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On the Relationship between
p-Analytic Functions and Schrödinger Equation

Vladislav V. Kravchenko

Abstract. Theory of p-analytic functions was developed by G. N. Polozhy in fourties
and later on by many other authors. It has numerous applications in elasticity theory
and in hydrodynamics. Its main object of study is a system generalizing the Cauchy-
Riemann conditions where a new factor p appears which is assumed to be a positive
function. In the present work we show that all p-analytic functions can be obtained
from solutions of the Schrödinger equation to which the function f0 = 1√

p is a so-
lution. The inverse is also true. We show that this relationship leads to an explicit
correspondence between p1- and p2-analytic functions if 1√

p1
and 1√

p2
are solutions

of the same Schrödinger equation. For example, if f0 is a harmonic function then all
p-analytic functions can be obtained from analytic ones. Another simple consequence
of our result is that all xk-analytic functions intensely studied in literature can be
obtained directly from the Bessel equation.
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tions, Schrödinger equation
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1. Introduction

A function Φ = u + iv of a complex variable z = x + iy is said to be p-analytic
in some domain Ω ⊂ C iff

ux =
1

p
vy, uy = −1

p
vx in Ω, (1)

where p is a given positive function of x and y which is supposed to be con-
tinuously differentiable. In fact we will assume that it is twice differentiable.
The theory of p-analytic functions was presented in [12]. p-analytic functions in
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a certain sense represent a subclass of generalized analytic (or pseudoanalytic)
functions studied by L. Bers [2, 3] and I. N. Vekua [13], and it should be no-
ticed that this subclass preserves some important properties of usual analytic
functions which are not preserved by a too ample class of generalized analytic
functions (corresponding details can be found in [12]). p-analytic functions
found applications in elasticity theory (see, e.g., [1, 7]) and in axisymmetric
problems of hydrodynamics (see, e.g., [5]).

In the present work we show that p-analytic functions are closely related to
solutions of the static Schrödinger equation

(−∆ + ν)f = 0, (2)

where for simplicity ν and f are assumed to be real valued functions of x and
y (for ν being a complex valued function we are forced to consider p-analytic
functions taking values in the algebra of bicomplex numbers, that is u and v are
complex valued functions with another imaginary unit j commuting with i that
would not require any essential changes in what follows but certainly it would
introduce some unnecessary complications in notations and explanations).

The main result consists in the following observation. Let f0 = 1/
√

p be a
solution of (2), then we show that any p-analytic function can be transformed
into a solution of (2) and vice versa. The corresponding transformation is
completely explicit and quite simple. As a corollary of this result we obtain that
if the functions 1/

√
p1 and 1/

√
p2 are solutions of the Schrödinger equation (2)

with the same potential ν, then an explicit correspondence between p1 and p2-
analytic functions can be proposed. For example, if p1 ≡ 1 and f0 = 1/

√
p2 is an

arbitrary harmonic function, using our transformation all p2-analytic functions
can be obtained from analytic ones.

Another simple consequence of our result is that all xk-analytic functions
intensely studied in the literature (see, e.g., [4, 8, 12], can be obtained directly
from the Bessel equation.

2. Relationship between generalized analytic functions
and the Schrödinger equation

Denote ∂z = ∂x− i∂y and ∂z = ∂x + i∂y. Usually these operators are introduced
with the factor 1

2
, nevertheless here it is somewhat more convenient to consider

them without it.

We start with the following result obtained in [11] with the aid of quater-
nionic analysis methods developed in earlier works (see [10] and the bibliography
therein) which can be verified by a direct substitution.
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Proposition 1. For any two particular solutions f0 and f1 of (2), where f0 is
assumed to be nonvanishing, the function w = f0∂z(f

−1
0 f1) is a solution of the

equation

wz = −∂zf0

f0

w (3)

which is equivalent to the system

∂xu− ∂yv = −∂xf0

f0

u +
∂yf0

f0

v, ∂yu + ∂xv =
∂yf0

f0

u +
∂xf0

f0

v. (4)

Let us introduce the following operator P = f0∂zf
−1
0 I, where I is the iden-

tity operator. Due to Proposition 1, if f0 is a nonvanishing solution of (2), the
operator P transforms solutions of (2) into solutions of (3).

