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Abstract. This paper deals with the invertibility of convolution type operators that
come from a wave diffraction problem with reactance conditions on a strip. The
diffraction problem is reformulated as a single convolution type operator on a fi-
nite interval. To develop an operator constructive approach, several matrix operator
identities are established between this convolution type operator and certain new
Wiener-Hopf operators, and certain equivalent properties are obtained between all
the related operators. Factorizations are presented for particular semi-almost peri-
odic matrix functions and the corresponding Wiener-Hopf operators. As a result,
conditions are obtained to ensure the invertibility of all the convolution type oper-
ators associated with the problem. This leads to the well-posedness of the problem
including the continuous dependence on the data. In obtaining our results a major
role is played by the invertibility of the convolution type operator associated with
the wave diffraction by a strip with equal Dirichlet conditions on both sides of the
strip, which is obtained through an analytical representation. Both problems and the
corresponding operators are considered in the framework of Bessel potential spaces.
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1. Introduction

This paper is devoted to the study of convolution type operators

WΦ,I = rR→IF−1Φ · F , (1.1)
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that arise in wave diffraction problems with reactance conditions [5, 6, 14, 15, 17]
(and with Dirichlet conditions [10, 16, 17]) on a strip [10]. Here F denotes the
Fourier transform operator, Φ is the Fourier transform of the convolution kernel
which, in general, will be a matrix function with piecewise continuous or semi-
almost periodic elements, I ⊂ R and rR→I denotes the restriction operator
from the real line to I. We will consider the case when I is a finite interval and
study the invertibility of the convolution type operator (1.1) in this case which
models the (main) wave diffraction problem with reactance conditions on a finite
strip. In particular, conditions are obtained to ensure the invertibility of the
convolution type operator (1.1) associated with the main problem. This leads
to the well-posedness of the main diffraction problem including the continuous
dependence on the data. To this end, extension methods are used to obtain
corresponding operators (1.1) with I = R+ which fall into the class of Wiener-
Hopf operators, so that the theory of Wiener-Hopf operators can be taken into
account.

In the study of the Wiener-Hopf operators derived from the main problem
an important role is played by the convolution type operator modelling the
diffraction problem by a finite strip with Dirichlet conditions. The invertibility
of this operator is obtained through extension methods based on operator ma-
trix identities. On the other hand, the convolution type operators derived from
the main diffraction problem allow us to choose a convenient Fourier transform
of the kernel of one of these operators to work with. To study such a Fourier
transform, some factorization procedures for semi-almost periodic matrix func-
tions are proposed.

The theory will be developed in the framework of Bessel potential spaces.
A Bessel potential space can be defined as the linear space of distributions,
φ = rRn→Ω ϕ, that are obtained by restriction to Ω ⊂ Rn of the elements in the
space

Hs(Rn) = {ϕ ∈ D′(Rn) : ‖ϕ‖Hs(Rn) = ‖F−1(1 + |ξ|2)
s
2 · Fϕ‖L2(Rn) < +∞}

(s ∈ R). Moreover, the Hs(Ω) space endowed with the norm

‖φ‖Hs(Ω) = inf
{
‖ϕ‖Hs(Rn) : ϕ ∈ Hs(Rn), rRn→Ω ϕ = φ

}
becomes a Banach space. For I ⊆ R+, we will denote by H̃s(I) the closed
subspace of Hs(R) defined by the distributions with support contained in I.
Moreover, in the special case with s = 0, we will use the more common notation
of L2

+(R) and L2(R+) for representing H̃0(R+) and H0(R+), respectively.
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2. Formulation of the main problem

We will consider the problem of wave diffraction by a finite strip with reactance
conditions. The finite strip is denoted here by Σ =]0, a[ where the dependence on
one variable was dropped due to perpendicular wave incidence (which leads us
from strips to intervals). The problem can be formulated, in a Bessel potential
space setting, as the following boundary-transmission problem for the Helmholtz
equation: Find ϕ ∈ L2(R2), with ϕ|R2

±
∈ H1(R2

±), such that(
∆ + k2

)
ϕ = 0 in R2

± (2.1){
ϕ+

0 − ϕ−0 = h1

ϕ+
1 − ϕ−1 + qϕ+

0 = h2

on Σ (2.2)

{
ϕ+

0 − ϕ−0 = 0

ϕ+
1 − ϕ−1 = 0

on R \ Σ , (2.3)

where R2
± represents the upper/lower half-plane, k ∈ C (with =mk > 0) stands

for the wave number, ϕ±0 = ϕ|y=±0, ϕ
±
1 = (∂ϕ/∂y)|y=±0, q ∈ C is the reactance

number and the elements h1 ∈ rR→ΣH̃
1/2(Σ), h2 ∈ rR→ΣH̃

−1/2(Σ) are arbitrarily
given (since the dependence on the data is to be studied for well-posedness).
The Bessel potential spaces of order 1 and ±1/2 are naturally involved due to
the energy norm and the Trace Theorem [4], respectively.

