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Regularity of Flows of a Non-Newtonian Fluid
subject to Dirichlet Boundary Conditions

P. Kaplický

Abstract. We study a planar flow of a generalized Newtonian fluid under the Dirich-
let boundary condition. The fluid is characterized by a nonlinear dependence of the
stress tensor on the symmetric part of the velocity gradient. We prove that the unique
weak solution of this problem has a Hölder continuous gradient provided the growth
of the stress tensor is of order p − 1 for a certain p ∈ 〈2, 4). The result is global in
time and in space.
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1. Introduction

Let Ω ⊂ R2 be a bounded domain, I := (0, T ) for some T > 0, Q := I ×Ω. We
investigate the existence of a regular solution u : Q → R2, π : Q → R of the
following two dimensional initial value problem:

∂tu+ ui
∂u

∂xi

− div(T (Du)) +∇π = f, div u = 0 in Q,∫
Ω

π(t) = 0 for a.e. t ∈ I, u = u0 in {0} × Ω
(1)

under the homogeneous Dirichlet boundary condition

u = 0 on I × ∂Ω. (2)
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Here, and also in the whole article, we use the standard summation con-
vention, i.e., ui∂u/∂xi =

∑2
i=1 ui∂u/∂xi. The symmetric gradient of a function

u is denoted Du. Clearly, Du ∈ S, the set of symmetric 2 × 2 matrices. We
assume that Tij(D) = ∂ijF (|D|2) := ∂F (|D|2)/∂Dij for all D ∈ S and a given
potential F : 〈0,+∞) → 〈0,+∞). We assume that F is a C2 function such that
F (0) = 0 and there exist p ≥ 1 and C2 ≥ C1 > 0 such that for all D,E ∈ S

C1(1 + |D|2)
p−2
2 |E|2 ≤ ∂ijTkl(D)EijEkl ≤ C2(1 + |D|2)

p−2
2 |E|2. (3)

If we interpret u as the velocity field, π as the pressure and f as a net applied
force, then the first equation in (1) expresses the balance of linear momentum for
an incompressible fluid. Incompressibility of the fluid is captured by the second
equation in (1). Specific material properties of the fluid are described by the
stress tensor T . We have, mainly, in mind the fluids with shear-dependent
viscosities with T (D) = 2µ(|D|2)D for all D ∈ S and a given generalized

viscosity µ : 〈0,+∞) → 〈0,+∞). Note that then F (|D|2) :=
∫ |D|2

0
µ(s)ds is the

potential to T . Typical example of T satisfying (3) is T (D) = (1+|D|2)(p−2)/2D.

The existence and uniqueness of a global solution to the problem (1), (2)
with (3) were proved in [15] provided p = 2.

To our knowledge, the first successful attempt to obtain global in time
C1,α regularity of the solution of (1), (2) is due to Seregin [20]. He proved the
regularity of the solution in the interior of Ω assuming the boundedness of the
third derivatives of the potential F . His method is based on the fact that in
this case the third derivatives of u are in L2

loc(Q). Under the same condition on
F it is proved in [16] that the gradient of u is even Lipschitz continuous.

A different approach was used in [19] to show that every weak solution
u : Q→ R2 of the problem

∂tu− div(a(∇u)) = 0 in Q (4)

has a locally Hölder continuous gradient, provided a : R2×2 → R2×2 satisfies
similar conditions as T in (3) with p = 2. They first show regularity of ∂tu and
then at every time level they use the stationary Lq theory to (4) with ∂tu on the
right hand side. Their technique was later used in [4] to obtain the regularity
result also for a having the growth exponent p ∈ (1, 2).

Only recently this method was modified in [13] and applied to (1) with pe-
riodic boundary conditions. It is shown there that if (3) holds with p ∈ (4/3, 2〉,
u0 = 0 and f is smooth enough, then there exists a solution u of (1) with the
periodic boundary conditions that has Hölder continuous gradient, and this so-
lution is unique within the weak solutions satisfying the energy inequality. The
lower bound for p is due to the fact that the differences between (1) and (4) do
not allow to show the regularity of ∂tu first, but the regularity of ∂tu and ∇u
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have to be inferred at once. The results from [13] were extended to electrorhe-
ological fluids and nonzero initial value in [2].

In this article we transfer the method from [13] to problem (1) with ho-
mogeneous Dirichlet boundary conditions (2). Our main result is the following
theorem.

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain with C2+µ boundary, µ ∈
(0, 1). Let (3) hold for some p ∈ 〈2, 4) and

f ∈ L∞(I, L2(Ω)), f(0) ∈ L2(Ω), ∂tf ∈ L2(I, (W 1,2
0,div(Ω))∗) (5)

u0 ∈ W r,2(Ω) ∩W 1,2
0,div(Ω), r > 2 (r = 2 if p = 2). (6)

Then the unique weak solution u, π of (1), (2) with (3) satisfies

u,∇u, π ∈ L∞(I,W 1,s(Ω)) for all s ∈ (1, 2) (s = 2 if p = 2),

∂tu ∈ L∞(I, L2(Ω)) ∩ L2(I,W 1,2
0,div(Ω)).

(7)

Moreover, if there is a q̃ > 2 such that

f ∈ L∞(I, Lq̃(Ω)), ∂tf ∈ Lq̃(I,W−1,q̃(Ω)), (8)

then there exist q > 2 and α > 0 such that for all ε ∈ (0, T ), s ∈
(
0, 1/2

)
∇u, π ∈ L∞((ε, T ),W 1,q(Ω)), ∇u, π ∈ C0,α(〈ε, T 〉 × Ω)

∂tu ∈ Lq((ε, T ),W 1,q(Ω)), π ∈ W s,q((ε, T ), Lq(Ω)).
(9)

To prove this theorem we construct the solution u as a limit of smooth
solutions uA to approximating problems. The decisive step is to show a priori
estimates for uA in L∞(I,W 2,q(Ω)) for certain q > 2 independent of A. They
rely on careful stationary and evolutionary estimates for systems of the Stokes
type with bounded measurable coefficients. Evolutionary estimates are used to
get a bound of the norm of ∂tu

A in L∞(I, Lq(Ω)) for certain q > 2. For the
nonlinear system (1) this bound depends on the L∞ norm of ∇uA. Then we
use the stationary estimates to the approximating equation with the term ∂tu

A

on the right hand side in order to estimate ∇uA in L∞(I,W 1,q(Ω)) for certain
q > 2 (cf. [10, 11, 12]).

In spite of the fact that we closely follow [13] there are some important
differences caused by the presence of the boundary. The first difference is hidden
in the Lq theory for the evolutionary Stokes system. In the case of the periodic
boundary conditions the regularity of the pressure can be obtained first and the
Lq theory is then reduced to the Lq theory for the heat equation. This is not
possible in the case of the Dirichlet boundary conditions and more complicated
methods must be used (cf. [5, 14]). The second difference comes from the
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fact that we do not know how to get the regularity statement in (7) up to the
boundary ∂Ω if p < 2. It is possible to get similar interior estimates, but then
we would also need the estimates of ∂tπ and ∂2

t u in the proof of (9) and we do
not know how to solve this problem (see [9] for details). This is why we restrict
ourselves to the case p ≥ 2 in this paper. It should be mentioned that while in
the case of the periodic boundary conditions it is easy to get (7) if p > 2, this
step is nontrivial in the case of the Dirichlet boundary conditions, giving also
the upper bound for p.