Note that the operator ∂z applied to a real valued function ϕ can be regarded
as a kind of gradient, and if we know that ∂zϕ = Φ in a whole complex plane
or in a convex domain, where Φ = Φ1 + iΦ2 is a given complex valued function
such that its real part Φ1 and imaginary part Φ2 satisfy the equation

∂yΦ1 + ∂xΦ2 = 0, (5)

then we can reconstruct ϕ up to an arbitrary real constant C in the following
way:

ϕ(x, y) =

∫ x

x0

Φ1(η, y)dη −
∫ y

y0

Φ2(x0, ξ)dξ + C, (6)

where (x0, y0) is an arbitrary fixed point in the domain of interest. By A we
denote the integral operator in (6):

A[Φ](x, y) =

∫ x

x0

Φ1(η, y)dη −
∫ y

y0

Φ2(x0, ξ)dξ + C.

Note that formula (6) can be easily extended to any simply connected domain
by considering the integral along an arbitrary rectifiable curve Γ leading from
(x0, y0) to (x, y)

ϕ(x, y) =

∫
Γ

Φ1dx− Φ2dy + C.

Thus if Φ satisfies (5), there exists a family of real valued functions ϕ such that
∂zϕ = Φ, given by the formula ϕ = A[Φ].

Consider the operator S = f0Af−1
0 I. It is clear that PS = I.

Proposition 2. Let f0 be a nonvanishing particular solution of (2) and w be
a solution of (3). Then the function f = Sw is a solution of (2).
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Proof. First of all let us check that the function Φ = w/f0 satisfies (5). Con-
sider

∂yΦ1 + ∂xΦ2 =
1

f0

((
∂yu + ∂xv

)
−

(∂yf0

f0

u +
∂xf0

f0

v
))

.

From (4) we obtain that this expression is zero. Thus the function ϕ = A[w/f0]
is real valued and satisfies the equation ∂zϕ = w/f0. Let us consider the
expression

∂z∂z(Sw) = ∂z

(
(∂zf0) A

[ w

f0

]
+ w

)
= (∆f0) A

[ w

f0

]
+ (∂zf0) ∂zA

[ w

f0

]
− ∂zf0

f0

w.

(7)

For the expression ∂zA[ w
f0

] we have

∂zA
[ w

f0

]
= ∂zA

[ w

f0

]
+ 2i∂yA

[ w

f0

]
=

w

f0

− 2i
v

f0

=
w

f0

,
(8)

where the following observation was used:

∂yA

[
u + iv

f0

]
(x, y) =

∫ x

x0

∂y

(
u(η, y)

f0(η, y)

)
dη − v(x0, y)

f0(x0, y)
=

= −
∫ x

x0

∂η

(
v(η, y)

f0(η, y)

)
dη − v(x0, y)

f0(x0, y)
= − v(x, y)

f0(x, y)
.

Thus substitution of (8) into (7) gives us the equality

∂z∂z(Sw) = νf0A
[ w

f0

]
= νSw.

Proposition 3. Let f be a solution of (2). Then

SPf = f + Cf0,

where C is an arbitrary real constant.

Proof. Consider

SPf = f0A∂z

[ f

f0

]
= f0

( f

f0

+ C
)

= f + Cf0.
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3. p-analytic functions and the Schrödinger equation

Together with equation (3) let us consider the equation

Wz = −∂zf0

f0

W. (9)

Notice that the functions

F =
1

f0

and G = if0 (10)

are solutions of (9), and Im(FG) > 0. Then F and G can be regarded as a Bers
generating pair for equation (9).

Solutions of (3) and (9) are closely related to each other. In order to see it we
need the concept of the (F, G)-derivative introduced by L. Bers (see, e.g., [2]).
For solutions of equation (9) the (F, G)-derivative (denoted by Ẇ ) takes the
form

Ẇ = Wz +
∂zf0

f0

W.

The following statement can be checked by a direct substitution.

Proposition 4. [11] Let W be a solution of (9). Then the function w = iẆ is
a solution of (3).

The (F, G)-integral is defined as follows [2]:∫
Γ

Wd(F,G)z = F (z1) Re

∫
Γ

G∗Wdz + G(z1) Re

∫
Γ

F ∗Wdz,

where Γ is a rectifiable curve leading from z0 to z1,

F ∗ = − 2F

FG− FG
, G∗ =

2G

FG− FG
.

For F and G defined by (10) we have

F ∗ = − i

f0

, G∗ = f0.