For the case when Σ is a half-line, the corresponding problem has previ-
ously been considered by many authors as a Sommerfeld type problem (see the
fundamental survey paper [17], where the corresponding problem for the half-
line case was described in the framework of operator theoretical methods). In
[17, §5], such a half-line problem was also regarded as a certain class of general
screen problems that were analyzed upon the boundary conditions considered.
Note that the classical formulation of this problem (in a semi-plane instead of
the present strip) usually assumes h1 = 0 due to physical reasons. Here, from
the mathematical point of view, we consider the present more general situation
which leads also to more general corresponding operators.

The reason to consider the data in the restricted tilde spaces rR→ΣH̃
1/2(Σ)

and rR→ΣH̃
−1/2(Σ) is a consequence of the overlapping of the information in

(2.2) and (2.3). Such realizations of the data are known as compatibility condi-
tions [19] and appear in several different kinds of wave diffraction problems [15].
In fact, the first compatibility condition follows directly from the first equa-
tions in (2.2) and (2.3), whilst the second one follows from the second equa-
tions in (2.2) and (2.3) and by noting that we have the continuous embedding

H1/2(Σ) ↪→ rR→ΣH̃
−1/2(Σ).
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From an operator-theoretical point of view, the problem (2.1)–(2.3) can be
described by the use of a single operator

L : D(L) →
(
rR→ΣH̃

1/2(Σ)
)
×
(
rR→ΣH̃

−1/2(Σ)
)

(2.4)

defined as Lϕ = (h1, h2)
T ifD(L) is defined as the subspace ofH1(R2

+)×H1(R2
−)

whose functions satisfy the Helmholtz equation (2.1) and the transmission con-
dition (2.3). The operator L is said to be associated with the reactance problem.
In what follows we will analyze if L is a bounded and invertible operator. As
was already pointed out above, this will guarantee the well-posedness of the
problem including the continuous dependence upon the data.

3. Description of the reactance problem
by a single convolution type operator on tilde spaces

In this section we shall explore the structure behind the operator L, defined
in (2.4). This will be done within the framework of convolution type operators.
To this end, we need to implement some operator extension procedures of the
following type.

Definition 3.1.

(i) Two operators W1 and W2 (acting between Banach spaces) are said to
be algebraically equivalent after extension if there exist additional Banach
spaces Z1 and Z2 and invertible linear operators E and F such that[

W1 0

0 IZ1

]
= E

[
W2 0

0 IZ2

]
F . (3.1)

(ii) If, in addition to (i), the invertible and linear operators E and F in (3.1)
are bounded, then we will say that W1 and W2 are topologically equivalent
after extension operators (or simply say that W1 and W2 are equivalent
after extension operators [1]).

(iii) In (ii), if both Z1 and Z2 are trivial spaces, W1 and W2 are said to be
equivalent operators.

Remark. The above notion of equivalence after extension coincides with the
famous concept of matricial coupling between bounded linear operators, as was
established for the first time in [1]. In [8] and [10], some differences are discussed
between algebraic and topological equivalence after extension relations between
convolution type operators.
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Let

t(ξ) =
(
ξ2 − k2

) 1
2 , ξ ∈ R

denote the branch of the square root that tends to +∞ as ξ → +∞ with branch
cuts along ±k ± iη, η ≥ 0. Then we have the following result on the structure
of the operator L.

