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Abstract. Continuing recent investigations by L. Berg and L. v. Wolfersdorf on a
model integral equation of autoconvolution type of the third kind, two existence theo-
rems for a general class of such equations are derived. Further, an existence theorem is
proved for the model equation with data and solutions of a general logarithmic form.
Moreover, a singular perturbation problem for a related integrodifferential equation
of first order to the model equation is studied which could serve as a basis for its
regularization by the Lavrentiev method.
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bation of equations
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1. Introduction

Initiated by L. Berg, in the joint paper of him with the second author [2] a class
of generalized autoconvolution equations of the third kind has been studied.
As remarked in [1] and [8] such equations have infinitely many solutions. But
with a suitable ansatz for the solution and after some transformation a theorem
of the first author [6] about the iteration method with weighted norms in the
Banach space of continuous functions on a closed interval could be used for
proving existence of solutions to these equations.

As a complement to the investigations in [2], in the present paper we deal
with a general class of such autoconvolution equations of the form

k(x)y(x) =

∫ x

0

m(x, ξ)y(ξ)y(x− ξ) dξ +

∫ x

0

n(x, ξ)y(ξ) dξ + p(x) (1.1)
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for 0 ≤ x ≤ T , with given continuous functions k,m, n, p, where k(0) = 0.
For m(x, ξ) = a(ξ) and n(x, ξ) = p(x) = 0 this equation is the model equation
considered in [2]. The general class of equations (1.1) contains the well-known
integral equations of F. Bernstein [3] and F. Bernstein and G. Doetsch [4, 5] for
the elliptic theta zero function and for the Mittag-Leffler function, but under
our assumptions unfortunately only the latter equation can be treated. Further,
following [2] we restrict ourselves to basic existence theorems for solutions of
(1.1) with power or logarithm behaviour at x = 0. But we expect that also
theorems on the smoothness of the solutions for the model equation in [2] could
be extended to equation (1.1). Moreover, we add to the existence theorems
in [2] a such one for a class of model equations with data k, a and solution y
containing general logarithmic terms. Finally, as a new aspect a singular per-
turbation problem for a related integrodifferential equation of first order to the
model equation in the superlinear case of [2] is investigated. The results of this
investigation are basic for a regularization of the model integral equation of the
third kind by a neighbouring integrodifferential equation (a kind of Lavrentiev
regularization, cf. [7]).

We remark that with a solution y also the function eCxy, where C is an
arbitrary constant, is a solution to equation (1.1) if n = p = 0 as in the case
of the model equation. In the general case we have to expect a more complex
structure of a general solution of (1.1).

The plan of the paper is as follows. After this introduction given in Section
1 we deal with the singular perturbation problem and the general logarithmic
case of the model equation in Sections 2 and 3, respectively. The general class
of equations (1.1) is then treated in Section 4.

The existence proofs in the paper are based on (a simplified version of) an
existence theorem from [6] for operator equations of the form

z(x) = f(x) + G[z](x) + L[z, z](x) (1.2)

with a linear operator G and a bilinear operator L in C[0, T ], 0 < T < ∞, with
the exponentially weighted norms

‖z‖σ =
∥∥e−σxz(x)

∥∥ = max
0≤x≤T

∣∣e−σxz(x)
∣∣ , σ > 1 ,

where ‖z‖ = ‖z‖0, which we cite here as Lemma 1 for convenience of the reader.

Lemma 1. Let the linear operator G : C[0, T ] → C[0, T ] and the bilinear
operator L : C[0, T ]× C[0, T ] → C[0, T ] fulfill the inequalities

‖G[z]‖σ ≤ M(σ)‖z‖σ , σ ≥ σ0 > 1 (1.3)

for any z ∈ C[0, T ] with a continuous function M satisfying M(σ) → 0 as
σ →∞, and

‖L[z1, z2]‖σ ≤ N‖z1‖σ‖z2‖σ , σ ≥ σ0 > 1 (1.4)
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with a constant N and

‖L[z1, z2]‖σ ≤

{
ν1(σ)‖z1‖ ‖z2‖σ

ν2(σ)‖z1‖σ‖z2‖
(1.5)

with continuous functions νk, k = 1, 2, satisfying νk(σ) → 0 as σ →∞ for any
pair z1, z2 ∈ C[0, T ]. Then equation (1.2) has a uniquely determined solution
z ∈ C[0, T ]. Moreover, for solutions z1 and z2 corresponding to functions f = f1

and f = f2, respectively, the stability estimate

‖z1 − z2‖ ≤ Λ(Q1, Q2)‖f1 − f2‖ (1.6)

holds, where Qk = (‖fk‖, ‖G[fk]‖), k = 1, 2, and Λ ∈ C
(
R4

+ → R
)
, Λ > 0 with

Λ(x1, . . . , x4) increasing in x1, . . . , x4.

2. Singular perturbation problem

Let us consider the model equation [2]

k(x)y(x) =

∫ x

0

a(ξ)y(x− ξ)y(ξ) dξ . (2.1)

If k(x) ∼ Ax, A > 0 and a(x) ∼ 1 as x → 0 then the continuous solutions y
of (2.1) have at x = 0 either the value y(0) = 0 or the value y(0) = A. With
interest in the second case, in this section we study the initial value problem
for the related integrodifferential equation of the first order

εy′ε(x) + k(x)yε(x) =

∫ x

0

a(ξ)yε(x− ξ)yε(ξ) dξ , yε(0) = A (2.2)

with ε 6= 0. We remark that y(0) = 0 for a continuous solution y of (2.1) is only
fulfilled for the trivial solution y(x) ≡ 0 if, in addition to the above asymptotic
relations, there holds k, a ∈ C[0, T ] with k(x) > 0 in (0, T ] (see the proof of
Theorem 4 in [2]).

Theorem 1. Let ε 6= 0, k ∈ C[0, T ] and a ∈ L1(0, T ). Then problem (2.2) has
a unique solution in C1[0, T ].

