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for Distributed Order Pseudo-Differential
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Abstract. We treat the question of existence, uniqueness and construction of a
solution to the Cauchy and multi-point problems for a general linear evolution equa-
tion with (in general) temporal fractional derivatives with distributed orders. Such
equations have met great interest in recent years among researchers in viscoelasticity
and in anomalous diffusion processes, and there are numerical analysts who consider
them as a challenge. So, we find it desirable to put their theory on a strong and
general mathematical basis. After an outline of relevant function spaces and the du-
ality structure generated by them we treat, by Laplace-Fourier techniques, first the
Cauchy problem, then the general multi-point problem (where the values of linear
combinations of the unknown solution at different instants of time are prescribed).
We condense our results in theorems on strong and on weak solutions.
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1. Introduction

This paper is devoted to distributed order fractional differential equations. In
recent years such equations have met interest of several researchers (see, for
example [2], [5]– [8], [22], [30] and references therein) who have treated relevant
physical and numerical problems, mainly of evolutionary character. Our main
purpose here is the mathematical treatment of such equations. We will study the
solvability and uniqueness issues of initial and some boundary value problems
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for them in different function spaces. The general formulation of the problems
can be settled in the following framework: introduction of the distributed time-
fractional differential operator equation and study of the Cauchy and some other
boundary value problems for it.

Our distributed order time fractional differential-operator equation has the
general form ∫ m

0

A(r)Dr
∗u(t)dr = Bu(t), t > 0, (1)

where A(r) (for a fixed r ∈ [0, m]) and B are linear closed operators defined in a
certain locally convex topological vector space X, the function u(t) is unknown
and belongs to the space C(m)(0, T ; X) with some T > 0 and Dr

∗ is the operator
of fractional differentiation of order r in the Caputo sense (see, for example, [4],
[12], [27])

Dr
∗f(t) =

1

Γ(m− r)

∫ t

0

(t− τ)m−r−1f (m)(τ) dτ, t > 0, m− 1 < r < m

Dm
∗ f(t) = f (m)(t)

(2)

for m ∈ N. By N we mean, as usual, the set of positive integers. An essential
distinctive feature of this model is that integration in (1) is performed over the
variable r, the order of differentiation. Such models arise in a natural way in
the kinetic theory (see [7] and [30]) when the exact scaling is lacking or in the
theory of elasticity [22] for description of rheological properties of composite
materials (see also the examples below). We will not present here results for
such general case but will restrict ourselves to considering some particular cases
of A(r), B and X, leaving the general case for a separate paper.

In this paper we will consider the following distributed order time-fractional
differential equation with spatial pseudo-differential operators∫ m

0

A(r; D)Dr
∗u(t, x)dr = B(D)u(t, x), t > 0, x ∈ IRn, (3)

with the Cauchy conditions

∂ku(0, x)

∂tk
= ϕk(x), x ∈ IRn, k = 0, . . . ,m− 1, (4)

where the ϕk, k = 0, . . . ,m− 1, are given functions in certain spaces described
later, D = (D1, . . . , Dn), Dj = −i ∂

∂xj
, j = 1, . . . , n, A(r; D) (for every fixed

value of the parameter r ∈ [0, m]) and B(D) are pseudo-differential operators
with the symbols A(r; ξ) and B(ξ), respectively, which are continuous functions
of ξ defined in an open domain G ⊂ IRn. The pseudo-differential operators
used in this paper are defined in Section 2 by the formula (9) below. Some
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spatial pseudo-differential operators frequently used to describe anomalous dif-
fusion processes with infinite second moment of the spatially zero-centered fun-
damental solution also have continuous symbols. So, A(r; D) and B(D) can be
fractional order spatial operators as well.

For our further considerations we need some properties of pseudo-differential
operators with symbols singular in dual variables. These operators were studied
by Dubinskij [10], [11] in the case of analytic symbols defined in a domain G
and used by several authors including [32], [33].

In constructions we use in the present paper, in order to include opera-
tors with non-analytic symbols, we choose a direct approach for definition of
such operators, which is distinct from the above mentioned and does not re-
quire glueing of local elements of pseudo-differential operators used in case of
analytic symbols. This approach (see [16], [34], [35]) allows us to consider non-
analytic symbols which may have non-integrable or other type singularities on
the boundary of G or in its exterior.

We also outline briefly some results for solution of the more general multi-
point value problem for equation (3) with the conditions

m−1∑
j=0

Γkj(D)
∂ku(tkj, x)

∂tk
= ϕk(x), k = 0, . . . ,m− 1, x ∈ IRn, (5)

where the Γkj(D), k, j = 0, . . . ,m− 1, are pseudo-differential operators whose
symbols Γkj(ξ), k, j = 0, . . . ,m− 1, are continuous functions in G, tkj ∈ [0, T ],
0 < T < ∞, and the ϕk, k = 0, . . . ,m−1, are given functions. We note that the
Cauchy problem (3), (4) is a particular case of the multi-point value problem
(3), (5).