Due to L. Bers, if W = uF + vG is an (F, G)-pseudoanalytic function where u
and v are real valued functions, then∫ z

z0

Ẇd(F,G)z = W (z)− u(z0)F (z)− v(z0)G(z), (11)

and as Ḟ =Ġ = 0, this integral is nothing but the (F, G)-antiderivative of Ẇ .
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For F and G defined by (10) we have∫
Γ

Wd(F,G)z =
1

f0(z1)
Re

∫
Γ

f0Wdz − if0(z1) Re

∫
Γ

i

f0

Wdz.

Moreover, due to Proposition 4 and equation (11) we obtain the following result.

Proposition 5. Let w be a solution of (3). Then the function

W (z) = −
∫ z

z0

iwd(F,G)z = − 1

f0(z)
Re

∫ z

z0

if0wdz − if0(z) Re

∫ z

z0

w

f0

dz

is a solution of (9).

Any (F, G)-pseudoanalytic function [2] can be represented in the form W =
uF + vG, where u and v are real valued functions satisfying the equation

uzF + vzG = 0.

In the case of equation (9) the functions F and G are given by (10) and thus
any solution of (9) can be represented in the form W = u

f0
+ ivf0, where u and

v are real valued functions satisfying the equation

uz + if 2
0 vz = 0.

This equation is equivalent to the system

ux = f 2
0 vy, uy = −f 2

0 vx

which compared to (1) shows us that the function Φ = u+ iv is p-analytic with
p = 1/f2

0 . Thus we obtain the following result.

Theorem 1. Let f0 be a nonvanishing particular solution of (2)and Φ = u+ iv

be an 1
f2
0
-analytic function. Then W = u

f0
+ ivf0 is a solution of (9), w = i

·
W =

i(Wz + ∂zf0

f0
W ) is a solution of (3) and f = Sw is a solution of (2).

We have an inverse result also.

Theorem 2. Let f0 be a nonvanishing particular solution of (2) and f be
another solution of (2). Then w = Pf is a solution of (3), the function W (z) =
−

∫ z

z0
iwd(F,G)z is a solution of (9), and Φ = f0 Re W + i

f0
Im W is a 1

f2
0
-analytic

function.

Thus due to Theorem 1 we are able to convert p-analytic functions into
solutions of the Schrödinger equation and due to Theorem 2 we have an inverse
result.
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Remark 1. A considerable part of bibliography dedicated to p-analytic func-
tions consists of studying the case p = xk, where k ∈ R (see, e.g., [4], [8], [12]).
Let us see what is the form of the corresponding Schrödinger equation. For
this we should calculate the potential ν in (2) when f0 = 1/

√
p = x−k/2 is a

particular solution of (2). It is easy to see that

ν =
k2 − 2k

4x2
. (12)

The Schrödinger equation with this potential is well studied. Separation of
variables leads us to the equation

X ′′(x) +

(
β2 − 4α2 − 1

4x2

)
X(x) = 0, (13)

where β2 is the separation constant and α = (k − 1)/2. The function

X(x) =
√

xZα(βx)

is a solution of (13) (see [6, 8.491]), where Zα denotes any cylindric function
of order α (Bessel functions of first or second kind). Thus the study of xk-
analytic functions reduces to the Schrödinger equation (2) with ν defined by (12)
which in its turn after having separated variables reduces to a kind of Bessel
equation (13).

Remark 2. In the work [9] boundary value problems for p-analytic functions
with p = x/(x2 + y2) were studied. Considering

f0 =
1
√

p
=

√
x2 + y2

x

we see that this function is a solution of the Schrödinger equation (2) with ν
having the form ν = 3

4x2 , that is we obtain again the potential of the form
(12) where k = 3 or k = −1 and as was shown in the previous Remark the
study of corresponding p-analytic functions in a sense reduces to the Bessel
equation (13).

Remark 3. Let us indicate another interesting consequence of Theorems 1
and 2. Let p1 and p2 be such that p

−1/2
1 and p

−1/2
2 are solutions of the Schrödinger

equation (2) with the same potential ν. Then our results allow us to transform
p1-analytic functions into p2-analytic ones and vice versa. Take any p1-analytic
function Φ1 = u1 + iv1. Then according to Theorem 1 the function W1 =√

p1u1 + iv1√
p1

is a solution of (9) where f0 = 1/
√

p1, the function w1 = iẆ1 is
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a solution of (3) with the same f0 and f = Sw1 = 1√
p1

A(
√

p1w1) is a solution

of (2), where by assumption

ν =
∆p

− 1
2

1

p
− 1

2
1

=
∆p

− 1
2

2

p
− 1

2
2

.