Proof. The initial value problem (2.2) is in C1[0, T ] equivalent to the equation

yε(x) = L[yε, yε](x) + f(x) (2.3)

where

L[z1, z2](x) =

∫ x

0

1

ε
e−

1
ε

∫ x
η k(τ) dτ

∫ η

0

a(ξ)z1(η − ξ)z2(ξ) dξ dη

f(x) = Ae−
1
ε

∫ x
0 k(τ) dτ .
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Let us show that (2.3) has a unique solution in C[0, T ]. We have

e−σxL[z1, z2](x)

=

∫ x

0

e−σ(x−η) 1

ε
e−

1
ε

∫ x
η k(τ) dτ

∫ η

0

a(ξ)e−σ(η−ξ)z1(η − ξ)e−σξz2(ξ) dξ dη .

Thus,

‖L[z1, z2]‖σ ≤
1

|ε|
e

1
|ε|

∫ T
0 |k(τ)| dτ

∫ T

0

|a(ξ)| dξ

∫ T

0

e−σ(T−η) dη ‖z1‖σ‖z2‖σ

≤ Const
1

σ
‖z1‖σ‖z2‖σ .

This estimate shows that the assumptions of Lemma 1 are satisfied for equa-
tion (2.3). Consequently, (2.3) has a unique solution yε in C[0, T ]. Finally, since
the right-hand side of (2.3) is continuously differentiable for yε ∈ C[0, T ], we
obtain yε ∈ C1[0, T ]. Theorem 1 is proved.

Lemma 2. Let ε 6= 0, g be a measurable function such that |g(x)| ≤ Cxδ−1 with
C ≥ 0, δ > 0, k ∈ W 2,1(0, T ) and A0x ≤ k(x) ≤ A1x with 0 < A0 ≤ A1. Then
the function

y(x) = k(x)

∫ x

0

v(η) dη (2.4)

with

v(x) =
1

εk2(x)

∫ x

0

k(η)e−
1
ε

∫ x
η k(τ) dτg(η) dη (2.5)

belongs to W 2,1(0, T ) and solves the problem

εy′′(x) + k(x)y′(x)−
[
k′(x) +

εk′′(x)

k(x)

]
y(x) = g(x), y(0) = y′(0) = 0. (2.6)

Proof. Due to the assumptions of the lemma, the function y, defined in (2.4)
with v given by (2.5), belongs to W 2,1(0, T ). One can immediately check that
v is a solution to the equation

εk(x)v′(x) + [2εk′(x) + k2(x)]v(x) = g(x) . (2.7)

Further, from (2.4) we see that v =
(

y
k

)′
. Substituting

(
y
k

)′
for v in (2.7) we

derive the equation (2.6). Finally, the conditions y(0) = y′(0) = 0 follow from
(2.4) with (2.5) by the assumptions on k.
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Lemma 3. Let ε > 0. Then

max
0≤x≤T

∫ x

0

ηβe−
1
ε
(x2−η2) dη ≤ 1

β + 1
ε

β+1
2 if − 1 < β ≤ 1 (2.8)

max
0≤x≤T

∫ x

0

ηβe−
1
ε
(x2−η2) dη ≤ T β−1

2
ε if β > 1 . (2.9)

Proof. Changing the variable of integration z = η2

ε
we obtain∫ x

0

ηβe−
1
ε
(x2−η2) dη =

1

2
e

β+1
2

∫ t

0

z
β−1

2 e−(t−x)dz , (2.10)

where t = x2

ε
. Let −1 < β ≤ 1. Then in case t ≥ 1 we have∫ t

0

z
β−1

2 e−(t−x)dz =

∫ 1

0

z
β−1

2 e−(t−x)dz +

∫ t

1

z
β−1

2 e−(t−x)dz

≤ e1−t

∫ 1

0

z
β−1

2 dz +

∫ t

1

e−(t−z)dz

= 1 +

(
2

β + 1
− 1

)
e1−t.

Thus,

sup
1≤t<∞

∫ t

0

z
β−1

2 e−(t−x)dz ≤ 2

β + 1
. (2.11)

In case 0 ≤ t < 1 we obtain∫ t

0

z
β−1

2 e−(t−x)dz ≤
∫ t

0

z
β−1

2 dz =
2t

β+1
2

β + 1
.

This implies

sup
0≤t<1

∫ t

0

z
β−1

2 e−(t−x)dz ≤ 2

β + 1
. (2.12)

Applying (2.11) and (2.12) in (2.10) we deduce (2.8). If β > 1 then we obtain∫ x

0
ηβe−

1
ε
(x2−η2) dη ≤ T β−1

∫ x

0
ηe−

1
ε
(x2−η2) dη . Estimate (2.9) follows using here

(2.8) with β = 1.

Theorem 2. Let a and k fulfill the assumptions of Theorem 7 in [2], i.e.,
k ∈ C2[0, T ], k > 0 in (0, T ], a ∈ C1[0, T ], where

k(x) = Ax + Bx2+δ + o
(
x2+δ

)
k′(x) = A + B(2 + δ)x1+δ + o

(
x1+δ

)
k′′(x) = B(1 + δ)(2 + δ)xδ + o

(
xδ

)
 (2.13)

a(x) = 1 + λx1+δ + o
(
x1+δ

)
a′(x) = λ(1 + δ)xδ + o

(
xδ

) }
(2.14)
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as x → 0 with A, δ > 0 and B, λ ∈ R. Further, let y0 be the solution of
equation (2.1) satisfying y0 ∈ C1[0, T ] ∩ C2(0, T ] and

y0(x) = A + Cx1+δ + o
(
x1+δ

)
, y′0(x) = C(1 + δ)xδ + o

(
xδ

)
(2.15)

as x → 0 with C ∈ R and

|y′′0(x)| ≤ Const xδ−1 . (2.16)

Then for any q ∈ (1− δ, 1) ∩ (0, 1) the estimates

max
0≤x≤T

xq−2|yε(x)− y0(x)|

max
0≤x≤T

xq−1|y′ε(x)− y′0(x)|

 ≤ Mµ(ε) (2.17)

are valid for the solution yε of problem (2.2) with ε > 0. Here

µ(ε) =

{
ε

δ+q−1
2 if δ + q ≤ 3

ε if δ + q > 3 ,
(2.18)

and M is a constant depending on T, k, a, and q.