This article is divided into four sections. In Section 2 several systems of the
Stokes type with bounded coefficients are studied. The proof of Theorem 1.1 is
delivered in Section 3 provided p = 2 and the last section is devoted to the case
p > 2.

Now we add some remarks on weak solutions of (1), (2) with (3). Let
f ∈ Lp′(I, (W 1,p(Ω))∗), u0 ∈ L2(Ω). We say that u : Q → R2 is a weak
solution of (1), (2) with (3) if u ∈ L∞(I, L2(Ω)) ∩ Lp(I,W 1,p

0,div(Ω)), ∂tu ∈
Lp′(I, (W 1,p

0,div(Ω))∗), it satisfies u(0) = u0 in L2(Ω) and it holds for all ϕ ∈
D((−∞, T ),N (Ω)) that∫

I

〈∂tu, ϕ〉+

∫
I

∫
Ω

T (Du)Dϕ− (u⊗ u)Dϕ =

∫
I

〈f, ϕ〉. (10)

It is well known that then u ∈ C(I, L2(Ω)) and the initial value problem is well
posed. Note, that in the case p ≥ 2 we can take even ϕ ∈ Lp(I,W 1,p

0,div(Ω)) as
a test function in (10). Due to this fact the uniqueness of the weak solution is
obtained via standard arguments for such p.

Moreover, if we know ∂tu ∈ Lp′(I, (W 1,p
0 (Ω))∗) then the pressure π can be

reconstructed at almost every time level t > 0 (cf. [22, IV,1.4]), it is uniquely
determined by the zero mean value condition

∫
Ω
π(t) = 0 for a.e. t ∈ I and it

satisfies π ∈ Lp′(I, Lp′(Ω)).

Now, we bring together notation used in this introduction and in the whole
article. The word domain indicates an open and connected set Ω. We use the
standard notation for the Lebesgue and Sobolev spaces Lp(Ω) and W n,p(Ω),
1 ≤ p ≤ +∞, n ∈ N equipped with the norms ‖. . .‖p,Ω, ‖. . .‖n,p,Ω, respectively.
Similarly, Wα,p(Ω) for α ∈ (0, 1) denote Sobolev-Slobodeckii spaces. Next,
Lp

0,div(Ω), resp. W n,p
0,div(Ω), stand for the closures of the space N (Ω) = {ϕ ∈

D(Ω) : divϕ = 0} in the norm of the space Lp(Ω), resp. W n,p(Ω), and C0,α(Ω)
represents the spaces of Hölder continuous functions.

The dual space to a Banach space X will be denoted by X∗. The value of
a(b) ∈ R, where a ∈ X∗ and b ∈ X is 〈a, b〉X∗,X . If there is no confusion likely, we

write only 〈a, b〉. We also abbreviate (W 1,p′

0 (Ω))∗ = W−1,p(Ω). For the definition
of the Bochner spaces Lp(I,X) and Wα,p(I,X), α ∈ (0, 1), p ∈ (1,+∞), and
the corresponding norms see [21].
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The constant K > 0 may vary from line to line, but it is always independent
of all solutions and approximation parameters. Let us recall that in the whole
paper the summation convention is used, the symmetric gradient of a function
u : R2 → R2 is denoted Du.

2. Results for generalized Stokes system

The Lq theory for linear parabolic and elliptic systems of the Stokes type plays
a significant role in the proof of Theorem 1.1. For systems with the periodic
boundary conditions and the zero initial condition it was proved in [13, Sec-
tion 2]. These results were later extended also for the nonzero initial condition
in [2, Section 4.2]. The aim of this section is to provide a detailed summary
of the Lq theory for the evolutionary problems with the Dirichlet boundary
condition by the method developed in [13, Section 2].

Although we need the Lq theory only in R2 we state it in Rn, n ∈ N,
accordingly Ω ⊂ Rn, Q := I × Ω ⊂ Rn+1 in this section. Let A = (Akl

ij )
n
i,j,k,l=1 :

Q→ Rn4
, γ2 ≥ γ1 > 0 such that for all E ∈ S, x ∈ Ω, t ∈ I

γ1 |E|2 ≤ Akl
ij (t, x)EijEkl ≤ γ2 |E|2

Akl
ij ∈ L∞(Q), Akl

ij (t, x) = Aij
kl(t, x).

(11)

For a given g : Q→ Rn and v0 : Ω → Rn we study a weak solution v : Q→ Rn

of the problem

∂tv − div(ADv) +∇σ = g, div v = 0 in Q

v(0) = v0 in Ω, v = 0 on I × ∂Ω.
(12)

The existence and uniqueness of a weak solution of this problem is well known.
It is shown for example in [23, Theorem III.1.1] provided Akl

ij = δikδjl on Q for
all i, j, k, l = 1, . . . , n (δik denotes the Kronecker symbol). We state this in the
following lemma.

Lemma 2.1. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary.
If g = divG for some symmetric matrix G ∈ L2(Q) and v0 ∈ L2

0,div(Ω),

then there exists a uniquely defined weak solution v ∈ L2(I,W 1,2
0,div(Ω)), ∂tv ∈

L2(I, (W 1,2
0,div(Ω))∗) of (12) with Akl

ij = δikδjl on Q for all i, j, k, l = 1, . . . , n such
that max(‖Dv‖2,Q , ‖v‖L∞(I,L2(Ω))) ≤ ‖G‖2,Q + ‖v0‖2,Ω and∫ T

0

〈∂tv, ϕ〉+

∫
I

∫
Ω

DijvDijϕ = −
∫ T

0

∫
Ω

GijDijϕ (13)

holds for all ϕ ∈ L2(I,W 1,2
0,div(Ω)).
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Note, that once the existence of a weak solution v is known, we get the
bound in Lemma 2.1 by testing (13) by this solution v.

In the next lemma we collect the facts about the Lq theory for the Stokes
problem.

Lemma 2.2. Let Ω ⊂ Rn be a bounded domain with C2+µ boundary, 0 < µ < 1.
Let Akl

ij ≡ δikδjl on Q for all i, j, k, l, 2 < r < +∞.

(i) For all s ∈ (0, 1/2) there exists a K > 0 such that if g = divG for a
symmetric matrix G ∈ Lr(Q), v0 ≡ 0 on Ω, then the unique weak solution
v of (12) satisfies

‖v‖Lr(I,W 1,r(Ω)) + ‖v‖W s,r(I,Lr(Ω)) ≤ K ‖G‖r,Q .