Theorem 3.2. The operator L is equivalent after extension to the convolution
type operator

W̃Φ,Σ = rR→ΣF−1Φ · F : H̃−1/2(Σ) → rR→ΣH̃
−1/2(Σ) , (3.2)

where

Φ = 1− 1

2
q t−1 . (3.3)

Proof. Note first the well-known fact [17] that a function ϕ ∈ L2(R2), with
ϕ|R2

±
∈ H1(R2

±), satisfies the Helmholtz equation (2.1) if and only if it can be
expressed as

ϕ(x, y) = F−1
ξ 7→xe

−t(ξ)yFx 7→ξϕ
+
0 (x)χR+(y) + F−1

ξ 7→xe
t(ξ)yFx 7→ξϕ

−
0 (x)χR−(y) (3.4)

for (x, y) ∈ R2, where Fx 7→ξϕ(x, y)
∫

R ϕ(x, y)eiξxdx, and χR+ and χR− denote
the characteristic functions of the positive and negative half-line, respectively.

Define the space

Z =
{

(φ, ψ) ∈
[
H1/2(R)

]2
: φ− ψ ∈ H̃1/2(Σ), F−1t · F(φ+ ψ) ∈ H̃−1/2(Σ)

}
.

Then the trace operator T0 : D(L) → Z defined by

T0ϕ = ϕ0 :=

[
ϕ+

0

ϕ−0

]
is an invertible operator. In fact, such a trace operator is continuously in-
vertible with the inverse operator K : ϕ0 7→ ϕ defined by the representation
formula (3.4). Moreover, with the help of the operators T0 and K the operator
L can be rewritten in the form of an operator matrix composition depending
on W̃Φ,Σ (and which can be checked by direct computation):

L =

[
0 rR→Σ

IrR→ΣH̃1/2(Σ)
q
2
rR→Σ

][
W̃Φ,Σ 0

0 IH̃1/2(Σ)

]
WΦ1,R T0 , (3.5)

where WΦ1,R is the convolution operator on the whole line

WΦ1,R = F−1Φ1 · F : Z → H̃−1/2(Σ)× H̃1/2(Σ) ,
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with

Φ1 =

[
−t −t
1 −1

]
.

Now it can be easily verified that the matrix operator[
0 rR→Σ

IrR→ΣH̃−1/2(Σ)
q
2
rR→Σ

]
,

which maps rR→ΣH̃
−1/2(Σ)× H̃1/2(Σ) into rR→ΣH̃

1/2(Σ)× rR→ΣH̃
−1/2(Σ), is a

bounded, invertible operator with the inverse[
− q

2
IrR→ΣH̃1/2(Σ) IrR→ΣH̃−1/2(Σ)

l0|rR→ΣH̃1/2(Σ) 0

]
.

It is also easy to see that WΦ1,RT0 is continuously invertible with the inverse
operator

KW−1
Φ1,R = KWΦ−1

1 ,R : H̃−1/2(Σ)× H̃1/2(Σ) → D(L) .

Therefore, (3.5) represents an equivalence after extension relation between L

and the convolution type operator on a finite interval, W̃Φ,Σ, defined in (3.2).

4. Operator extensions concerning space orders and
supports

In this section we are interested in studying the invertibility of the operator
W̃Φ,Σ. To this end, we choose to work with operators connected with this one
but having a better structure. In particular, we will make use of Wiener-Hopf op-
erators (having therefore standard Bessel potential spaces as their image spaces
instead of the above restricted tilde spaces, see (3.2)). We do this by first con-
sidering an auxiliary problem of wave diffraction by a finite strip with Dirichlet
boundary conditions (which leads to a bounded, invertible convolution type

operator) and then extending the operator W̃Φ,Σ by use of the above auxiliary
operator, which allows us to work in a L2-space setting.

4.1. The Dirichlet problem of wave diffraction by a finite strip. We
now consider the (auxiliary) problem of wave diffraction by a finite strip with
Dirichlet boundary conditions. This problem leads to a bounded, invertible con-
volution type operator which plays an important role in proving the invertibility
of the convolution type operator W̃Φ,Σ.
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Dirichlet Problem: Find ϕ ∈ L2(R2), with ϕ|R2
±
∈ H1(R2

±), such that(
∆ + k2

)
ϕ = 0 in R2

±{
ϕ+

0 = h

ϕ−0 = h
on Σ (4.1)

{
ϕ+

0 − ϕ−0 = 0

ϕ+
1 − ϕ−1 = 0

on R \ Σ ,

where k ∈ C (with =mk > 0) is the wave number and h ∈ H1/2(Σ) is a given
function.