Remark 1. Existence of a solution y0 of equation (2.1) with properties y0 ∈
C1[0, T ] ∩ C2(0, T ], (2.15) and (2.16) follows from Theorems 1 and 7 in [2].

Proof. Let ε > 0. Denote y = yε− y0 and subtract (2.1) from (2.2). We obtain

εy′(x) + k(x)y(x) =

∫ x

0

[a(x− η) + a(η)]y0(x− η)y(η) dη

+

∫ x

0

a(η)y(x− η)y(η) dη − εy′0(x)

y(0) = 0 .

(2.19)

By Theorem 1 this problem admits a unique solution in C1[0, T ]. Due to
the assumptions of k, a and the properties of y0 this solution even belongs
to W 2,1(0, T ) and y′(0) = 0. Consequently, differentiating equation (2.19), the
equation is equivalent to the problem of the second order

εy′′(x) + k(x)y′(x)−
[
k′(x) +

εk′′(x)

k(x)

]
y(x) = g[y](x), y(0) = y′(0) = 0, (2.20)
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where

g[y](x)

=

∫ x

0

[
a′(x− η)(y0(x− η)− A) + (a(x− η) + a(η))y′0(x− η)

]
y(η) dη

+

∫ x

0

a(η)y′(x− η)y(η) dη + A

∫ x

0

a′(x− η)y(η) dη

+

[
A(1 + a(x))− 2k′(x)− εk′′(x)

k(x)

]
y(x)− εy′′0(x) .

(2.21)

Let us consider the related equation

v(x) =

∫ x

0

k(η)

εk2(x)
e−

1
ε

∫ x
η k(τ) dτ g

[
k

∫ ·

0

v(ξ) dξ

]
(η) dη (2.22)

and define a function y by means of the solution of this equation using as in
(2.4) the formula

y(x) = k(x)

∫ x

0

v(η) dη . (2.23)

It follows from the assumptions on k that there exist 0 < A0 ≤ A1 such that

A0x ≤ k(x) ≤ A1x , x ∈ [0, T ] . (2.24)

Further, in case the solution v of (2.22) satisfies the conditions

v ∈ C(0, T ] , |v(x)| ≤ Const x−q , (2.25)

where q < 1 by assumption, then, as we can easily check, the function g[y] =
g
[
k

∫ ·
0
v(ξ) dξ

]
satisfies the relation |g(x)| ≤ Const xp−1 with p > 0. Conse-

quently, by Lemma 2, the function y given by (2.23) belongs to W 2,1(0, T ) and
solves (2.20), hence (2.19). In the following we will show the existence of a
solution v with the property (2.25).

Let us define

w(x) = xqv(x) . (2.26)

The solution v of (2.22) satisfies (2.25) if and only if w ∈ C(0, T ] ∩ L∞(0, T ).
The corresponding equation for w writes

w(x) = G[w](x) + L[w, w](x) + f(x) , (2.27)
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where

G[w](x) =

∫ x

0

k(η)xq

εk2(x)
e−

1
ε

∫ x
η k(τ) dτ

{∫ η

0

[a′(η − ξ)(y0(η − ξ)− A)

+(a(η − ξ) + a(ξ))y′0(η − ξ)] k(ξ)

∫ ξ

0

τ−qw(τ) dτ dξ

+A

∫ η

0

a′(η − ξ)k(ξ)

∫ ξ

0

τ−qw(τ) dτ dξ

+
[
(A(1 + a(η))− 2k′(η))k(η)− εk′′(η)

] ∫ η

0

τ−qw(τ) dτ

}
dη

(2.28)

and

L[w1, w2](x) =

∫ x

0

k(η)xq

εk2(x)
e−

1
ε

∫ x
η k(τ) dτ

∫ η

0

a(ξ)

[
k′(η − ξ)

×
∫ η−ξ

0

τ−qw1(τ) dτ + k(η − ξ)(η − ξ)−qw1(η − ξ)

]
× k(ξ)

∫ ξ

0

τ−qw2(τ) dτ dξ dη

(2.29)

and

f(x) = −
∫ x

0

k(η)xq

k2(x)
e−

1
ε

∫ x
η k(τ) dτy′′0(η) dη . (2.30)

We will prove that (2.27) has a unique solution in C[0, T ] and this solution
satisfies a proper estimate implying (2.17).

In view of the assumption q > 1− δ by k(x) ≥ 0, ε > 0, (2.13) and (2.16) it
follows that f ∈ C[0, T ]. Further, multiplying by e−σx in (2.28), (2.29) we have

e−σxG[w](x)

=

∫ x

0

e−σ(x−η)k(η)xq

εk2(x)
e−

1
ε

∫ x
η k(τ) dτ

{∫ η

0

e−σ(η−ξ)

×
[
a′(η − ξ)(y0(η − ξ)− A) + (a(η − ξ) + a(ξ))y′0(η − ξ)

]
× k(ξ)

∫ ξ

0

e−σ(ξ−τ)τ−qe−στw(τ) dτ dξ

+ A

∫ η

0

e−σ(η−ξ)a′(η − ξ)k(ξ)

∫ ξ

0

e−σ(ξ−τ)τ−qe−στw(τ) dτ dξ

+
[
(A(1 + a(η))− 2k′(η))k(η)− εk′′(η)

]
×

∫ η

0

e−σ(η−τ)τ−qe−στw(τ) dτ

}
dη,

(2.31)
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e−σxL[w1, w2](x)

=

∫ x

0

e−σ(x−η)k(η)xq

εk2(x)
e−

1
ε

∫ x
η k(τ) dτ

×
∫ η

0

a(ξ)
[
k′(η − ξ)

∫ η−ξ

0

e−σ(η−ξ−τ)τ−qe−στw1(τ) dτ

+ k(η − ξ)(η − ξ)−qe−σ(η−ξ)w1(η − ξ)
]

× k(ξ)

∫ ξ

0

e−σ(ξ−τ)τ−qe−στw2(τ) dτ dξ dη.