(ii) If r < 5/2 then there is a K > 0 such that if g ≡ 0 on Q and v0 ∈
W (n+1)(r−2)/r,2(Ω) ∩ L2

0,div(Ω), then the unique weak solution v of (12)
satisfies

‖v‖Lr(I,W 1,r(Ω)) + ‖v‖L∞(I,Lr(Ω)) ≤ K ‖v0‖W (n+1)(r−2)/r,2(Ω) .

Moreover, v ∈ W s,r(I, Lr(Ω)) for all s < 1/2.

The constants K are independent of T .

Proof. Part (i): Let P : Lr(Ω) → Xr := Lr
0,div(Ω) be the Helmholtz pro-

jection. The standard Stokes operator Ar : D(Ar) ⊂ Xr → Xr on D(Ar) :=
W 2,r(Ω) ∩ W 1,r

0,div(Ω) is defined by Ar := −P∆. For α ∈ (−1, 1) we define

Aα, D̂(Aα
r ) as in [5]. Let B := ∂t : D(B) ⊂ Lr(I,Xr) → Lr(I,Xr) with

D(B) := {v ∈ W 1,r(I,Xr) : v(0) = 0}. In [5, Lemma 4.1] it is proved that

if g ∈ Lr(I, D̂(A
−1/2
r )) then there exists a unique weak solution v of (12) sat-

isfying ‖v‖D(B1/2) + ‖v‖
Lr(I,D(A

1/2
r ))

≤ K‖g‖
Lr(I,D̂(A

−1/2
r ))

. It holds D(A
1/2
r ) ↪→

W 1,r(Ω), see [6, Prop. 1.4], and consequently (W 1,r′(Ω))∗ ↪→ (D(A
1/2
r′ ))∗ =

D̂(A
−1/2
r ), compare [6, (1.3)]. Defining the operator g(ϕ) =

∫
Q
GDϕ for all

ϕ ∈ Lr′(I,W 1,r′(Ω)), it follows ‖g‖
Lr(I,D̂(A

−1/2
r ))

≤ K ‖G‖r,Q. It remains to

show that D(B1/2) ↪→ W s,r(I,Xr) if s < 1/2. In fact, B has bounded imag-
inary powers, see [3], and consequently D(B1/2) = (Lr(I,Xr),D(B))[1/2] ↪→
(Lr(I,Xr),D(B))s,r ↪→ W s,r(I,Xr), compare also [21, proof of Theorem 30].
This finishes the proof of the first part of the lemma. Here we used (·, ·)[1/2],
(·, ·)s,r for the complex and real interpolation methods.

Part (ii): First we find in [6, Lemma 1.1] that the operator Ar gen-
erates a bounded analytic semigroup on Xr. It follows that if v0 ∈ Xθ,r :=
(Xr,D(Ar))θ,r for some θ ∈ (0, 1/2), then v(t) := e−Artv0 satisfies ‖v(t)‖1,r ≤
Kmin{(1/t)1/2−θ, (1/t)1/2}‖v0‖Xθ,r

for t > 0. Hence, if θ > 1/2 − 1/r we have
‖v‖Lr(I,W 1,r(Ω)) ≤ K ‖v0‖Xθ,r

. Moreover, ‖v(t)‖Xθ,r
≤ K ‖v0‖Xθ,r

for t > 0.
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We conclude the proof by the fact that due to the embedding there is θ ∈
(1/2 − 1/r, 1/(2r)) such that W (n+1)(r−2)/r,2(Ω) ∩ Xr ↪→ Xθ,r. The fact that
v ∈ W s,r(I,Xr) for all s < 1/2 follows from [7, Corollary 2.3].

Defining S1 : L2(Q)×L2
0,div(Ω) → L2(Q), S1(G, v0) = Dv and S2 : L2(Q)×

L2
0,div(Ω) → L∞(I, L2(Ω)), S2(G, v0) = v, where v is the unique weak solu-

tion of (12) with Akl
ij ≡ δikδjl on Q, Lemma 2.1 implies that S1 and S2 are

continuous linear operators with norms bounded by 1. Restricting S1 and S2

on DS := Lr(Q) × (W (n+1)(r−2)/r,2(Ω) ∩ L2
0,div(Ω)), Lemma 2.2 says that for

r ∈ (2, 5/2) there exists Cr > 0 such that S1 is continuous from DS to Lr(Q)
and S2 is continuous from DS to L∞(I, Lr(Ω)) with the norms bounded by
Cr > 0 independent of T . Unfortunately, the constant Cr cannot be efficiently
computed in the proof of Lemma 2.2. In order to get estimates of this constant
we interpolate the estimates in Lemma 2.1 and those in Lemma 2.2. Riesz-
Thorin interpolation theorem supplies the statement of the following lemma.
Note that in Lemma 2.3 below the upper bound for the constant Cq is shown
and this upper bound tends to 1 as q goes to 2. This is extremely important in
the proof of Proposition 2.4 below.

Lemma 2.3. Let Ω ⊂ Rn be a bounded domain with C2+µ boundary, µ ∈ (0, 1),

r ∈ (2, 5/2). Let Akl
ij ≡ δijδkl on Q, Kr := C

r/(r−2)
r . Then there exists a K ′

r > 0
such that for every q ∈ (2, r), g = divG with a symmetric matrix G ∈ Lq(Q),
v0 ∈ W (n+1)(q−2)/q,2(Ω) ∩ L2

0,div(Ω) the unique weak solution v of (12) satisfies

max
{
‖v‖L∞(I,Lq(Ω)) , ‖Dv‖q,Q

}
≤ K

1− 2
q

r

(
‖G‖q,Q +K ′

r ‖v0‖W (n+1)(q−2)/q,2(Ω)

)
.

Finally, Lemma 2.3 allows us to prove the Lq theory also for systems of
the Stokes type with bounded measurable coefficients provided q > 2 is small
enough.

Proposition 2.4. Let Ω ⊂ Rn be a bounded domain with C2+µ boundary, µ ∈
(0, 1), r ∈ (2, 5/2). Then there are constants K > 0, L > 0, which may
depend only on r and Ω, such that if q ∈ (2, 2 +Lγ1/γ2〉 (γ1, γ2 occur in (11)),
g ∈ Lq(I,W−1,q(Ω)) and v0 ∈ V0 := W (n+1)(q−2)/q,2(Ω) ∪ L2

0,div(Ω), then the
unique weak solution v of (12) with (11) satisfies v ∈ W s,q(I, Lq(Ω)) for all
s < 1/2 and

‖∇v‖q,Q + γ
− 1

q

2 ‖v‖L∞(I,Lq(Ω)) ≤
K

γ1

(
‖g‖Lq(I,W−1,q(Ω)) + γ

1− 1
q

2 ‖v0‖V0

)
. (14)

Proof. We follow the proof of [13, Proposition 2.1]. It is split into three steps.
Step 1 shows that there exists a symmetric tensor G ∈ Lq(Q) such that for

all ϕ ∈ D((−∞, T ),N (Ω))∫
I

∫
Ω

GijDijϕ =

∫
I

〈g, ϕ〉, ‖G‖q,Q ≤ K ‖g‖Lq(I,W−1,q(Ω)) . (15)
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The main idea is to solve the stationary Stokes problem∫
Ω

Dijw(t)Dijϕ = 〈g(t), ϕ〉 ∀ϕ ∈ N (Ω)

with the homogeneous Dirichlet boundary conditions for a.e. t ∈ I and define
G(t) = Dw(t). This can be done with the help of the Lq theory for the stationary
Stokes system, see for example [1]. Then it is possible to show (15) exactly as
in [13].