The equation (3) is a generalization of fractional/non-fractional differential
equations and important from the viewpoint of applications. To justify this we
consider some frequently used particular cases, putting definitions formally:

1. Let A(r; D) = δ(r−β)I with the Dirac function (distribution) δ and the
identity operator I. In this case we get the fractional differential equation

Dβ
∗u(t, x) = B(D)u(t, x), t > 0, x ∈ IRn, β > 0.

1.1. Time-fractional equation.

Let B(D) = ∆ be the Laplace operator with the symbol B(ξ) = −|ξ|2.
Then we have the time-fractional differential equation

Dβ
∗u(t, x) = ∆u(t, x), t > 0, x ∈ IRn, β > 0. (6)

The Cauchy problem for this equation represents a fractional model of diffusion
(sub-diffusion) in the case 0 < β < 1, which has an important role in transport
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theory and random walk [23], [25], [26]. It represents processes intermediate
between diffusion and wave propagation in the case 1 < β < 2 [31]. The solution
has the relaxation property in the case 0 < β < 1 and the oscillation-relaxation
property when 1 < β < 2 [16].

1.2. Space-fractional differential equation.

Let A(r; D) = δ(r−1)I and B(D) = Dα
0 , the latter being the operator with

the symbol −|ξ|α, ξ ∈ IRn, which is a continuous function. Then we come to
the equation

∂u(t, x)

∂t
= Dα

0 u(t, x), t > 0, x ∈ IRn, α > 0, (7)

which describes in the case 0 < α < 2 an anomalous (to use physical language)
diffusion process with infinite second moment of its spatially zero-centered fun-
damental solution. We note that Dα

0 is connected with the inversion of the
fractional Riesz potential (see, for example, [29]) and can be written in the
form

Dα
0 f(x) =

−1

cn(α)

∫
Rn

(∆2
hf)(x)

|h|n+α
dh .

Here ∆2
h is the second order finite difference with the spatial step h ∈ IRn

and cn(α) is a constant (for the values of this constant see [29]). In the one-
dimensional case and under the condition 0 < α ≤ 2 this equation describes
symmetric Lévy-Feller diffusion processes, which are Markovian [13]. Symmetric
and non-symmetric random walk models approximating Lévy-Feller diffusion
processes were presented in detail by Gorenflo and Mainardi [13], [14], [15].
In the multidimensional case it is studied by Umarov and Gorenflo [36]. For
more general operators on the right hand side of (7), including operators with
variable orders, the corresponding Feller semigroups are constructed in [18]–
[21]. These results allow to judge on existence of a solution (in some sense) to
the corresponding Cauchy problem for such equations.

1.3. Time- and space-fractional equation.

Let A(r; D) = δ(r − β)I, β ∈ (0, 1) and B(D) = Dα
0 . Then we get the

time-space fractional differential equation

Dβ
∗u(t, x) = Dα

0 u(t, x), t > 0, x ∈ IRn, α, β > 0,

which describes anomalous diffusion processes, in particular such ones with
non-Markovian character (see [17], [24], [26]).

2. The next example relates to sub-diffusion with retardation, studied in
[7]. Let A(r; D) = b1δ(r − β1)I + b2δ(r − β2)I, with 0 < β1 < β2 ≤ 1, b1 >
0, b2 > 0, b1 + b2 = 1 and B(D) = k ∂2

∂x2 (n = 1), k = const > 0. Then we get
the equation

b1D
β1
∗ u(t, x) + b2D

β2
∗ u(t, x) = k

∂2

∂x2
u(t, x),
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which describes a subdiffusion process with retardation. In [7] the Cauchy
problem for the equation ∫ 1

0

τβ−1w(β)
∂βp

∂tβ
dβ = k

∂2p

∂x2

referred to as the ”normal form” of the distributed order fractional diffusion is
also studied. Note that this equation corresponds to the case A(r, ξ) = τ r−1w(r)
with τ > 0, w(r) > 0 and B(D) = k ∂2

∂x2 .

3. The authors of [22] have discussed equations of the form∫ 2

0

k(q)Dqy(t)dq + F (y) = f(t),

which describe properties of composite materials. Note that k(q), F (y) and f(t)
are given functions connected with different characteristics of viscoelastic and
viscoinertial materials with rheological properties.

