kd−1, jd) and for any r ∈ (0, R1).
We then proceed following the above reasoning. When all the operators

acting on wk have been exhausted, we arrive at this estimate:∥∥R ij1B
(l1)
j1k1

. . .R kd−1jdB
(ld)
jdk [wk](t)

∥∥
r

≤ (CK)del1+...+ld
(1

c

)p(i,j1)+...+p(kd−1,jd)−(a1+...+ad)

· (L+ 1)l1+...+ld(L+ 1)nk

(L+ γ − nk + 1)a1+...+ad
(R1 − r)L+l1+...+ld

· µ(t)d2+nk+l1+...+ld−(a1+...+ad) ϕ(t)L+γ−nk+a1+...+ad .

(13)

Now each lν is at most njν−nkν +1, so that lν +nkν−nkν−1 ≤ p(kν−1, jν). (Recall
that k0 = i and kd = k.) Summing up over all ν’s gives l1 + . . . + ld + nk ≤∑d

ν=1 p(kν−1, jν) + ni . This tells us that it is possible to choose aν ’s in such a
way that l1 + . . . + ld + nk = a1 + . . . + ad + ni . With this choice of aν ’s , we
can further simplify (13) to obtain the desired estimate.

We are now ready to prove the convergence of
∑∞

p=0 v
(dp+q). We start with

the estimate in Lemma 3.1, to which we repeatedly apply Lemma 3.2. After p
successive applications of the latter lemma, we obtain for t ∈ [0, ε] the estimate

∥∥v(dp+q)
i (t)

∥∥
r
≤

∑
1≤l1,...,ldp≤d

CM l(l + 1)niµ(t)d2+n1ϕ(t)γ−ni

( ϕ(t)

R1 − r

)l

,

where for brevity we have denoted by l the sum l1 + l2 + . . . + ldp. Note that
this sum is at least dp and at most d2p. Since

(
p−1
d−1

)
, the number of ways one

can form the sum p from d not necessarily distinct integers each of which is at
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least 1, is not more than 2p, we can further estimate as follows:∥∥v(dp+q)
i (t)

∥∥
r
≤ Cµ(t)d2+niϕ(t)γ−ni

∑
dp≤l≤d2p

(l + 1)ni

(2Mϕ(t)

R1 − r

)l

≤ Cµ(t)d2+niϕ(t)γ−ni

(2Mϕ(t)

R1 − r

)dp

p(d2 − d)(d2p+ 1)ni ,

if we fix r and choose ε small enough so that for |t| < ε we have 2Mϕ(t) < R1−r.
Having established this, it is now easily seen that the series

∑∞
p=0 v

(dp+q) is

indeed convergent in C0([0, ε],Ar). This implies that the approximate solutions
u(p) converge to a solution u in C 0([0, ε],Ar) ∩ C 1((0, ε],Ar). This proves the
existence part of Theorem 1.1. The uniqueness of the solution can be proved in
a similar manner and so we may omit the details.
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