Step 2 proves the assertion of Proposition 2.4 provided that

Akl
ij ∈ C∞(Q), Gij ∈ C∞(Q), suppGij ⊂ Q, v0 ∈ N (Ω). (16)

The computations in this step require to know that the unique weak solution
of (12) is bounded in Lq(I,W 1,q(Ω)). This is assured by (16). Indeed, if (16)
holds we can construct by the Galerkin method the unique weak solution v
of (12) such that ∂tv ∈ L∞(I, L2(Ω)), v ∈ L∞(I,W 2,2(Ω)), compare for example
with [23, proof of Theorem III.3.6].

Now, we add γ2∆v to both sides of (12) and after change of the variable
s = γ2t, s ∈ I∗ := (0, T ∗), T ∗ = γ2T the weak formulation of the problem (12)
looks like: for all ϕ∗ ∈ D((−∞, T ∗),N (Ω))∫

I∗

∫
Ω

∂sv
∗ϕ∗ +Dv∗Dϕ∗ =

∫
I∗

∫
Ω

B∗Dv∗Dϕ∗ +
1

γ2

G∗Dϕ∗. (17)

We used the notation v∗(s, x) := v(t, x), G∗(s, x) := G(t, x), (B∗)kl
ij (s, x) :=

δikδjl − Akl
ij (t, x)/γ2 for all s ∈ I∗, x ∈ Ω and all i, j, k, l. We can use Proposi-

tion 2.3 to (17) in the same way as it is done in [13] to get (this is the point,
where we need that the Lq norm of Dv is bounded)

‖v∗‖L∞(I∗,Lq(Ω)) + ‖∇v∗‖q,Q∗ ≤
K

γ1

(
‖G∗‖q,Q∗ + γ2 ‖v0‖V0

)
(18)

provided (2Kr)
1−2/q(1 − γ1/γ2) < 1 − γ1/(2γ2), which follows from q ∈ (2, 2 +

Lγ1/γ2) if L > 0 is chosen suitably small. Note also that Lemma 2.2 implies
that u∗ ∈ W s,q(I∗, Lq(Ω)) for all s < 1/2.

Inequality (14) then follows by the backward transformation of time t =
s/γ2 from (18).

Step 3 proves Proposition 2.4 assuming that Akl
ij ∈ L∞(Q), G ∈ Lq(Q) and

v0 ∈ V0.
By the convolution of Ã (Ã := A inQ, Ã := γ1I in R3\Q) with a smooth con-

volution kernel we find symmetric matrices A(n) ∈ C∞(Q) such that A(n)(t, x) →
A(t, x) for almost every (t, x) ∈ Q and for all D ∈ S, for a.e. (t, x) ∈ Q it holds

γ1 |D|2 ≤ (Akl
ij )

(n)
(t, x)DijDkl ≤ γ2 |D|2. We can also construct G(n) ∈ D(Q)

such that G(n) → G in Lq(Q) and v
(n)
0 ∈ N (Ω) such that v

(n)
0 → v0 in V0.
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Denote by v(n), σ(n) the solutions of (12) with the coefficient matrix A(n),

the right-hand side g(n) = divG(n) and with the initial value v
(n)
0 . For n large

enough it follows by Step 2

γ
− 1

q

2

∥∥v(n)
∥∥

L∞(I,Lq(Ω))
+

∥∥Dv(n)
∥∥

q,Q
≤ 2K

γ1

(
‖G‖q,Q + γ

1− 1
q

2 ‖v0‖V0

)
. (19)

As the right hand side of (19) does not depend on n we can pass to the limit as
n→∞ in the weak formulation of (12). Since the weak solution of the problem
(12) (with A, G, v0) is unique the statement of the proposition follows from
(19) by Korn inequality (for example [17, Section 5.1.1]), (15) and the lower
semicontinuity of the norm with respect to the weak convergence.

In the proof of Theorem 1.1 we will also need the Lq theory of stationary
systems of the Stokes type with bounded measurable coefficients. We investigate
a weak solution v : Ω → Rn of the following stationary problem:

− div(ADv) +∇σ = g, div v = 0 in Ω, v = 0 on ∂Ω. (20)

We assume that the coefficients A = (Akl
ij )i,j,k,l=1,...,n satisfy the stationary equiv-

alent of (11)

∃γ1, γ2 > 0, ∀E ∈ S, ∀x ∈ Ω : γ1 |E|2 ≤ Akl
ij (x)EijEkl ≤ γ2 |E|2

Akl
ij ∈ L∞(Ω) and Akl

ij (x) = Aij
kl(x) ∀x ∈ Ω , i, j, k, l = 1, . . . , n.

(21)

A proposition analogous to Proposition 2.4 holds (see [11, Lemma 2.6]).

Proposition 2.5. Let Ω ⊂ Rn be a bounded domain with C2 boundary. Then
there are constants K > 0, L > 0 such that if q ∈ (2, 2 + Lγ1/γ2) and g ∈
W−1,q(Ω), then the unique weak solution v of (20) with (21) satisfies

‖∇v‖q,Ω ≤
K

γ1

‖g‖W−1,q(Ω) .

Now we recall two useful lemmas.

Lemma 2.6. Let Ω ⊂ Rn be a bounded domain with C2 boundary. Assume that
w ∈ L∞(I, C0,α(Ω)) and w ∈ C0,β(I;Lr(Ω)) for some α, β > 0 and r > 1. Then
w ∈ C0,γ(Q) with γ = min

{
α, αβr

αr+n

}
.

The proof is a slight modification of the proof of [8, Lemma 2.2].

Lemma 2.7. Let Ω ⊂ Rn be a bounded domain with C2 boundary. If q0 > n
and u ∈ W 1,q0(Ω). Then u ∈ C(Ω) and there is C > 0 independent of q0 such
that

sup
Ω
|u| ≤ C

(
q0 − 1

q0 − n

)1− 1
q0

‖u‖1,q0,Ω

The assertion follows from the proof of Theorem 2.4.1 in [24], page 58:
(2.4.6)–(2.4.9).
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3. Proof of Theorem 1.1 for p = 2

The proof is divided into several lemmas. In the first lemma it is stated that a
unique weak solution to problem (1)–(3) exists for p = 2. For our approach it
is important that the regularity of ∂tu (see (22)) is directly obtained.