Reasoning similarly as in §2 and §3, this problem leads to the associated
convolution type operator

Wt−1,Σ = rR→ΣF−1t−1 · F : H̃−1/2(Σ) → H1/2(Σ) . (4.2)

Remark. Imposing the same boundary data h in both equations of (4.1) in-
corporates already some compatibility between the boundary data (and corre-
sponds also to physically the most important case). If one allows different given
data in these two equations, say h1 6= h2, we will need to add some compatibil-
ity conditions between them, which will lead as before to restricted tilde image
spaces (precisely, we need to have h1 − h2 ∈ rR→ΣH̃

1/2(Σ)).

Theorem 4.1. The convolution type operator Wt−1,Σ, which is defined in (4.2)
and associated to the Dirichlet problem, is equivalent after extension to the
Wiener-Hopf operator

WΥ,R+ = rR→R+F−1Υ · F : [L2
+(R)]

2 → [L2(R+)]
2
,

with

Υ =

 ζ−
1
2 τ−a 0

λ
1
2
−t

−1λ
1
2
+ ζ

1
2 τa

 , (4.3)

where ζ = λ−/λ+ and λ±(ξ) = ξ ± k, τb(ξ) = exp[iξb], for ξ ∈ R.
Thus there are bounded, invertible linear operators E1 and F1 and Banach

spaces X and Y such that[
Wt−1,Σ 0

0 IX

]
= E1

[
WΥ,R+ 0

0 IY

]
F1 . (4.4)
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Proof. First it follows from [12, Theorem 2.1] (see also [7, 13] for some general-
izations) that Wt−1,Σ is algebraically equivalent after extension to the following
Wiener-Hopf operator

WΥ1,R+ = rR→R+F−1Υ1 · F : H̃−1/2(R+)×H̃1/2(R+) → H−1/2(R+)×H1/2(R+) ,

with

Υ1 =

[
τ−a 0

t−1 τa

]
.

Thus (3.1) holds with W1 and W2 being replaced by Wt−1,Σ and WΥ1,R+ , re-
spectively, and for some linear invertible (not necessarily bounded) operators E
and F .

Next, we show that the Wiener-Hopf operator WΥ1,R+ is equivalent to
WΥ,R+ . Here, the operator equivalence in question is constructed in an ex-
plicit way and can be directly obtained by computing the following operator
composition:

WΥ1,R+ = E2 WΥ,R+ F2 , (4.5)

where E2 and F2 are defined by

E2 = rR→R+F−1

 λ
1
2
− 0

0 λ
− 1

2
−

 · F l0 : [L2(R+)]
2 → H−1/2(R+)×H1/2(R+)

F2 = l0rR→R+F−1

 λ
− 1

2
+ 0

0 λ
1
2
+

 · F : H̃−1/2(R+)× H̃1/2(R+) → [L2
+(R)]

2
,

with l0 : [L2(R+)]
2 → [L2

+(R)]
2

being the zero extension operator. In fact, the
bounded operators E2 and F2 are invertible with

E−1
2 = rR→R+F−1

 λ
− 1

2
− 0

0 λ
1
2
−

 · F l0
F−1

2 = l0rR→R+F−1

 λ
1
2
+ 0

0 λ
− 1

2
+

 · F
(see [22, §2.10.3]). In view of the structure of the Fourier symbols of E2 and F2

[22], it follows that the right hand-side of (4.5) can be rewritten in the form of
an unique Wiener-Hopf operator with Υ1 as its Fourier symbol.
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We now study the Fredholm property of the Wiener-Hopf operator WΥ,R+ .
The Fourier symbol Υ (see (4.3)) of the Wiener-Hopf operator WΥ,R+ belongs to
the C∗−algebra of the semi-almost periodic (SAP) two by two matrix functions
on the real line (see [3, 21]). This means that Υ belongs to the smallest closed
subalgebra of [L∞(R)]2×2 which contains the (classical) algebra of (two by two)
almost periodic elements and the (two by two) continuous matrices with possible
jumps at infinity. Additionally, the element in the second row and first column
of Υ (that is, the lifted Fourier symbol of Wt−1,Σ) is 1. Thus, and by the criteria
for the Fredholm property of such operators (see [2]), we conclude that WΥ,R+

is a Fredholm operator with index zero.