(2.32)

In the estimations of G and L we apply the inequality∫ x

0

e−σ(x−τ)τ−q dτ =
1

σ1−q

∫ σx

0

z−qe−(σx−z)dz ≤ Const

σ1−q
(2.33)

following from Lemma 3.

We now estimate (2.31) making use of the assumptions of the theorem,
Lemma 3, (2.24) and (2.33). We obtain

‖G[w]‖σ

≤ Const max
0≤x≤T

∫ x

0

η

εx2−q
e−

A0
2ε

(x2−η2)

×
{∫ η

0

[
(η − ξ)1+2δ + (η − ξ)δ

]
ξ

1

σ1−q
dξ ‖w‖σ

+

∫ η

0

(η − ξ)δξ
1

σ1−q
dξ ‖w‖σ +

(
η1+δ + εηδ

) 1

σ1−q
‖w‖σ

}
dη

≤ Const max
0≤x≤T

{
1

ε

∫ x

0

ηe−
A0
2ε

(x2−η2) dη +

∫ x

0

e−
A0
2ε

(x2−η2) dη

}
1

σ1−q
‖w‖σ

≤ Const

σ1−q
‖w‖σ .

(2.34)

Similarly, for L[w1, w2] in (2.32) we derive

‖L[w1, w2]‖σ ≤ Const max
0≤x≤T

∫ x

0

η

εx2−q
e−

A0
2ε

(x2−η2)

×
∫ η

0

(η − ξ)1−q‖w1‖σξ
1

σ1−q
‖w2‖σ dξ dη

≤ Const

σ1−q
‖w1‖σ‖w2‖σ .

(2.35)

The estimates (2.34) and (2.35) imply the assumptions (1.3) – (1.5) of Lemma 1.
Thus, by Lemma 1, equation (2.27) has a unique solution w in C[0, T ]. In
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particular, the equation (2.27) has a unique solution w = 0 in C[0, T ] if f = 0.
Consequently, the stability estimate (1.6) in Lemma 1 with z1 = w, z2 = 0 and
f1 = f, f2 = 0 yields ‖w‖ ≤ Const ‖f‖. Further, estimating (2.30) by means of
the assumption q > 1−δ, (2.16), (2.24) and Lemma 3 we have ‖f‖ ≤ Const µ(ε)
with µ(ε) defined in (2.18). Thus,

‖w‖ ≤ Const µ(ε) . (2.36)

Finally, by (2.23) and (2.26) we have the formula for y = yε − y0 in terms of w

y(x) = k(x)

∫ x

0

ξ−qw(ξ) dξ . (2.37)

From (2.13), (2.36) and (2.37) we obtain the first estimate in (2.17). Using the
differentiated formula (2.37) also the second estimate in (2.17) follows. Theo-
rem 2 is proved.

The assertion (2.17) of Theorem 2 implies the following corollary.

Corollary 1. Under the assumptions of Theorem 2 the uniform convergence

yε → y0 , y′ε → y′0 in C[0, T ]

as ε → 0+ holds.

Remark 2. It is expected that the convergence yε → y0 in C[0, T ] already
holds if k ∈ C1[0, T ] and a ∈ C[0, T ] with the corresponding asymptotics as
x → 0. But this has not been proved.

3. General logarithmic case

In the following we study the existence of solutions for two types of generalized
autoconvolution equations. We start with equation (2.1) where

k(x) = Ax + x2

N∑
n=0

Bn lnn x + C(x) (A > 0, Bn ∈ R) (3.1)

with C(x) = o(x2) as x → 0 and
∫ T

0
|C(x)|

x3 dx < ∞,

a(x) = 1 + x
N∑

n=0

βn lnn x + γ(x) (βn ∈ R) (3.2)

with γ(x) = o(x) as x → 0 and
∫ T

0
|γ(x)|

x2 dx < ∞.
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Theorem 3. Let k with 1/k ∈ C(0, T ] and a ∈ C[0, T ] have the finite asymp-
totic expansions (3.1) and (3.2), respectively. Then equation (2.1) has a solution
y ∈ C[0, T ] of the form

y(x) = A + x

N+1∑
n=1

µn lnn x + xz(x) (3.3)

with z ∈ C[0, T ] and z(0) = 0, where the µn, n = 0, 1, . . . , N + 1, are the
solutions of the equations

(−1)n 2n

n!

N+1∑
j=n+1

(−1)j j!

2j
µj = Bn − A(−1)n 2n−1

n!

N∑
j=n

(−1)j j!

2j
βj (3.4)

for n = 0. . . . , N . This solution is unique in the class of functions of type (3.3).

Proof. Inserting the ansatz (3.3) into equation (2.1) we get the equation for z

z(x) = f0(x) + G0[z](x) + L0[z, z](x) , (3.5)

where

f0(x) =
1

xk(x)

{
A2

∫ x

0

a(ξ) dξ + A

∫ x

0

ξ [a(ξ) + a(x− ξ)]
N+1∑
n=1

µn lnn ξ dξ

−k(x)

[
A + x

N+1∑
n=1

µn lnn x

]

+

∫ x

0

ξ(x− ξ)a(ξ)
N+1∑
n=1

µn lnn ξ
N+1∑
m=1

µm lnm(x− ξ) dξ

}
and

G0[z](x) =
1

xk(x)

∫ x

0

ξ [a(ξ) + a(x− ξ)]

×
[
A + (x− ξ)

N+1∑
n=1

µn lnn(x− ξ)

]
z(ξ) dξ

L0[z1, z2](x) =
1

xk(x)

∫ x

0

ξ(x− ξ)a(ξ)z1(ξ)z2(x− ξ) dξ .