Lemma 3.1. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary, let (3)
hold with p = 2, f ∈ L2(I, (W 1,2

0 (Ω))∗), ∂f/∂t ∈ L2(I, (W 1,2
0,div(Ω))∗), f(0) ∈

L2(Ω). Let u0 ∈ W 2,2(Ω)∩W 1,2
0,div(Ω). Then there exists a unique weak solution

u of the problem (1), (2) and a constant K > 0 such that

‖u‖L∞(I,L2(Ω)) + ‖∇u‖2,Q ≤ K, ‖∂tu‖L∞(I,L2(Ω)) + ‖∇∂tu‖2,Q ≤ K. (22)

The pressure π can be reconstructed in such a way that it has the zero mean
value over Ω at almost every time level t ∈ I, π ∈ L2(Q) and ‖π‖2,Q ≤ K.

Proof. For the Navier-Stokes system (i.e. Tij(D) = Dij for all D ∈ S) the
existence and regularity of u is proved in [23, Theorem III.3.5] via the Galerkin
method. The same proof works also for the systems with growth p = 2 that we
consider here with the difference that we have to use the monotonicity of the
operator T to pass to the limit in the elliptic term.

As ∂tu, div T (Du), div(u⊗u) and f belong to L2(I,W−1,2(Ω)), the pressure
π(t) can be reconstructed by De Rham’s theorem at almost every time level t ∈ I
in such a way that

∇π(t) = −∂tu(t) + div(T (Du(t)))− div(u⊗ u)(t) + f(t) in W−1,2(Ω). (23)

Setting up the zero mean value condition for π(t) we get for a.e. t ∈ I an
estimate of π(t) in L2(Ω) via the Nečas Theorem on negative norms, see for
example [1], consequently π ∈ L2(Q) and ‖π‖2,Q ≤ K. The lemma is proved.

In the next lemma we collect an additional information about the regularity
in space of the unique weak solution of problem (1), (2) with (3).

Lemma 3.2. Let, additionally to the assumptions of Lemma 3.1, Ω have C2

boundary and f ∈ L∞(I, L2(Ω)). Then the unique weak solution of problem (1),
(2) with (3) satisfies

u ∈ L∞(I,W 2,2(Ω)), π ∈ L∞(I,W 1,2(Ω)). (24)

Proof. As ∂tu ∈ L∞(I, L2(Ω)), see (22), we can move this term to the right
hand side of (1). At a.e. time level t ∈ I we can use the difference technique
in the space to get (24). The proof is technically difficult as ∂Ω is present. The
regularity of u cannot be obtained at once, first the interior regularity must be
shown and then the regularity near the boundary. We skip the proof and refer
the reader to [18, Section 3] where this method is used to get L2(I,W 2,2(Ω))
regularity of a solution to a similar system as we consider here even in 3D. It
can be easily modified also for our situation.
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Now we improve the regularity of ∂tu by the linear theory from Section 2.
To avoid possible problems in t = 0 we employ a cut-off function in time.

Lemma 3.3. Let all assumptions of Lemma 3.2 hold. Moreover, let ∂tf ∈
Lq̃(I,W−1,q̃(Ω)) for some q̃ ∈ (2, 4) and ∂Ω be of the class C2+µ for some
µ ∈ (0, 1). Then there exists q > 2 such that the unique weak solution of (1),
(2) with (3) satisfies for all s < 1/2 and δ ∈ (0,min{1, T})

∂tu ∈ Lq((δ, T ),W 1,q
0,div(Ω)) ∩W s,q((δ, T ), Lq(Ω)). (25)

Proof. First we derive an equation for the time derivative of u. We test (1)
with ϕ := ∂t(ψη), where ψ ∈ D((−∞, T ),N (Ω)) and the cut-off function η ∈
C∞(R) satisfies η = 0 on (−∞, δ/2〉, η = 1 on 〈δ,+∞) and η′ ∈ 〈0, 5/δ〉
on R. After integration by parts we get that v := η∂tu satisfies for all ψ ∈
D((−∞, T ),N (Ω))∫

Q

−v∂tψ + ∂klTij(Du)DklvDijψ = 〈g, ψ〉, (26)

where

〈g, ψ〉 =

∫
Q

(η∂tf + η′∂tu)ψ + (viuj + vjui)Dijψ. (27)

Clearly, g ∈ Lq̃(I, (W−1,q̃(Ω)) by (22), (24), the assumption on ∂tf and the
properties of η. Moreover, div v = 0 on Q and v = 0 on ({0} × Ω) ∪ (I × ∂Ω).
Since Akl

ij := ∂ijTkl(Du) on Q satisfies (11) by (3) with p = 2, Proposition 2.4
gives us q ∈ (2, q̃) such that (25) holds.

Note that Lemma 3.3 guarantees that u ∈ L∞((δ, T ), Lq(Ω)) for some q > 2
by [21, Corollary 26]. It means that we can move ∂tu to the right hand side
of (1) and for a.e. t ∈ (δ, T ) use the stationary theory, namely the following
theorem proved in [11, Theorem 3.19].

Theorem 3.4. Let Ω ⊂ R2 be a bounded domain with C2 boundary. Let u, π,∫
Ω
π = 0 be a weak solution of the problem

uk
∂u

∂xk

− div(T (Du))−∇π = f, div u = 0 in Ω, u = 0 at ∂Ω,

where T satisfies (3) with p = 2, f ∈ Lq̃(Ω) for q̃ > 2. Then there is a q ∈ (2, q̃)
such that ‖u‖2,q,Ω + ‖π‖1,q,Ω ≤ K where K and q may depend only on Ω, C1,
C2, ‖f‖q,Ω.

Now we are ready to prove the Hölder continuity of ∇u, but to prove the
Hölder continuity of π we lack the information about the regularity of π in
time. Fortunately, it can be reread from (1) since ∂tu ∈ W s,q((δ, T ), Lq(Ω)) for
all s < 1/2, precisely
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Lemma 3.5. Let p = 2 and all assumptions of Theorem 1.1 hold. Then there
exists a q > 2 such that for all δ ∈ (0,min{1, T}) and s < 1/2

π ∈ W s,q((δ, T ), Lq(Ω)). (28)

Proof. Due to our assumptions all Lemmas of this section hold. From (24)
and (25) the existence of q > 2 follows such that

u ∈ W s,q((δ, T ),W 1,q(Ω)), ∂tu ∈ W s,q((δ, T ), Lq(Ω)). (29)

Let t, t′ ∈ (δ, T ) and denote ∆tt′u = u(t)− u(t′) and so on. Subtracting (23) in
time t′ from the same equation in time t we get for all ϕ ∈ W 1,2

0 (Ω)∫
Ω

∆tt′π divϕ =

∫
Ω

(∆tt′∂tu−∆tt′f)ϕ− (∆tt′(u⊗ u)−∆tt′T (Du))Dϕ. (30)

By (8) and (29) it is seen that (30) remains valid also for all ϕ ∈ W 1,q′

0 (Ω). We
construct a special test function ϕtt′ as a solution of the problem

divϕtt′ = ∆tt′π|∆tt′π|q−2 − 1

|Ω|

∫
Ω

∆tt′π|∆tt′π|q−2 in Ω

ϕtt′ = 0 at ∂Ω.