Now, since WΥ,R+ is equivalent to WΥ1,R+ and algebraically equivalent after
extension to Wt−1,Σ (through the operator identity (4.5)), and by noting the
structure of the identity (4.5), it follows that the operators WΥ1,R+ and Wt−1,Σ

are also Fredholm operators with index zero. Moreover, from the operator iden-
tities provided by both the equivalence relation and the algebraic equivalence
after extension relation, we have equal dimensions for the corresponding defect
spaces of all the three operators WΥ,R+ , WΥ1,R+ and Wt−1,Σ. From this, and
since by [1, Theorem 3] we have that Fredholm operators in Banach spaces are
equivalent after extension if and only if their corresponding defect spaces have
equal dimensions, the last statement of Theorem 4.1 follows.

Remark. Note that the smoothness orders of the spaces in the definition of
the operator Wt−1,Σ are the so-called critical orders [10]. For spaces with such
smoothness orders the method of constructing equivalence after extension rela-
tions proposed in [10] does not work.

We now factorize the Fourier symbol Υ in such a way that the influence of
the oscillating behavior (at infinity) of the elements will be removed. To this
end, we use a technique due to Novokshenov [20] and propose the following
factorization of Υ (which will lead to the inverse of the corresponding Wiener-
Hopf operator):

Υ =

[
τ−aρ −1

1 0

] 1 τa

(
ζ

1
2 − ρ

)
τ−a

(
ρ− ζ−

1
2

)
ρ
(
ζ

1
2 + ζ−

1
2 − ρ

)
[ 1 τaρ

0 1

]

=

[ τ−aρ −1

1 0

] 1 0

τ−a

(
ρ− ζ−

1
2

)
1


×

([
1 τa

(
ζ

1
2 − ρ

)
0 1

][
1 τaρ

0 1

])
= Υ− Υ+ .

(4.6)
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Here we use the normalized sine function

ρ(ξ) =
2

π

∫ ξ

0

sin y

y
dy

which has the following useful behavior at infinity:

ρ(ξ) = sign ξ +O
(
|ξ|−1) .

Note also that

τ±aρ ∈ H∞
± , (4.7)

that is, τ±aρ are functions bounded and holomorphic in the upper/lower half-
planes.

Theorem 4.2. The Wiener-Hopf operator WΥ,R+ with SAP Fourier symbol Υ
is invertible with its inverse being given by the formula

W−1
Υ,R+

= rR→R+F−1Υ−1
+ · F l0rR→R+F−1Υ−1

− · F . (4.8)

Proof. The result is a direct consequence of the structure of Υ− and Υ+ (par-
ticularly because of (4.7)) and of the corresponding factorization (4.6).

Corollary 4.3. The convolution type operator Wt−1,Σ defined in (4.2) is bounded
and invertible with its inverse

W−1
t−1,Σ = B11 ,

where B11 is the operator in the first block (with respect to the natural space
decomposition) of the operator matrix[

B11 B12

B21 B22

]
= F−1

1

[
rR→R+F−1Υ−1

+ · F l0rR→R+F−1Υ−1
− · F 0

0 IY

]
E−1

1 ,

and E1 and F1 are the same as in Theorem 4.1.

Proof. The result follows directly from Theorems 4.1 and 4.2 in conjunction
with (4.4) and (4.8).

4.2. Extended operators for the reactance problem. Considering now the
composition of the operators Wt−1,Σ and W̃Φ,Σ, we have the following result.

Corollary 4.4. The operator W̃Φ,Σ is equivalent to

WΦ,Σ,1/2 = rR→ΣF−1Φ · F l : H1/2(Σ) → H1/2(Σ) ,

where l : H1/2(Σ) → H1/2(R) is an extension operator (the particular choice of
which does not change the definition of WΦ,Σ,1/2).



Invertibility of Convolution Operators 555

Proof. From Theorem 4.1 and the special form of Φ (see (3.3)), we have the
following equivalent equations:

W̃Φ,Σf = g

Wt−1,Σl0W̃Φ,Σf = Wt−1,Σl0g

rR→ΣF−1Φ · F lWt−1,Σf = Wt−1,Σl0g (4.9)

for f ∈ H̃−1/2(Σ) and g ∈ rR→ΣH̃
−1/2(Σ), where l is an operator of extension

whose particular form does not change the left hand-side of (4.9). In fact,
the equation (4.9), which involves the action of the operator WΦ,Σ,1/2, can be
written in the form

ϕ(ξ)− q

2

∫ a

0

F−1t−1(ξ − x)ϕ(x) dx = ψ(ξ) , ξ ∈ Σ .

It is clear that the above equation is dependent on ϕ ∈ H1/2(Σ) and independent
of the remaining part of the extension lϕ = lWt−1,Σf ∈ H1/2(R).