4. Let A(r; D)) =
∑m

k=1 δ(r − βk)Ak(D) with k − 1 < βk ≤ k, Ak(D), k =
0, . . . ,m − 1, be pseudo-differential operators with symbols Ak(ξ) continuous
in G. In this case we obtain the equation

Dβm
∗ u(t, x)+

m−1∑
k=1

Ak(D)Dβk
∗ u(t, x)+A0(D)u(t, x) = 0, t ∈ (0, T ), x ∈ IRn. (8)

In the case βk ∈ IN, k = 1, . . . ,m, the Cauchy problem for this equation with
analytic symbols or with symbols having singularities was studied, for example,
by Dubinskij [10], Umarov [33] and Tran Duc Van [32]. Antipko and Borok [1],
Borok [3], Ptashnik [28], and Umarov [34], [35] (see also references therein)
considered multi-point value problems with integer αk. For fractional αk the
Cauchy and multi-point value problems are studied in [16].

Our paper is organized as follows. In Section 2 we will give briefly the
description of the space ΨG,p(IR

n) introduced in [34], define pseudo-differential
operators with singular symbols and recall some of their properties referring
the readers for details to [34], [16]. In Section 3 we will construct a general
representation formula for the solution of the Cauchy problem for distributed
order differential equations. In Section 4 we will study in detail properties of
solution operators obtained in Section 3. Using these properties in Section 5
we will prove solvability theorems for the Cauchy problem (3), (4) in the space
ΨG,p(IR

n) and in its dual space (ΨG,p(IR
n))∗ = Ψ

′
−G,q(IR

n), q = p/(p − 1).
Finally in Section 6 we will consider the general multi-point value problem (3),
(5) and outline the related results.
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2. Function spaces and pseudo-differential operators

In this section we introduce some function spaces and briefly recall their essential
properties to be used later for formulation of solvability theorems. For details
see [34] and [16].

For a given open domain G ⊂ IRn let f be a function in Lp(IR
n), 1 ≤ p ≤

∞, whose Fourier transform

f̂(ξ) = Ff(ξ) =

∫
IRn

f(x)e−ixξ dx

has a compact support in G. The set of all such functions endowed with the
convergence defined below is denoted by ΨG,p(IR

n): A sequence of functions
fm ∈ ΨG,p(IR

n) is said to converge to an element f0 ∈ ΨG,p(IR
n) iff:

(a) there exists a compact set K ⊂ G such that supp f̂m ⊂ K for all m ∈ N;

(b) ‖fm − f0‖p =
( ∫

Rn |fm − f0|pdx
) 1

p → 0 for m →∞.

In the case p = 2 we write simply ΨG(IRn) instead of ΨG,2(IR
n). According

to the Paley-Wiener-Schwartz theorem, the elements of ΨG,p(IR
n) are entire

functions of exponential type which, restricted to IRn, are in the space Lp(IR
n).

Let q = p/(p − 1). Denote by Ψ
′
−G,q(IR

n) the space of all linear bounded
functionals defined on the space ΨG,p(IR

n) endowed with the weak topology.
Namely, we say that a sequence of functionals gN ∈ Ψ

′
−G,q(IR

n) converges to an

element g0 ∈ Ψ
′
−G,q(IR

n) in the weak sense if for all f ∈ ΨG,p(IR
n) the sequence

of numbers 〈gN , f〉 converges to 〈g0, f〉 as N →∞. By 〈g, f〉 we mean the value
of the action of g ∈ Ψ

′
−G,q(IR

n) on an element f ∈ ΨG,p(IR
n).

Let A(ξ) be defined and continuous in a domain G ⊂ IRn. This function
may have singularities of arbitrary type outside of G or on its boundary. Define
a pseudo-differential operator A(D) with a symbol A(ξ) on a function ϕ ∈
ΨG,p(IR

n) by the formula

A(D)ϕ(x) =
1

(2π)n

∫
G

A(ξ)Fϕ(ξ)eixξ dξ (9)

where Fϕ is the Fourier transform of ϕ.

We define the operator A(−D) acting in the space Ψ
′
−G,q(IR

n) by the formula

〈A(−D)f, ϕ〉 = 〈f, A(D)ϕ〉, f ∈ Ψ
′

−G,q(IR
n), ϕ ∈ ΨG,p(IR

n). (10)

We also recall the following statement (see Lemma 3 in [16] and Lemma 3 in
[34]), which is important for proof of solvability theorems for the Cauchy and
multipoint problems.
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Theorem 2.1. An arbitrary pseudo-differential operator A(D) (A(−D)) whose
symbol A(ξ) (A(−ξ)) is continuous in a domain G ⊂ IRn (−G ⊂ IRn) acts
from the space ΨG,p(IR

n) (Ψ
′
−G,q(IR

n)) into itself. Moreover, if A(ξ)g(ξ) is a
multiplier in Lp for any g ∈ C∞0 (G), then this operator acts continuously.