In view of assumptions (3.1) and (3.2) we have

xk(x)f0(x) = A2x + A2

N∑
n=0

βn

∫ x

0

ξ lnn ξ dξ + 2A
N+1∑
n=1

µn

∫ x

0

ξ lnn ξ dξ

−
[
Ax + x2

N∑
m=0

Bm lnm x

][
A + x

N+1∑
n=1

µn lnn x

]
+ F0(x) ,

(3.6)
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where F0 ∈ C[0, T ] with F0(x) = o(x2) as x → 0 and
∫ T

0
|F0(x)|

x3 dx < ∞. Cal-
culating the coefficients of the functions x2 lnn x, n = 0, 1, . . . , N, N + 1, in the
right-hand side of (3.6), we see that the coefficient of the highest term x2 lnN+1 x
automatically vanishes as well as the coefficient of x. Putting the N + 1 coeffi-
cients of x2 lnn x, n = 0, . . . , N equal to zero, we obtain the linear system (3.4)
for the N + 1 parameters µn, n = 1, . . . , N + 1. This system is regular since it
has upper triangular matrix with nonvanishing elements in the main diagonal.
So, (3.4) has a unique solution (µ1, . . . , µN+1), and for these parameters µn we
have the relation xk(x)f0(x) = F1(x), where F1 has the same properties men-
tioned above as F0. Therefore, by (3.1) and 1/k ∈ C(0, T ] then f0 ∈ C[0, T ]

with f0(0) = 0 and
∫ T

0
|f0(x)|

x
dx < ∞ holds.

We decompose

G0[z](x) =
2

x2

∫ x

0

ξz(ξ) dξ + G1[z](x)

where

G1[z](x)

=
2(Ax− k(x))

x2k(x)

∫ x

0

ξ z(ξ) dξ

+
A

xk(x)

∫ x

0

ξ [a(ξ) + a(x− ξ)− 2] z(ξ) dξ

+
A

xk(x)

∫ x

0

ξ(x− ξ)[a(ξ)− a(x− ξ)]
N+1∑
n=1

µn lnn(x− ξ) z(ξ) dξ

(3.7)

and write equation (3.5) in the form

z(x)− 2

x2

∫ x

0

ξ z(ξ) dξ = g(x) ,

where g(x) = f0(x) + G1[z](x) + L0[z, z](x). On account of (3.1) and (3.2) we
obtain the estimates

|L0[z, z](x)| ≤ Const x‖z‖2

|G1[z](x)| ≤ Const x
[
1 + | ln x|N+1

]
‖z‖

which imply L0[z, z], G1[z] ∈ C[0, T ] for any z ∈ C[0, T ] with L0[z, z](0) =

G1[z](0) = 0 and
∫ T

0
|L0[z,z](x)|

x
dx < ∞,

∫ T

0
|G1[z](x)|

x
dx < ∞. Observing the

above relations for f0 we therefore obtain that also g ∈ C[0, T ] with g(0) = 0

and
∫ T

0
|g(x)|

x
dx < ∞.

Solving (3.7), equation (3.5) with z(0) = 0 is reduced to the equation

z(x) = f(x) + G[z](x) + L[z, z](x) , (3.8)
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where

f(x) = f0(x) + 2

∫ x

0

f0(ξ)

ξ
dξ ∈ C[0, T ]

with f(0) = 0 and

G[z](x) = G1[z](x) + 2

∫ x

0

G1[z](ξ)

ξ
dξ (3.9)

L[z1, z2](x) = L0[z1, z2](x) + 2

∫ x

0

L0[z1, z2](ξ)

ξ
dξ .

Again, for any z ∈ C[0, T ] we have G[z] ∈ C[0, T ] with G[z](0) = 0 and for
any pair z1, z2 ∈ C[0, T ] also L[z1, z2] ∈ C[0, T ] with L[z1, z2](0) = 0. Hence
z(0) = f(0) = 0 for the solution z of (3.8).

Applying Lemma 1 we have to verify inequalities (1.3) – (1.5) for G[z] and
L[z1, z2]. At first by (3.1) and (3.2) we estimate in (3.7) and get from (3.9)

‖G[z]‖σ ≤ Const
1

σ

[
1 + lnN+1 σ

]
‖z‖σ (σ > 1)

which proves (1.3). Further, as in the proof of Theorem 3 in [2] we have the es-
timates ‖L[z1, z2]‖σ ≤ Const ‖z1‖σ‖z2‖σ and ‖L[z1, z2]‖σ ≤ Const 1

σ
‖z1‖‖z2‖σ

and analogously with z1 and z2 interchanged. This shows (1.4) and (1.5).
Theorem 3 is proved.

Remark 3. The special case of the theorem for N = 0 was proved in [2].

4. General equation

Now we deal with equation (1.1) under the assumptions that 1/k ∈ C(0, T ] and

k(x) = Ax + Bx1+α + C(x) (A > 0, B ∈ R) , (4.1)

where α > 0, C(x) = o (x1+α) as x → 0 with
∫ T

0
|C(x)|
x2+α dx < ∞, m ∈ C([0, T ] ×

[0, T ]) and

m(x, ξ) = 1 + M1x
α + M2ξ

α + γ(x, ξ) (Mj ∈ R) , (4.2)

where γ(x, ξ) = o (xα + ξα) as x2 + ξ2 → 0 with
∫ T

0
1

x2+α

∫ x

0
|γ(x, ξ)| dξdx < ∞,

n ∈ C([0, T ]× [0, T ]) and

n(x, ξ) = N0 + N1x
α + N2ξ

α + δ(x, ξ) (Nj ∈ R) , (4.3)

where δ(x, ξ) = o (xα + ξα) as x2 + ξ2 → 0 with
∫ T

0
1

x2+α

∫ x

0
|δ(x, ξ)| dξdx < ∞,

p ∈ C[0, T ] and

p(x) = cx + dx1+α + ε(x) (c, d ∈ R) , (4.4)
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where ε(x) = o (x1+α) as x → 0 with
∫ T

0
|ε(x)|
x2+α dx < ∞.