Remark. Based on a transmission property, in [9] are discussed different pos-
sibilities of improving the space smoothness of convolution type operators on a
finite interval.

Now, instead of studying WΦ,Σ,1/2 directly, we consider the following image
and domain extension of WΦ,Σ,1/2:

WΦ,Σ,0 = rR→ΣF−1Φ · F l0 : L2(Σ) → L2(Σ),

which is a linear and bounded operator. Note that dim cokerWΦ,Σ,1/2 =
dim cokerWΦ,Σ,0 and that dim kerWΦ,Σ,1/2 = dim kerWΦ,Σ,0. This is a con-
sequence of the structure of Φ (which can be presented in terms of operators
as the identity plus additional smoothing) and in terms of the space embedding
H1/2(Σ) ↪→ L2(Σ). Moreover, if we have the knowledge of W−1

Φ,Σ,0 (the inverse
of WΦ,Σ,0), then a representation of the inverse of WΦ,Σ,1/2 can be derived from
W−1

Φ,Σ,0 by use of the corresponding space restrictions.

Theorem 4.5. The convolution type operator WΦ,Σ,0 is equivalent after exten-
sion to the following Fredholm operator with vanishing analytical index:

WΨ,R+ = rR→R+F−1Ψ · F l0 : [L2(R+)]
2 → [L2(R+)]

2
,

where

Ψ =

[
τ−a 0

Φ τa

]
and τa(ξ) = exp[iξa] for ξ ∈ R.
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Proof. Since Φ(±∞) = 1 and Φ(ξ) 6= 0, for all ξ ∈ R, the operator WΨ,R+ has
the Fredholm property (see, for example, [2, Theorem 4.1]). Further, WΨ,R+

has zero Fredholm index since the continuous function on the real line Φ has
no jumps at infinity (cf., e.g., the Fredholm index formula (2.14) in [11, The-
orem 2.10]). The theorem thus follows by arguing similarly as in the proof of
Theorem 4.1.

From Theorem 4.5 and the equivalence relations between the operators L,
W̃Φ,Σ, WΦ,Σ,1/2, and WΦ,Σ,0 the following corollary follows easily.

Corollary 4.6. The operators L, W̃Φ,Σ, WΦ,Σ,1/2, and WΦ,Σ,0 are Fredholm
operators with zero index.

5. Analysis of Fourier symbol Ψ and invertibility
of related operators

We are now in a position to prove the invertibility of all our main convolution
type operators. In doing this, we need a new operator factorization scheme
provided with the help of an auxiliary invertible Wiener-Hopf operator.

LetQ =
{
c ∈ C : 1− 1

2
c t−1(ξ) 6= 0 for ξ ∈ R

}
. Then we have the following

result.

Lemma 5.1. If q ∈ Q, then the Wiener-Hopf operator

WΦ,R+ = rR→R+F−1Φ · F l0 : L2(R+) → L2(R+)

is invertible with the inverse W−1
Φ,R+

= rR→R+F−1Φ−1
+ · F l0rR→R+F−1Φ−1

− · F l0,
where

Φ± = exp

{
1

2
(I ± SR) log

(
1− q

2
t−1
)}

(5.1)

and SR is the Cauchy integral operator on R.

Proof. Note that for q ∈ Q the Fourier symbol Φ = 1−1
2
q t−1 is a non-vanishing

continuous function on the real line with the same nonzero limits at ±∞. Thus,
by use of the well-known Fredholm criterium for Wiener-Hopf operators with
continuous Fourier symbols (see, e.g., [3, Theorem 2.15]), it follows that WΦ,R+

is a Fredholm operator. Further, noting that, as ξ moves from −∞ to +∞, the
point Φ(ξ) traces out a continuous oriented curve in C\{0} having zero windings
around the origin, it follows that WΦ,R+ has a zero Fredholm index.

On other hand, since WΦ,R+ is a scalar Wiener-Hopf operator with a non-
zero Fourier symbol, the Coburn Theorem (see [3, Theorem 2.5]) can be applied
to derive that kerWΦ,R+ = {0} or the range of WΦ,R+ is dense in L2(R+).
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Consequently, WΦ,R+ is invertible. By the factorization theory of continuous
functions (see [18, Chapter III, §5]) we obtain the representation (5.1) for the
construction of the inverse operator.