Then due to Theorem 2, w2 = Pf = 1√
p2

∂z(
√

p2f) is a solution of (3) where f0 =

1/
√

p2, the function W2(z) = −
∫ z

z0
iw2d(F,G)z, where F =

√
p2 and G = i/

√
p2,

is a solution of (9), and finally Φ2 = 1√
p2

Re W2 + i
√

p2 Im W2 is a p2-analytic

function.

Example 1. Let p1 ≡ 1, that is p1-analytic functions are simply analytic. Ob-
viously ν = 0 and we are able to obtain representations of p2-analytic functions
in terms of analytic ones for any p2 such that p

−1/2
2 is harmonic. For instance,

let us choose as p2 the function

p2 =
1

(x + a)2(y + b)2

where a and b are positive constants. Then the function f0 = 1/
√

p2 = (x +
a)(y + b) is harmonic, and we are able to transform analytic functions into p2-
analytic and vice versa. Take an arbitrary analytic function Φ1 = u1 + iv1. As
p1 ≡ 1, we have W1 = Φ1 and w1 = iẆ1 = i∂zΦ1 is analytic also. Consider

f = Sw1 = A
[
i∂zΦ1

]
= A

[
∂yu1 − ∂xv1 + i(∂xu1 + ∂yv1)

]
.

Due to the fact that the pair u1 and v1 satisfies the Cauchy-Riemann conditions
we have

∂yu1 − ∂xv1 + i(∂xu1 + ∂yv1) = −2(∂xv1 − i∂yv1) = −2∂zv1.

Thus
f = −2A[∂zv1] = −2(v1 + C),

where C is an arbitrary real constant. It is obvious that this function is har-
monic. Now in order to proceed with the example, let us choose a concrete
harmonic function f , for example, f = x. Let us construct the corresponding
p2-analytic function. We have

w2 = Pf =
1
√

p2

∂z(
√

p2f)

= (x + a)(y + b)∂z

(
x

(x + a)(y + b)

)
=

a

(x + a)
+

ix

(y + b)
.
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Now consider the function W2(z) = −
∫ z

z0
iw2d(F,G)z. In order to simplify our

calculations let us take z0 = 0. Then by definition of the (F, G)-integral we
obtain

W 2(z)

=
1

(x + a)(y + b)
Re

∫ z

0

(x′ + a)(y′ + b)

(
x′

(y′ + b)
− ia

(x′ + a)

)
dz′

− i(x + a)(y + b) Re

∫ z

0

i

(x′ + a)(y′ + b)

(
x′

(y′ + b)
− ia

(x′ + a)

)
dz′

=
1

(x + a)(y + b)
Re

∫ 1

0

(xt(xt + a)− ia(yt + b)) (x + iy)dt

− i(x + a)(y + b) Re

∫ 1

0

(
a

(xt + a)2(yt + b)
+

ixt

(xt + a)(yt + b)2

)
(x + iy)dt

=
1

(x + a)(y + b)

∫ 1

0

(
x2t(xt + a) + ay(yt + b)

)
dt

− i(x + a)(y + b)

∫ 1

0

(
ax

(xt + a)2(yt + b)
− xyt

(xt + a)(yt + b)2

)
dt.

Now calculating the integrals∫ 1

0

dt

(xt + a)2(yt + b)
= − x

a(x + a)(ay − bx)
+

y

(ay − bx)2
ln

∣∣∣∣a(y + b)

b(x + a)

∣∣∣∣∫ 1

0

tdt

(xt + a)(yt + b)2
= − 1

(ay − bx)(y + b)
− a

(ay − bx)2
ln

∣∣∣∣b(x + a)

a(y + b)

∣∣∣∣
we obtain

W2 =
x3

3(x + a)(y + b)
+

a(x2 + y2)

2(x + a)(y + b)
+

aby

(x + a)(y + b)

− i(x + a)(y + b)

(
− x2

(x + a)(ay − bx)
+

xy

(ay − bx)(y + b)

)
=

x3

3(x + a)(y + b)
+

a (x2 + y2 + 2by)

2(x + a)(y + b)
− ix.

Finally we have that

Φ2 =
1
√

p2

Re W2 + i
√

p2 Im W2 =
a

2
(x2 + y2 + 2by) +

x3

3
− ix

(x + a)(y + b)

is the p2-analytic function corresponding to the harmonic function f = x.

It is clear that the results presented in this work represent only some first
corollaries of the revealed relation between p-analytic functions and solutions of
the Schrödinger equation. Both fields are so rich that without doubts this new
bridge will serve for further advances in the two theories.
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