At first we are looking for solutions to (1.1) of the form

y(x) = λ +
ν∑

j=1

µjx
κj + xαz(x) , z ∈ C[0, T ] , (4.5)

where λ ∈ R, ν ∈ {1, 2, . . .}, 0 < κ1 < κ2 < . . . < κν < α and without loss of
generality µj 6= 0, j = 1, . . . , ν. Plugging the ansatz (4.5) and the asymptotic
expansions (4.1) – (4.4) into equation (1.1) and comparing the coefficients of x,
we obtain the possible values for λ

λ1,2 =
1

2

[
A−N0 ±

√
(A−N0)2 − 4c

]
. (4.6)

We remark that for c = 0 as in the model equation (2.1) we have the values
A−N0 and zero for λ. In case p(x) = 0 as in equation (2.1) the value zero of λ
yields the trivial solution y = 0 of the equation. In dealing with real solutions
of (1.1) only, we assume the inequality

4c ≤ (A−N0)
2 (4.7)

in the following.

In view of (4.5) equation (1.1) reduces to the following equation for z

z(x) = f0(x) + G0[z](x) + L0[z, z](x) , (4.8)

where

f0(x) =
1

xαk(x)

{
p(x)−

[
λ +

ν∑
j=1

µjx
κj

]
k(x) + λ

∫ x

0

n(x, ξ) dξ

+
ν∑

j=1

µj

∫ x

0

n(x, ξ)ξκj dξ + λ2

∫ x

0

m(x, ξ) dξ

+λ
ν∑

j=1

µj

∫ x

0

m(x, ξ) [ξκj + (x− ξ)κj ] dξ

+
ν∑

j=1

ν∑
i=1

µjµi

∫ x

0

m(x, ξ)ξκj(x− ξ)κi dξ

}
(4.9)

and

G0[z](x)

=
1

xαk(x)

∫ x

0

{
n(x, ξ)ξαz(ξ) + λm(x, ξ) [ξαz(ξ) + (x− ξ)αz(x− ξ)]

+ m(x, ξ)
[ ν∑

j=1

µj

(
ξκj(x− ξ)αz(x− ξ) + (x− ξ)κjξαz(ξ)

)]}
dξ

(4.10)
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and

L0[z1, z2](x) =
1

xαk(x)

∫ x

0

m(x, ξ)ξα(x− ξ)αz1(ξ)z2(x− ξ) dξ . (4.11)

Since k(x) ∼ Ax as x → 0, for obtaining f0 ∈ C[0, T ] in (4.9) we have to put
the coefficients of the powers x and x1+κj , j = 1, . . . , ν in the brackets to zero.
For the power x we obtain the relation c = λ(A−N0)− λ2 already used in the
determination of λ by (4.6). For the power x1+κ1 the relation

λ =
1

2
[(1 + κ1)A−N0] (4.12)

between λ and κ1 follows. This gives a positive value

κ1 =
1

A

√
(A−N0)2 − 4c (4.13)

only for λ = λ1, i.e.,

λ =
1

2

[
A−N0 +

√
(A−N0)2 − 4c

]
. (4.14)

In case ν ≥ 2 for the power x1+κj , j = 2, . . . , ν, it must be κj = jκ1, j =
2, . . . , ν, which by κν < α yields the inequality κ1 < α

ν
for κ1. Under the further

inequality κ1 ≥ α
ν+1

we get the recursive equations for µj, j = 2, . . . , ν,(
A− N0 + 2λ

1 + κm

)
µm =

m−1∑
j=1

µjµm−jB
(
κj + 1, κm−j + 1

)
, (4.15)

where m = 2, . . . , ν, the letter B denotes the Beta function, and µ1 is arbitrary.
In view of (4.12) we have

A− N0 + 2λ

1 + κm

=
(m− 1)Aκ1

1 + mκ1

6= 0 for m = 2, . . . , ν

so that (4.15) determines µj, j = 2, . . . , ν uniquely for prescribed µ1. Further,
the value of f0(0) is given by the formulas

Af0(0) = d− λB + λN1 + λ
N2

1 + α
+ λ2M1 + λ2 M2

1 + α
(4.16)

in case κ1 > α
ν+1

and with the additional term

ν∑
j=1

µjµν+1−jB(κj + 1, κν+1−j + 1)

on the right-hand side of (4.16) in case κ1 = α
ν+1

.

We are now ready to formulate the first existence theorem.
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Theorem 4. Let the assumptions (4.1) – (4.4) be fulfilled and let the inequality

(A−N0)
2 − α2

ν2
A2 < 4c ≤ (A−N0)

2 − α2

(ν + 1)2
A2 (4.17)

hold for ν ∈ {1, 2, . . .}. Then equation (1.1) has a one-parametric family of
solutions of the form (4.5), where λ is given by (4.14), κ1 by (4.13), µ1 ∈ R is
an arbitrary non-vanishing parameter, and for ν ≥ 2 there holds κj = jκ1, j =
2, . . . , ν, and the µj, j = 2, . . . , ν, are determined by µ1 via relations (4.15).

Proof. Due to (4.13) we have the relation

4c = (A−N0)
2 − κ2

1A
2

between c and κ1. Therefore, inequality (4.17) is equivalent to the above in-
equality α

ν+1
≤ κ1 < α

ν
. Further, (4.17) implies assumption (4.7).