As the right hand side belongs to Lq′(Ω) for a.e. (t, t′) ∈ (δ, I)2 by (24) and it
has zero mean value over Ω, we get for example by [1, Lemma 3.3] the existence

of ϕtt′ and the estimate
∥∥ϕtt′

∥∥
1,q′,Ω

≤ K
∥∥∆tt′π

∥∥q−1

q,Ω
.

Testing (30) with ϕtt′ we get on the left hand side (the second term vanishes
as

∫
Ω

∆tt′π = 0) Iπ :=
∫

Ω
∆tt′π divϕtt′ =

∥∥∆tt′π
∥∥q

q,Ω
. The right hand side can be es-

timated with a help of Hölder inequality, (3) and (24) by Iπ/2+K(‖∆tt′∂tu‖q
q,Ω+

‖∆tt′f
∥∥q

−1,q,Ω
+‖∆tt′∇u‖q

q,Ω). We divide the both sides by |t− t′|1−sq and after the

integration of the so obtained inequality twice over (δ, T ) we get by (8) and (29)

‖π‖q
W s,q((δ,T ),Lq(Ω)) =

∫ T

δ

∫ T

δ

∥∥∆tt′π
∥∥q

q,Ω

|t− t′|1+sq
dt dt′ ≤ K.

The lemma is proved.

Now we are prepared to prove Theorem 1.1 in the case p = 2. Let (5), (6)
hold. Then (7) follows by Lemmas 3.1, 3.2. Let, moreover, (8) hold. Combining
the results from Lemmas 3.1, 3.2, 3.3 with Theorem 3.4 we have got the existence
of q > 2 such that the unique weak solution u, π of (1), (2) with (3) satisfies
(24), (25) and

u ∈ L∞((δ, T ),W 2,q(Ω)), π ∈ L∞((δ, T ),W 1,q(Ω)). (31)
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As W 1,q((δ, T ), Lq(Ω)) ↪→ C1−1/q(〈δ, T 〉, Lq(Ω)) and W 1,q(Ω) ↪→ C0,1−2/q(Ω)
in two dimensions, it follows from (25) and (31) by Lemma 2.6 that ∇u ∈
C0,α((δ, T )× Ω) for a certain α > 0. Moreover, (28) holds by Lemma 3.5 and
by embedding [21, Corollary 26] π ∈ Cs−1/q(〈δ, T 〉, Lq(Ω)) for all s ∈ (1/q, 1/2).
This together with (31) gives by Lemma 2.6 the Hölder continuity of π on
(δ, T )× Ω and concludes the proof of Theorem 1.1 if p = 2.

4. Proof of Theorem 1.1 for p ∈ (2, 4)

Following [18] we introduce quadratic approximations T A of T . For A > 1 we
define an approximative potential

FA(s) =

{
F (s) for s ∈ (0, A2〉,
as+ b

√
s+ c for s > A2

in such a way that FA ∈ C2(〈0,+∞)) and, trivially, FA(0) = 0. Defining
T A

ij (D) := ∂ijF
A(|D|2) for all D ∈ S and i, j, there is a constant C(A) > 0 such

that for all D,E ∈ S it is C1|E|2 ≤ ∂klT A
ij (D)EijEkl ≤ C(A)|E|2. It means that

T A satisfies (3) with p = 2 and by the previous section the problems

∂tu− div T A(Du) = f −∇π − div(u⊗ u), div u = 0 in Q∫
Ω

π(t) = 0 for a.e. t ∈ I, u = 0 in I × ∂Ω, u(0) = u0 in Ω
(32)

possess the unique weak solutions uA, πA satisfying (7) and (9). Although we
do not a priori know that uA, πA are bounded in the norms of the spaces from
(7) and (9) uniformly in A, the regularity of uA, πA is very important as it
allows us to compute with these norms since they are for fixed A > 1 finite.

In order to prove Theorem 1.1 we estimate uA, πA in suitable spaces uni-
formly with respect to A and pass to the limit as A → ∞ in (32). Since we
want to show the uniform estimates of uA, πA we need uniform estimates of T A.
For this purpose we define θA(D) = (1 + min (|D|2, A2))1/2 for all D ∈ S. In
[18, Lemma 2.22] the existence of C3, C4 > 0 is proved such that for all A > 1,
D,E ∈ S

C3θ
p−2
A (D)|E|2 ≤ ∂klT A

ij (D)EijEkl ≤ C4θ
p−2
A (D)|E|2 (33)

C3|D|2 ≤ T A
ij (D)Dij. (34)

From (33) it follows by the Mean Value Theorem that there exists a K > 0
such that for all A > 1, D ∈ S

|T A
ij (D)| ≤ Kθp−2

A (D)|D|, θp−2
A (D)|D|2 ≤ KT A

ij (D)Dij. (35)
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To illustrate the technique we prove the last statement. Since T A(0) = 0 we
have

T A
ij (D)Dij =

∫ 1

0

∂klT A
ij (sD)dsDklDij ≥ C3

∫ 1

0

θp−2
A (sD)ds|D|2

for D ∈ S. It remains to show I(A,D, p) :=
∫ 1

0
θp−2

A (sD)ds ≥ Kθp−2
A (D). Note

that the function s → θp−2
A (sD) is nondecreasing on 〈0, 1〉, i.e., I(A,D, p) ≥

θp−2
A (D/2)/2. This gives for |D|/2 < A that I(A,D, p) ≥ (1 + |D|2/4)(p−2)/2/2

and consequently I(A,D, p) ≥ 1/2(1/4)(p−2)/2θp−2
A (D). As for |D|/2 ≥ A we

get I(A,D, p) ≥ (1 + |A|2)(p−2)/2/2 = θp−2
A (D)/2 the claim is proved.

As we want to prove a global result we need the following description of the
boundary of Ω. Let us choose some α > 0 small. As ∂Ω is of the class C2+µ,
it can be described in the local coordinates by C2+µ maps a` : (−α, α) → R,
` ∈ {1, . . . , k},

a′`(0) = 0, sup
(−α,α)

|a′`| ≤ α, (36)

i.e., for all x0 ∈ ∂Ω there exist B(x0) and ` ∈ {1, . . . , k} such that in the
corresponding local coordinates (x1, x2) ∈ ∂Ω∩B(x0) if and only if x2 = a`(x1)
for x1 ∈ (−α, α).

Denoting

U+
` := {(x1, x2) : x1 ∈ (−α, α), x2 ∈ (a`(x1), a`(x1) + α)}

U−
` := {(x1, x2) : x1 ∈ (−α, α), x2 ∈ (a`(x1)− α, a`(x1))}

U` := {(x1, x2) : x1 ∈ (−α, α), x2 ∈ (a`(x1)− α, a`(x1) + α)}

we may assume that U+
` ⊂ Ω, U−

` ⊂ R2 \ Ω and choose an open smooth set

U0 ⊂ U0 ⊂ Ω so that
⋃k

`=0 U` ⊃ Ω . Let ξ` (` = 0, 1, . . . , k) be a partition of
the unity corresponding to the covering U0, U1, . . . , Uk of Ω. In the coordinate
system corresponding to (U`, ξ`, a`), ` = 1, . . . , k, we can define a tangential
derivative ∂u

∂τ
:= ∂u

∂x1
+ a′`

∂u
∂x2
.