3. Representation of the solution to the Cauchy problem
for distributed order pseudo-differential equations

In this section we will construct the representation formula for a solution of the
Cauchy problem for the distributed order pseudo-differential equation∫ m

0

A(r; D)Dr
∗u(t, x)dr = B(D)u(t, x), t > 0, x ∈ IRn (11)

∂ku(0, x)

∂tk
= ϕk(x), x ∈ IRn, k = 0, . . . ,m− 1 . (12)

First we find the formal representation of a solution and then, relying on this
representation, study its properties.

We split the problem (11), (12) into m Cauchy problems, one for each index
j ∈ {0, 1, . . . ,m− 1}, keeping (11) and using the the Cauchy conditions

u(0, x) = 0, . . . ,
∂j−1u(0, x)

∂tj−1
= 0,

∂ju(0, x)

∂tj
= ϕj(x), (13)

∂j+1u(0, x)

∂tj+1
= 0, . . . ,

∂m−1u(0, x)

∂tm−1
= 0.

If we denote by uj(t, x) a solution to (11), (13), then the general solution to
(11), (12) due to its linearity, is represented in the form

u(t, x) =
m−1∑
j=0

uj(t, x).

Applying formally the Fourier transform to (11),(13) we get the ξ-parametrized
equation ∫ m

0

A(r; ξ)Dr
∗û(t, ξ) dr = B(ξ)û(t, ξ) (14)

and the corresponding initial conditions

û(0, ξ) = 0, . . . , ûj−1(0, ξ) = 0,
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ûj(0, ξ) = ϕ̂j(ξ), (15)

ûj+1(0, ξ) = 0, . . . , ûm−1(0, x) = 0.

We rewrite the left hand side of (14) in the form∫ m

0

A(r; ξ)Dr
∗û(t, ξ) dr =

m∑
k=1

∫ k

k−1

A(r, ξ)Dr
∗û(t, ξ) dr (16)

and apply the Laplace transform to both sides. Taking k − 1 < r < k into
account and making use of the well known formula (see [12] and [27])

L[Dr
∗f(t)](s) = L[f ](s)sr −

k−1∑
l=0

f (l)(0)sr−l−1,

where L stands for the Laplace transform (we will use on equal status the
notations f̃(s) and L[f ](s) for the Laplace transform of f), we have∫ k

k−1

A(r, ξ)L[Dr
∗û(t, ξ)] dr = ˜̂u(s, ξ)

∫ k

k−1

srA(r, ξ) dr

−
k−1∑
l=0

û(l)(0, ξ)
1

sl+1

∫ k

k−1

srA(r, ξ) dr,

where ˜̂u(s, ξ) is the Laplace transform of û(t, ξ). Now summing up by k from 1
till m we obtain

˜̂u(s, ξ)

∫ m

0

A(r; ξ)srdr −
m−1∑
k=0

ϕ̂k(ξ)

sk+1

∫ m

k

A(r; ξ)srdr = B(ξ)˜̂u(s, ξ). (17)

Denote

Φ0(s, ξ) = 0; Φj(s, ξ) =

∫ j

0

srA(r, ξ) dr, j = 1, . . . ,m. (18)

Then it follows from (17) and the hypothesis that only the j-th Cauchy datum
is non-zero (see (15)) that

˜̂uj(s, ξ) =
Φm(s, ξ)− Φj(s, ξ)

s1+j[Φm(s, ξ)−B(ξ)]
ϕ̂j(ξ), j = 0, . . . ,m− 1. (19)

Let G ⊆ Rn be an open set and ξ ∈ G be fixed. Denote by s0(ξ) the greatest
positive root of the equation Φm(s, ξ) = B(ξ). If A(r, ξ) preserves its sign for
every 0 < r < m, then it follows from the inequality sr

1 < sr
2 for 0 < s1 < s2

and r > 0 that Φm(s, ξ), s > 0, is a monotone function. Hence, the equation
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Φm(s, ξ) = B(ξ) can have no more than one positive root for every fixed ξ ∈ G.
Thus

Ψj(s, ξ) =
Φm(s, ξ)− Φj(s, ξ)

s[Φm(s, ξ)−B(ξ)]
(20)

is well defined for s > s0(ξ) if the equation Φm(s, ξ) = B(ξ) has a positive root,
or for s > 0, if there is no such a root. It is not difficult to verify that the
collection of functions Φ0(s, ξ), . . . , Φm−1(s, ξ) is linearly independent. Denote
by Sj(t, ξ) the Laplace preimage of Ψj(s, ξ), that is