We split the linear operator G0 in (4.10)

G0[z](x) =
β

x1+α

∫ x

0

ξαz(ξ) dξ + G1[z](x) ,

where β = 1
A
[N0 + 2λ] = 1 + κ1 observing (4.12) and

G1[z](x) =
β

x1+α

Ax− k(x)

k(x)

∫ x

0

ξαz(ξ) dξ

+
1

xαk(x)

∫ x

0

{
[n(x, ξ)−N0]ξ

αz(ξ)

+ λ[m(x, ξ)− 1] [ξαz(ξ) + (x− ξ)αz(x− ξ)]
}

dξ

+
1

xαk(x)

∫ x

0

m(x, ξ)

×
ν∑

j=1

µj [ξκj(x− ξ)αz(x− ξ) + (x− ξ)κjξαz(ξ)] dξ

(4.18)

and write equation (4.8) in the form

z(x)− β

x1+α

∫ x

0

ξαz(ξ) dξ = g(x) , (4.19)

where g(x) = f0(x) + G1[z](x) + L0[z, z](x). Estimating (4.18) and (4.11) we
get

|G1[z](x)| ≤ Const xκ1‖z‖ and |L0[z1, z2](x)| ≤ Const xα‖z1‖‖z2‖ .
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So, for any z ∈ C[0, T ] we have G1[z] ∈ C[0, T ] with G1[z](0) = 0 and L0[z, z] ∈
C[0, T ] with L0[z, z](0) = 0, therefore g ∈ C[0, T ] with g(0) = f0(0).

The auxiliary equation (4.19) for known g ∈ C[0, T ] has the unique contin-
uous solution

z(x) = g(x) + βxβ−α−1

∫ x

0

ξα−βg(ξ) dξ , (4.20)

where α−β = α−κ1−1 > −1. Hence we obtain instead of (4.8) the equivalent
equation

z(x) = f(x) + G[z](x) + L[z, z](x) (4.21)

where

f(x) = f0(x) + βxβ−α−1

∫ x

0

ξα−βf0(ξ) dξ

with f(0) = 1+α
1+α−β

f0(0) = α+1
α−κ1

f0(0) and

G[z](x) = G1[z](x) + βxβ−α−1

∫ x

0

ξα−βG1[z](ξ) dξ

L[z1, z2](x) = L0[z1, z2](x) + βxβ−α−1

∫ x

0

ξα−βL0[z1, z2](ξ) dξ .

We have the estimations

‖G[z]‖σ ≤
α + 1

α− κ1

‖G1[z]‖σ and ‖L[z1, z2]‖σ ≤
α + 1

α− κ1

‖L0[z1, z2]‖σ .

So, for any z ∈ C[0, T ] we have G[z] ∈ C[0, T ] with G[z](0) = 0 and for any pair
z1, z2 ∈ C[0, T ] also L[z1, z2] ∈ C[0, T ] with L[z1, z2](0) = 0. Hence z(0) = f(0)
for the solution z of (4.21).

To apply Lemma 1 to equation (4.21) we have to prove the inequalities (1.3)
– (1.5). We can show that

‖G[z]‖σ ≤

{
Const 1

σ
‖z‖σ if κ1 ≥ 1

Const 1
σκ1
‖z‖σ if 0 < κ1 < 1

and further ‖L[z1, z2]‖σ ≤ Const ‖z1‖σ‖z2‖σ and

‖L[z1, z2]‖σ ≤

{
Const 1

σ
‖z1‖‖z2‖σ if α ≥ 1

Const 1
σα‖z1‖‖z2‖σ if 0 < α < 1 ,

and also with z1 and z2 interchanged. These estimates verify (1.3) – (1.5) and
by Lemma 1 the theorem is proved.
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Remark 4. By z(0) = f(0) = α+1
α−κ1

f0(0) and (4.16) all the solutions of the
family of the form (4.5) have the common value

z(0) =
1

A

α + 1

α− κ1

[
d + λ

(
N1 +

N2

α + 1
−B

)
+ λ2

(
M1 +

M2

α + 1

)]
.

In the next theorem we prove the existence of solutions to equation (1.1) of
the simpler form

y(x) = λ + xαz(x) , z ∈ C[0, T ] , (4.22)

where λ ∈ R. We again have the possible values λ1,2 from (4.6) for λ assuming
the assumption (4.7) for real solutions, too. In equation (4.8) for z the functions
f0 and G0 are now defined by the formulas (4.9) and (4.10) without the terms
with sums whereas the formula (4.11) for L0 remains.

In contrast to the former case we now obtain solutions for both values λ1,2

of λ. The value of f0(0) is given by (4.16). In the proof of existence of solutions
we again split G0 introducing G1 by (4.18) without the last integral with sums.
In the auxiliary equation (4.19) the parameter β = 1

A
[N0 +2λ] now has the two

possible values

β1,2 = 1± γ0 , γ0 =
1

A

√
(A−N0)2 − 4c . (4.23)

In the following we distinguish the three cases 0 ≤ γ0 < α, γ0 = α and
γ0 > α. In the case 0 ≤ γ0 < α we have β1 ∈ [1, 1 + α), β2 ∈ (1 − α, 1]. For
both β = β1,2 the inversion formula (4.20) holds and we can proceed as above
to obtain two solutions z1,2 of equation (4.21) and hence solutions y1,2 of form
(4.22) to equation (1.1). Only if γ0 = 0, the values β1 and β2 are equal (to 1)
and the solutions y1 and y2 coincide.