Theorem 5.2. Let q ∈ Q. The Wiener-Hopf operator WΨ,R+ : [L2(R+)]
2 →

[L2(R+)]
2

is a bounded and invertible operator.

Proof. That WΨ,R+ is a bounded operator is clear since Ψ is an essentially
bounded function.

We now prove the invertibility of WΨ,R+ . We first factorize WΨ,R+ in the
form

WΨ,R+ =

[
I rR→R+F−1τ−a · F l0W−1

Φ,R+

0 I

][
C 0

0 WΦ,R+

]

×

[
0 −I
I W−1

Φ,R+
rR→R+F−1τa · F l0

]
,

(5.2)

where

C = rR→R+F−1τ−a · F l0W−1
Φ,R+

rR→R+F−1τa · F l0 : L2(R+) → L2(R+) ,

and by Lemma 5.1 the inverse of WΦ,R+ exists since q ∈ Q.

From (5.2) and Lemma 5.1 it can be seen that WΨ,R+ is invertible if and
only if C is invertible. By (5.2) and Theorem 4.5 we conclude that C is a
Fredholm operator with a vanishing analytical index. Thus, to derive the in-
vertibility of WΨ,R+ it is enough to show that C is an injective operator, that
is, 〈Cϕ, ϕ〉L2(R+) = 0 implies ϕ = 0. Now for ϕ ∈ L2(R+),

〈Cϕ, ϕ〉L2(R+) = 〈W−1
Φ,R+

rR→R+F−1τa · F l0ϕ, rR→R+F−1τa · F l0ϕ〉L2(R+)
.

Thus it is enough to show that

〈W−1
Φ,R+

φ, φ〉
L2(R+)

= 0 implies φ = 0 (5.3)

since the right a-shift operator rR→R+F−1τa · F l0 : L2(R+) → L2(R+) is obvi-
ously injective.

Let ψ = W−1
Φ,R+

φ. Then (5.3) is equivalent to

〈ψ,WΦ,R+ ψ〉L2(R+)
= 0 implies ψ = 0 . (5.4)

Since Φ = 1− 1
2
q t−1 and

〈ψ,WΦ,R+ ψ〉L2(R+)
= 〈F l0ψ,Φ · F l0 ψ〉L2(R) ,

it follows that (5.4) is true.
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From Theorem 5.2 and the equivalence relations between the operators L,
W̃Φ,Σ, WΦ,Σ,1/2, and WΦ,Σ,0 we have the following corollary.

Corollary 5.3. Let q ∈ Q. The operators L, W̃Φ,Σ, WΦ,Σ,1/2, and WΦ,Σ,0 are
all invertible.

As pointed out at the end of Section 2, this corollary directly yields the
following result on the well-posedness of the main diffraction problem.

Corollary 5.4. Let q ∈ Q. There is a unique solution ϕ ∈ L2(R2), with ϕ|R2
±
∈

H1(R2
±), to the reactance diffraction problem (2.1)–(2.3) which is continuously

dependent on the data with respect to the indicated space topologies.

We conclude this paper with some final remarks:

(i) Our approach depends on the particular structure of the Fourier symbols
of the convolution type operators. In particular, in establishing the equivalence
between the equations in (4.9), a predominant role is played by the particular
symbol t−1. Thus, for different classes of operators, new techniques are needed
to obtain, for example, certain commutative properties of the corresponding
composition operators. Partial results into this direction may be found in [10].

(ii) It is expected to generalize the present method to other interesting classes
of boundary transmission problems such as those involving third kind boundary
conditions [17] on a strip. In such cases, one of the difficulties is the invertibility
of certain matrix Wiener-Hopf operators that should be used in the place of
WΦ,R+ in the present section.

(iii) The present approach (reduction by matrix factorization) applies to wider
classes of operators compared with the idea of perturbing the matrix operator[

rR→R+F−1τ−a · F l0 0

I rR→R+F−1τa · F l0

]
: [L2(R+)]

2 → [L2(R+)]
2
,

by replacing I with a strongly elliptic operator. This is because our approach
allows consideration of invertible operators which may not be strongly elliptic.

Acknowledgement. The authors are indebted to the referees whose comments
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[1] Bart, H. and V. È. Tsekanovskii: Matricial coupling and equivalence after
extension. In: Operator Theory and Complex Analysis (Oper. Theory Adv.
Appl.: Vol. 59; eds.: T. Ando et al.). Basel: Birkhäuser 1992, pp. 143 – 160.
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