Let us start with the uniform estimates recalling that all constants K > 0
are always independent of A. We will follow the scheme of Section 3, but
now we have the whole scale of problems (32) for all A > 1 and we show the
estimates independent of A. An easy consequence of the fact that C3 |E|2 ≤
∂ijTkl(D)EijEkl for all D,E ∈ S is the following lemma.

Lemma 4.1. Let A > 1, p > 2 and Ω ⊂ R2 be a bounded domain with
C2+µ boundary, µ ∈ (0, 1). Let uA, πA be a weak solution of (32) with f
satisfying (5) and u0 satisfying (6). Then there exists a constant K > 0 such
that ∥∥uA

∥∥
L∞(I,L2(Ω))

+
∥∥∇uA

∥∥
2,Q

≤ K∥∥∂tu
A
∥∥2

L∞(I,L2(Ω))
+

∥∥∇∂tu
A
∥∥

2,Q
≤ K.

(37)
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Proof. As the estimates of T A from below does not depend on A, the proof is
essentially the same as the proof of Lemma 3.1. Recall that it is based on the
Galerkin method. The only point where the proofs differ is when estimating L2

norm of ∂tu
A
m(0), where uA

m is a Galerkin approximation. Since a uniform esti-
mate of div T A(Du0) in L2(Ω) is needed there, we assume (6) and the estimate
then follows from (33) as Du0 is bounded in Ω.

As in the previous section we now move ∂tu in (32) to the right hand side
and get better uniform estimates of uA in space. The presence of ∂Ω causes
that we can prove them only for p ∈ (2, 4) and in comparison with Lemma 3.2
we get (38) below only for s ∈ (1, 2).

Lemma 4.2. Let p ∈ (2, 4) and all assumptions of Lemma 4.1 be satisfied.
Then for every s ∈ (1, 2) there exists a constant K > 0 such that for every
A > 1 the unique weak solution uA, πA of (32) satisfies∥∥πA

∥∥
L∞(I,W 1,s(Ω))

+
∥∥uA

∥∥
L∞(I,W 2,s(Ω))

≤ K. (38)

Proof. As all assumptions of Lemma 4.1 hold we have ‖∂tu‖L∞(I,L2(Ω)) < K.
Consequently, we move ∂tu to the right hand side of (32) and at almost every
time level t ∈ I use the stationary theory developed in [11], where the authors
study similar stationary systems for p < 2. As we can proceed similarly here
we just mention the main steps of the proof.

First of all the interior regularity is shown. We can even show that there
is a K > 0 such that ‖ξ0uA

L∞(I,W 2,2(Ω))‖ < K. The proof is based on testing

(32) with ϕk := rot(ξ2k
0 curlu) for k ∈ N large enough, compare [11, Lemma 4.6,

Step 1]. The next step is to get the estimates of ∂uA/∂τ in W 1,2 norm. Similarly
as in [11, Lemma 5.1] these estimates depend on ∇uA. Nevertheless, if p ∈ (2, 4)
this information is sufficient to reread estimate (38) from (32) with help of (33),
(34) and (35), compare [11, Lemma 5.6].

In the next lemma we show the uniform estimates that correspond to the
results in Lemma 3.3 and Theorem 3.4.

Lemma 4.3. Let p ∈ (2, 4) and all assumptions of Theorem 1.1 hold. There
exists a q > 2 such that for every 2ε ∈ (0,min{1, T}) there is a K > 0 such that
for all A > 1 ∥∥∂tu

A
∥∥

L∞((2ε,T ),Lq(Ω))
+

∥∥∇2uA
∥∥

L∞((2ε,T ),Lq(Ω))
≤ K. (39)

Proof. Due to the assumptions, Lemmas 4.1 and 4.2 hold. Next we gain an
information on ∂tu

A. By the same procedure as in Lemma 3.3 we derive (26)
for v := η∂tu

A and σ := η∂tπ
A, η being a cut-off function with properties

η = 0 on (−∞, ε + δ/2), η = 1 on (ε + δ,+∞) and η′ ∈ (0, 5/δ) on R for some
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δ ∈ (0,min{1, T} − ε). In the following all constants K > 0 are independent
of δ. Without loss of the generality we may assume that q̃ < 4 in (8), so
by (8), (37) and (38) we see that the functional g defined by (27) satisfies
‖g‖Lq̃(I,W−1,q̃(Ω)) ≤ K/δ.

By (33) it holds for all t ∈ (ε+ δ/2, T ), x ∈ Ω and E ∈ S that

C3|E|2 ≤ ∂ijT A
kl (Du

A(t, x))EijEkl ≤ C4V
p−2
A,δ/2|E|

2, (40)

where VA,δ/2 = sup(ε+δ/2,T )×Ω |θA(DuA)|. Let us note, that we a priori know that
VA,0 < +∞. Consequently, Proposition 2.4 gives us K > 0, L > 0 such that for
all q ∈ (2, 2 + LV 2−p

A,δ/2〉

∥∥∇∂tu
A
∥∥

q,(ε+δ,T )×Ω
+ V

(2−p)/q
A,δ/2

∥∥∂tu
A
∥∥

L∞((ε+δ,T ),Lq(Ω))
≤ K

δ
, (41)

as we may assume that L < q̃−2 also q0 := 2+LV 2−p
A,δ/2 < q̃. From (37) and (41)

we have ‖∂tu
A‖L∞((ε+δ,T ),L2(Ω)) ≤ K and ‖∂tu

A‖L∞((ε+δ,T ),Lq0 (Ω)) ≤ KV
(p−2)/q0

A,δ/2 /δ.

Interpolating these results we get for q ∈ (2, q0) and b ∈ (0, 1) satisfying 1/q =
b/q0 + (1− b)/2 the estimate

∥∥∂tu
A
∥∥

L∞((ε+δ,T ),Lq(Ω))
≤ K

δb
V E

A,δ/2 with E :=
b(p− 2)

q0
. (42)

Note that E → 0, q → 2 as b→ 0.

From now on all constants K > 0 are independent of t ∈ I. For a.e.
t ∈ (ε + δ, T ) it is ‖∂tu

A‖q,Ω + ‖πA‖q,Ω ≤ KV E
A,δ/2/δ

b. We fix one of these

t ∈ (ε + δ, T ) and improve an information about ∇2uA at time level t. We use
the similar process as in the proof of Lemma 4.2. The estimates of ∇2uA in the
interior of Ω should be shown first and then the more difficult estimates near
∂Ω. We show only the latter estimates. Fix q ∈ (2, q0) and also corresponding
b ∈ (0, 1), ` ∈ {1, . . . , k}, see (36).