Sj(t, ξ) = L−1(
Φm(s, ξ)− Φj(s, ξ)

s[Φm(s, ξ)−B(ξ)]
), j = 0, . . . ,m− 1. (21)

Using the theorem on uniqueness of the inverse Laplace transform, we can
conclude that the collection S0(t, ξ), . . . , Sm−1(t, ξ) is linearly independent as
well. Thus for uj(t, x) we get the representation

uj(t, x) = J jSj(t,D)ϕj(x),

where J j is the j-th power of the common integration operator with lower
limit 0,

J jf(t) =

∫ t

0

· · ·
∫ τ

0︸ ︷︷ ︸
j−times

f(τ1)dτ1 =

∫ t

0

(t− τ)j−1

Γ(j)
f(τ) dτ for j ≥ 1, J0 = I,

Here I denotes the identity operator, and Sj(t,D) is the pseudo-differential
operator with the symbol Sj(t, ξ). For the solution of (11), (12) we have the
representation

u(t, x) =
m−1∑
j=0

J jSj(t,D)ϕj(x) . (22)

Two notes. The obtained representation formula is useful both from mathe-
matical and physical point of views.

1M) The representation is obtained as the action of the pseudo-differential
operators J jSj(t, ξ), j = 0, . . . ,m− 1, called j-th solution operator, to the given
functions. To get solution properties we can use the known properties of these
operators. Moreover, all these pseudo-differential operators have a similar struc-
ture.

2Ph) The formula says that it does not matter how many different frac-
tional orders are taken in the given equation between two consecutive integers.
For the initial value problem it is important to have the initial values of the un-
known solution just for integer order derivatives. Moreover, from this formula
it can be derived that if the maximal order of the derivatives in the equation is
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not greater than m− 1, then the Cauchy problem with m given data becomes
incorrectly posed. Indeed if A(r, ξ) = δ(r − α), α ≤ m − 1, rewriting (20) for
j = m− 1 in the form

Ψm−1(s, ξ) =

∫ m

m−1
srA(r, ξ)dr

s[Φm(s, ξ)−B(ξ)]
,

we get Sm−1(t, ξ) ≡ 0.

4. Some auxiliary lemmas

Now we give the definition of solution to the Cauchy problem (11), (12).

Definition 4.1. A function u(t, x) is called a strong solution to the Cauchy
problem (11), (12) if

1. u(t, x) ∈ C(m−1)(t ≥ 0; ΨG,p(IR
n))

2. u(m)(t, x) ∈ ΨG,p(IR
n) exists for almost all t > 0 and

3. it satisfies the equation (11) for almost all t ∈ (0,∞) and for all x ∈ IRn

including initial conditions (12) pointwise.

Definition 4.2. A function u(t, x) is called a weak solution to the Cauchy
problem (11), (12) (replacing D by −D) if

1. u(t, x) ∈ C(m−1)(t ≥ 0; Ψ
′
−G,q(IR

n))

2. u(m)(t, x) ∈ Ψ
′
−G,q(IR

n) for almost all t > 0 and

3. the following equalities hold true for arbitrary v ∈ ΨG,p(IR
n):∫ m

0

〈Dr
∗u(t, x), A(r, D)v(x)〉dr = 〈u(t, x), A(D)v(x)〉 for a.a. t ∈ (0,∞)

lim
t→+0

〈u(k)(t, x), v(x)〉 = 〈ϕk(x), v(x)〉, k = 0, . . . ,m− 1.

To prove solvability theorems we need some auxiliary lemmas, using the
abbreviation

Fa(k; f) :=

∫ a

0

ektf(t)dt, k ∈ R1,

where a is a fixed positive real number and f is a generalized function with
supp f ⊂ [0, a].

Lemma 4.3.

1. For a regular distribution f(t) with supp f ⊂ [0, d],

|Fa(k; f)| = o(edk), k →∞.
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2. For a singular generalized function f(t) with supp f = {d},

|Fa(k; f)| = O(e(d+ε)k), k →∞,

where ε > 0 is arbitrarily small.

Proof. Let first f ∈ L∞(0, a), |f(t)| ≤ M < ∞ and supp f ⊂ [0, d]. Then

|Fa(k; f)| = |
∫ d

0

ektf(t)dt| ≤ M

∫ d

0

ektdt =
M

k
(ekd − 1).

For large k we have |Fa(k; f)| = o(edk). For a regular generalized function f
with supp f ⊂ [0, d] there is a sequence of functions fm ∈ L∞(0, a), all supported
in [0, d] and with common estimation constant M such that fm → f, m → ∞
in the weak sense. For fm we have k|Fa(k; fm)| ≤ Cekd with positive constant
C. Letting m →∞ we obtain the desired result.

If f is a singular generalized function with support supp f = {α}, 0 < α < a,
then f is a finite linear combination of δ(j)(t−α), where δ is the Dirac function.
It is readily seen that Fa(k; f) = O(e(α+ε)k) for any ε > 0 as k → ∞ in this
case.

Lemma 4.4. Let Φj(s, ξ), j = 0, . . . ,m, be as in (18).

1. If A(r, ξ) is a regular distribution with respect to r with supp A(r, ξ) ⊂
[0, d], then Φj(s, ξ) = o(sν), s →∞, where ν = min{d, j}.

2. If A(r, ξ) is a singular distribution with respect to r with supp A(r, ξ) =
{d}, then Φj(s, ξ) = O(sd+ε), (ε is arbitrarily small) s → ∞, in the case
d ≤ j and Φj(s, ξ) = 0 when d > j.

Remark. Hereafter supp A(r, ξ) means the support of A(r, ξ) with respect to
the variable r.

Proof. We have

Φj(s, ξ) =

∫ j

0

srA(r, ξ)dr =

∫ j

0

er ln sA(r, ξ)dr =: Fj(ln s; A(r, ξ)), s > s0(ξ).

Now it is an easy exercise to apply Lemma 4.1 and get the asymptotics in the
two cases.

Corollary. For every j = 0, . . . ,m−1, Ψj(s, ξ) = O(1
s
), s →∞, where Ψj(s, ξ)

is given by (20).

Lemma 4.5. For every j = 0, . . . ,m− 1, and k = 0, 1, . . . ,

Φ
(k)
j (s, ξ) =

1

sk

∫ j

0

rksrA(r, ξ)dr =
1

sk
Fj(ln s; rkA(r, ξ)), s > s0(ξ),

where ξ is fixed and derivatives are taken with respect to the variable s.
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Remark. Note that r is a dummy variable in the expressions Fj(ln s; rkA(r, ξ)),
k = 0, 1, . . ..

Corollary. For every j = 0, . . . ,m− 1, Ψ
(k)
j (s, ξ) = O( 1

sk+1 ), s →∞, k ∈ N.

Lemma 4.6. For Sj(t, ξ) = L−1
s→tΨj(s, ξ), j = 0, . . . ,m−1, with any fixed ξ ∈ G

the following assertions are true:

1. Sj(t, ξ) → 1 for t → +0, j = 0, . . . ,m− 1;

2.
∂`Sj(t,ξ)

∂t`
→ 0 for t → +0, j = 0, . . . ,m− 1, ` = 1, . . . ,m− j − 1.

Proof. Let ξ ∈ G be fixed. It follows from the representation (20) for Ψj(s, ξ)
and Lemma 4.2 that Ψj(s, ξ) = O(1

s
) for large s, which allows to invert Ψj(s, ξ)

(see [37]) with respect to s. Thus Sj(t, ξ) exists for all j = 0, . . . ,m−1. Further
we use the well known relation [9], [37]

lim
s→∞

sf̃(s) = lim
t→+0

f(t). (23)

Lemma 4.2 implies sΨj(s, ξ) → 1 as s →∞. Hence Sj(t, ξ) → 1 when t → +0.

We have proved (i). The Laplace transform of
∂Sj(t,ξ)

∂t
is

sΨj(s, ξ)−Sj(+0, ξ) =
Φm(s, ξ)− Φj(s, ξ)

Φm(s, ξ)−B(ξ)
−1 =

−Φj(s, ξ) + B(ξ)

Φm(s, ξ)−B(ξ)
, s > s0(ξ),

which is O
(

1
sd−j

)
for large s with d = max supp A(r, ξ). Note that d > m − 1.

Otherwise the Cauchy problem is meaningless (see Note 2Ph)). Analogously

for the Laplace transform of
∂`Sj(t,ξ)

∂t`
by induction we get

L

[
∂`Sj(t, ξ)

∂t`

]
= sl−1(sΨj(s, ξ)− Sj(+0, ξ)) = O

(
1

sd−j−l+1

)
. (24)

Consequently, we have sL
[∂`Sj(t,ξ)

∂t`

]
= O

(
1

sd−j−l

)
. Using this and (23) we arrive

at (ii).

Lemma 4.7. For every j = 0, . . . ,m− 1 the following assertions hold:

1. Sj(t, ξ) ∈ Cm−j−1(t ≥ 0; C(G)).

2. If the upper bound of supp A(r, ξ) = m, then S
(m−j)
j (t, ξ) exists for almost

all t ∈ (0,∞).