On the coordinate system (a, ξ, U) := (a`, ξ`, U`) the tangential derivative

is defined and we set v := ξ ∂uA

∂τ
(t) + ũ, where ũ solves

div ũ = −∂u
A

∂τ
∇ξ − a′′

∂uA
1

∂x2

in U+, ũ = 0 at ∂U+.

Since the compatibility condition
∫

U+ −∂uA

∂τ
∇ξ − a′′

∂uA
1

∂x2
=

∫
U+ div(−ξ ∂uA

∂τ
(t)) =

0 =
∫

∂U+ ũ holds, the solution of this problem exists, see for example [1,
Lemma 3.3], and as ξ ∈ C∞(U), a ∈ C2(−α, α) there exists a K > 0 such

that ‖ũ‖1,q,U+ ≤ K‖∇uA‖q,Ω. Testing (32) with φ = −∂ϕ
∂τ
ξ for ϕ ∈ W 1,q′

0,div(Ω) we
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get after a long but elementary calculation that v (of course v ≡ 0 in Ω \ U+)
solves ∫

Ω

∂ijT A
kl (Du

A(t))Dklv(t)Dijϕ = 〈g(t), ϕ〉 ∀ϕ ∈ W 1,q′

0,div(Ω),

div v = 0 on Ω, v = 0 at ∂Ω,
(43)

with
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∫
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for all ϕ ∈ W 1,q′

0 (Ω). The functional g satisfies by (8), (38) and (42) the
estimates ‖g(t)‖−1,q,Ω ≤ KV E

A,δ/2/δ
b. Due to (40) we can apply Proposition 2.5

to (43) and get ∥∥∥∥ξ∇∂uA

∂τ
(t)

∥∥∥∥
q,Ω

<
K

δb
V E

A,δ/2. (44)

Note that below (41) L > 0 can be chosen so that (44) holds for all q ∈ (2, q0).

We reconstruct the whole ∇2uA as in [11, Lemma 5.6]. Defining G :=
∂

∂x2
(T A

12 (DuA)(t)) it follows from the equality (we suppress the arguments to
shorten the record)
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by (33) and especially ∂12T12( ) ≥ C3θ

p−2
A , div uA = 0 and the definition of

∂uA/∂τ that ΘA
t := θp−2

A (DuA(t))|∇2uA(t)|, ΞA
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A (DuA(t))|∇∂uA
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isfy ∥∥ξΘA
t

∥∥
q,Ω

≤ K1

(
‖ξG(t)‖q,Ω +

∥∥ξΞA
t

∥∥
q,Ω

+ sup |a′|
∥∥ξΘA

t

∥∥
q,Ω

)
, (45)

where K1 > 0 is an absolute constant. Proceeding similarly to [11, Theo-
rem 3.19, Step 3] and using (8), (38) and (42) we reread from (32)

‖ξG(t)‖q,Ω ≤ K2

(
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.

Also here K2 > 0 is an absolute constant and we may assume that the descrip-
tion on ∂Ω is such that (K1 + K2) sup(−α,α) |a′| < 1/2, compare (36). Conse-

quently, we get from (45) by (44) that ‖ξΘA
t ‖q,Ω ≤ KV p−2

A,δ V
E
A,δ/2/δ

b. Summing

this over all coordinate systems gives us together with (38) that∥∥θp−1
A (DuA(t))
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≤
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We want to use an embedding theorem on the left hand side of (46). Note that
as q0, and consequently also q, depend on VA,δ/2 and may tend to 2 as A→ +∞
we need to know the precise dependence of the embedding constant on q. Since
q0 < q̃ and q − 2 = (q0 − 2)bq/q0 ≥ 2bLV 2−p

A,δ/2/q̃ it follows by means of the
embedding theorem recalled in Lemma 2.7 that

sup
Ω
θp−1

A (DuA(t)) ≤ K

δb
b

1
q
−1V p−2

A,δ V
(1−1/q)(p−2)+E
A,δ/2 . (47)

Now recall that K > 0 is independent of t and that (47) holds for a.e. t ∈
(ε+δ, T ). Taking the essential supremum of (47) over this interval and dividing
by V p−2

A,δ we come to

VA,δ ≤
K

δb
b

1
q
−1V

(p−2)(1−1/q)+E
A,δ/2 . (48)

The constant b ∈ (0, 1) can be fixed for p ∈ (2, 4) independently of A so small
that κ := E + (p − 2)(1 − 1

q
) ∈ (0, 1). Then λ := 1

1−κ
> 0 and we rewrite (48)

in the form

δbλVA,δ ≤ K

((δ
2

)bλ

VA,δ/2

)κ

. (49)

As supδ∈(0,min{1,T}−ε) δ
bλVA,δ < +∞ we can take supremum of (49) over δ ∈

(0,min{1, T} − ε) and get (39) from (42) and (46).

Let us now prove Theorem 1.1 if p ∈ (2, 4). If (3), (5) and (6) hold we get for
the approximations uA the estimates (38). Hence, there are u ∈ Lr̃(I,W 2,r(Ω)),
π ∈ Lr̃(I,W 1,r(Ω)) for all r̃ > 1, r ∈ (1, 2), such that up to a subsequence
uA ⇀ u and πA ⇀ π weakly in the corresponding spaces. Moreover, we
can assume by (37) that ∂tu ∈ Lr̃(I, L2(Ω)) ∩ L2(I,W 1,2(Ω)) for all r̃ > 1
and ∂tu

A ⇀ ∂tu weakly in these spaces and by the Leray-Lions Theorem also
∇uA → ∇u strongly in Lr̃(Q) for all r̃ > 1. Particularly, we may assume
∇uA → ∇u a.e. in Q. This information allows us to pass to the limit in
the weak formulation of (32) as A → ∞, compare [17, Section 5.5.3], and get
(7) from (37) and (38). If, moreover, (8) holds, it follows from Lemma 4.3
that for every ε ∈ (0,min{1, T}) the function Du is bounded on (ε, T ) × Ω
and that there is a t0 ∈ (ε, 2ε) such that ‖u(t0)‖2,2,Ω is finite. Consequently, if
A > ess-sup{|Du(t, x)| : t ∈ (ε, T ), x ∈ Ω}, the functions u, π are the unique
weak solution of the problem

∂tu− div T A(Du) = f −∇π − div(u⊗ u), div u = 0 on (t0, T )× Ω,∫
Ω

π(t) = 0 for a.e. t ∈ I, u = 0 on (t0, T )× ∂Ω, u(t0) ∈ W 2,2(Ω)

and (9) follows by Theorem 1.1 with p = 2. Theorem 1.1 is proved.
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[11] Kaplický, P., Málek, J. and J. Stará: C1,α-solutions to a class of nonlinear
fluids in two dimensions—stationary Dirichlet problem. Zap. Nauchn. Sem. S.-
Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 259 (1999), Kraev. Zadachi Mat.
Fiz. i Smezh. Vopr. Teor. Funkts. 30, 89 – 121, 297.
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