Proof. In proving the previous lemma we noticed that the Sj(t, ξ), j = 0, . . . ,
m − 1, exist. Now we will check their differentiability properties. It is known
[38] that if for given f(t) its Laplace transform f̃(s) satisfies sf̃(s) → 0 when
s →∞, then f is continuous. For fixed ξ ∈ G it follows from (24) that

sL

[
∂`Sj(t, ξ)

∂t`

]
= O

(
1

sd−l−j

)
.
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Take l = m− j − 1, which means that sL
[∂`Sj(t,ξ)

∂t`

]
vanishes as |s| → ∞. Hence

∂`Sj(t,ξ)

∂t`
is continuous. Now assume that d = m. Then we have L

[∂m−jSj(t,ξ)

∂tm−j

]
=

O
(

1
s

)
. Thus

∂m−jSj(t,ξ)

∂tm−j exists for almost every t ∈ (0,∞).

Remark. If m− 1 < d < m one can show that Dd−j
∗ Sj(t, ξ), j = 0, . . . ,m− 1,

exists and is bounded for almost every t (compare with Lemma 7 in [16]).

5. Solution of the Cauchy problem for
distributed order pseudo-differential equations

In Section 3 the formal representations for a solution of the Cauchy problem
(11), (12) have been obtained. In this Section we establish that they represent
the strong and weak solutions of the Cauchy problem in the spaces ΨG,p(IR

n)
and Ψ

′
−G,q(IR

n), respectively.

Theorem 5.1. Let G be a domain of continuity of the symbols A(r, ξ) (r fixed)
and B(ξ). Let ϕj ∈ ΨG,p(IR

n), j = 0, . . . ,m − 1. Then the Cauchy problem
(11), (12) has a unique strong solution. This solution is given by the represen-
tation (22).

Proof. Let G be a domain of continuity of the symbols A(r, ξ) and B(ξ) and
ϕj ∈ ΨG,p(IR

n), j = 0, . . . ,m − 1. By construction of the representation (22)
each of its terms satisfies the equation (11) and, by virtue of Lemma 4.3, the
conditions (12). It follows from Lemma 4.4 that for every j = 0, . . . ,m − 1
the inclusion J jBj(t, ξ) ∈ Cm−1(t ≥ 0; C(G)) holds. Moreover, Dd

∗J
jBj(t, ξ) is

bounded for almost every t ∈ (0,∞).

Theorem 5.2. Let ϕj ∈ Ψ
′
−G,q(IR

n), j = 0, . . . ,m − 1. Then the Cauchy
problem (11), (12) has a unique weak solution given by

u(t, x) =
m−1∑
j=0

J jSj(t,−D)ϕj(x), (25)

where Sj(t,−D), j = 1, . . . ,m, is the j-th solution operator with symbol Bj(t, ξ).

Proof. Let ϕj ∈ Ψ
′
−G,q(IR

n), j = 0, . . . ,m−1. It follows from Theorem 2.1 that
every term in the right-hand side of (25), namely, uj(t, x) = J jSj(t,−D)ϕk−1(x),
j = 0, . . . ,m− 1, is a functional from the space Ψ

′
−G,q(IR

n). To prove the the-
orem we have to show that uj(t, x), j = 0, . . . ,m − 1, satisfies the equation
(11) and the initial conditions (12) in the weak sense. Let v ∈ ΨG,p(IR

n) be an
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arbitrary function. Then for uj(t, x) = J jSj(t,−D)ϕj(x) we have∫ m

0

〈Dr
∗uj(t, x), A(r, D)v(x)〉 dr − 〈uj(t, x), B(D)v(x)〉

=
〈 ∫ m

0

Dr
∗J

jSj(t,−D)ϕj(x), A(r, D)v(x)
〉
dr − 〈J jSj(t,−D)ϕj(x), B(D)v(x)〉

=
〈
ϕj(x),

[ ∫ m

0

Dr
∗A(r, D)J jBj(t,−D) dr −B(D)J jSj(t,−D)

]
v(x)

〉
.

Applying the Fourier transform and remembering the definition of Sj(t,D) we
conclude that the expression in the square brackets in the last relation is zero
for almost every t ∈ (0,∞). Besides, Lemma 4.3 yields

lim
t→+0

〈
u

(k)
j (t, x), v(x)

〉
= 〈δj,kϕk(x), v(x)〉, j, k = 0, . . . ,m− 1.

Hence, u(x, t) satisfies the equation (11) in the weak sense.

6. Solution of the multi-point value problem for
distributed order differential equations

In this section we deal with the general multi-point value problem (5) for the
distributed order pseudo-differential equation (3). As we have seen in Section 2
each of the functions Sj(t, ξ), j = 0, . . . ,m− 1, satisfies the equation∫ m

0

A(r; ξ)Dr
∗Sj(t, ξ)dr = B(ξ)Sj(t, ξ),

and the initial conditions

Sj(0, ξ) = 0, . . . , Sj−1
j (0, ξ) = 0,

Sj
j (0, ξ) = 1,

Sj+1
j (0, ξ) = 0, . . . , Sm−1

j (0, x) = 0.

We look for a solution of the multi-point problem in the form

U(t, ξ) =
m−1∑
j=0

cjSj(t, ξ), (26)

with unknown coefficients cj = cj(ξ), j = 0, . . . ,m− 1. Substituting (26) into

m−1∑
j=0

Γkj(ξ)
∂kU(tkj, ξ)

∂tk
= ϕ̂k(ξ), ξ ∈ G, (27)
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which follows from (5) and applying the Fourier transform with respect to x
leads to the system of linear algebraic equations

M(ξ)C(ξ) = Φ̂(ξ). (28)

Here M(ξ) is a square matrix of order m with the entries

mkl =
m−1∑
j=0

Γkj(ξ)S
(j)
l (tkj, ξ), k, l = 0, . . . ,m− 1,

C(ξ) = (c0(ξ), . . . , cm−1(ξ)) is a vector of unknown coefficients and Φ̂(ξ) =
(ϕ̂0(ξ), . . . , ϕ̂m−1(ξ)) is the initial data vector. Denote by M0 the set of all
points ξ ∈ G such that DetM(ξ) = 0. For ξ 6∈ M0 the equation (28) has a
unique solution

C(ξ) = M−1(ξ)Φ̂(ξ). (29)

We note that M0 is the singular set for the symbols of the solution opera-
tors. Inserting the representation (29) of the vector C(ξ) = (c0(ξ), . . . , cm−1(ξ))
into (26) and applying the inverse Fourier transform we get the solution of the
general multi-point value problem (3), (5) as

u(t, x) =
m−1∑
k=0

Uk(t,D)ϕk(x), (30)

where the Uk(t,D), k = 0, . . . ,m− 1, are solution pseudo-differential operators
with the symbols Uk(t, ξ) = (M∗)−1(ξ)S(t, ξ), the matrix (M∗)−1(ξ) is inverse
to the Hermitian conjugate of M(ξ), and S(t, ξ) is the transpose of the row
vector (S0(t, ξ), . . . , Sm−1(t, ξ)) with the components given by (21).

Theorem 6.1. Let ϕk ∈ ΨG′ ,p(IR
n), k = 0, . . . ,m − 1, G

′
= G \ M0. Then

the multi-point value problem (3), (5) has a unique strong solution in the space
C(m)((T1, T2); ΨG

′
,p(IR

n)). This solution is given by the formula (30).

The analogous theorem is valid for the dual problem too. With the dual
problem we mean the problem obtained by replacing the operators A(r, D),
B(D) and Γkj(D), j, k = 0, . . . ,m−1, by their dual operators (see formula (10)).

Theorem 6.2. Let ϕk ∈ Ψ
′

−G′ ,q
(IRn), k = 0, . . . ,m − 1, G

′
= G \ M0. Then

the dual multi-point value problem has a unique weak solution in the space
C(m)((T1, T2); Ψ

′

−G′ ,q
(IRn)). This solution is given by the formula

u(t, x) =
m−1∑
k=0

Uk(t,−D)ϕk(x).
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7. Concluding remarks

Complementing previous works of Umarov and of Umarov et al. (see [16], [33]
– [36]) we have elaborated how the Cauchy problem for a general linear evo-
lution equation with (fractional) temporal derivatives of distributed orders can
be successfully analyzed by the powerful theory of pseudo-differential operators
that has been conceived by Yu. A. Dubinskij in 1982. By applying this theory,
using Fourier transform in space, Laplace transform in time, we have solved the
questions of strong solutions (in classical function spaces) and weak solutions
(in corresponding dual spaces), not only for the Cauchy problem, but also for
a rather general multi-point problem. Having in mind applications mainly in
physics, where in the case of the Cauchy problem initial conditions are given
in form of functions and integer order derivatives we have throughout adhered
to the Caputo version of fractional derivatives. Our treatment is constructive,
so not only answers the questions for existence and uniqueness but in addition
renders transparent integral representations for the solution. For mathemati-
cal completeness it would be desirable to treat the analogous problems where
instead of the fractional derivatives of Caputo type those of Riemann-Liouville
type are used. This, of course, can easily be done in case of all initial conditions
assumed to be zero (in this case the two types of fractional derivatives coincde)
but seems rather tricky otherwise. We leave this problem to another paper or
to other authors.
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