In the case γ0 = α we have β1 = 1 + α, β2 = 1 − α. For β = β2, again
the inversion formula (4.20) holds and we get a solution y of form (4.22). For
β = β1 instead of (4.20) the inversion formula

zK(x) = K + g(x) + β1

∫ x

0

g(ξ)

ξ
dξ

is valid with an arbitrary K ∈ R if g ∈ C[0, T ] satisfies g(0) = 0 and
∫ T

0
|g(x)|

x
dx <

∞. In view of (4.16) and the assumptions on the integrals of C, γ, δ, ε this is
fulfilled if the condition

d = λ1

(
B −N1 −

N2

α + 1

)
− λ2

1

(
M1 +

M2

α + 1

)
(4.24)

holds. Then as in the logarithmic case in Theorem 3 (or in Theorem 3 of [2]),
for any K ∈ R we obtain a solution of the form (4.22), this means we have a
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one-parametric family of solutions yK with parameter K = zK(0) ∈ R. If (4.24)
does not hold, also as in Theorem 3 we can prove the existence of a family of
solutions yK of the form

yK(x) = λ1 + µxα ln x + xαzK(x) , zK ∈ C[0, T ] (4.25)

with λ1 = 1
2
[(α + 1)A−N0],

µ =
α + 1

A

[
d + λ1

(
N1 +

N2

α + 1
−B

)
+ λ2

1

(
M1 +

M2

α + 1

)]
and arbitrary K = zK(0) ∈ R. Under the condition (4.24) we have µ = 0 and
the solutions (4.25) take the form (4.22).

In the remaining case γ0 > α we have β1 > 1 + α, β2 < 1− α. For β = β2

again the inversion formula (4.20) holds leading to a solution y of form (4.22).
For β = β1 we take the inversion formula as follows:

zK(x) = Kxβ1−α−1 + g(x)− β1x
β1−α−1

∫ T

x

ξα−β1f0(ξ) dξ

+ β1x
β1−α−1

∫ x

0

ξα−β1g0(ξ) dξ

with an arbitrary K ∈ R and g0(x) = G1[z](x) + L0[z, z](x). Under the
restriction 1 + α < β1 < 1 + 2α we can proceed as in the proof of Theo-
rem 2 in [2] to obtain a family of solutions yK of form (4.22) with parameter
K = limx→0 xα+1−β1zK(x) ∈ R.

So we have the following second existence theorem.

Theorem 5. Let the assumptions (4.1) – (4.4) and the inequality (4.7) be satis-
fied. Then equation (1.1) has the following solutions, where γ0 is given by (4.23):

1. In case γ0 = 0, i.e., 4c = (A−N0)
2: a unique solution y0 of form (4.22)

with λ = λ0 = 1
2
(A−N0).

2. In case 0 < γ0 < α, i.e., 0 < (A − N0)
2 − 4c < α2A2: two solutions y1,2

of form (4.22) with λ = λ1,2 given by (4.6).

3. In case γ0 = α, i.e., (A − N0)
2 − 4c = α2A2: for λ = λ2 one solution y2

of form (4.22) and for λ = λ1 a one-parametric family of solutions yK of
form (4.25) with parameter K = zK(0) ∈ R.

4. In case γ0 > α, i.e., (A−N0)
2−4c > α2A2: for λ = λ2 one solution y2 of

form (4.22) and in case α < γ0 < 2α, i.e., α2A2 < (A−N0)
2−4c < 4α2A2,

for λ = λ1 a one-parametric family of solutions yK of form (4.22) with
parameter K = limx→0 xα−γ0zK(x).
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Remark 5. In cases 1 and 2 and in cases 3 and 4 with λ = λ2 of Theorem 5,
the value z(0) is given by z1,2(0) = 1+α

α∓γ0
f0(0), where f0(0) follows from (4.16).

Summarizing the results of Theorem 4 and 5 we get the following picture of
solvability of equation (1.1), where we take the solution in case 2 of Theorem 5
for λ = λ1 as the member of the family of solutions in Theorem 4 with parameter
µ1 = 0.

Corollary 2. Under the assumptions (4.1) – (4.4) and the inequality (4.7) the
following solutions to equation (1.1) exist.

1. In case 4c = (A−N0)
2: a solution of form (4.22).

2. In case (A−N0)
2 − α2A2 < 4c < (A−N0)

2: a one-parametric family of
solutions of form (4.5) with parameter µ = µ1 ∈ R for λ = λ1 choosing a
corresponding ν ∈ {1, 2, . . .} in (4.17) and an additional solution of form
(4.22) for λ = λ2.

3. In case 4c = (A−N0)
2−α2A2: a one-parametric family of solutions yK of

form (4.25) with parameter K ∈ R for λ = λ1 and an additional solution
of form (4.22) for λ = λ2.

4. In case (A − N0)
2 − 4α2A2 < 4c < (A − N0)

2 − α2A2: a one-parametric
family of solutions yK of form (4.22) with parameter K ∈ R for λ = λ1

and in case 4c < (A−N0)
2 − α2A2 a solution of form (4.22) for λ = λ2.

Remark 6. In case 1 of Corollary 2 there may exist other continuous solutions
of equation (1.1) which are not of form (4.5), (4.22) or (4.25). So the equation

xy(x) =

∫ x

0

y(ξ)y(x− ξ) dξ +

∫ x

0

y(ξ) dξ (4.26)

has besides y0(x) ≡ 0 the family of solutions y(x) = ν
(

x
γ

)
, γ > 0, with

Volterra’s function

ν(x) =

∫ ∞

0

xt

Γ(t + 1)
dt ∼ 1

− ln x
as x → 0 .

This follows applying the method of Laplace transform to the equation. We
remark that any equation of the form

Axw(x) =

∫ x

0

w(ξ)w(x− ξ) dξ + N0

∫ x

0

w(ξ) dξ + c (4.27)

with 4c = (A − N0)
2 can be reduced to equation (4.26) substituting y(x) =

1
A
[w(x) − 1

2
(A − N0)]. The general equation (1.1) in case 1 of Corollary 2 can

be treated as a perturbation of equation (4.27).
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Remark 7. If 4c > (A−N0)
2 we have the conjugate complex values

λ1,2 =
1

2
[A−N0 ± iAω0] , β1,2 = 1± iω0

where ω0 = 1
A

√
4c− (A−N0)2 . From Re β1,2 = 1 it follows that there exist

two complex solutions of form (4.22) now as in case 2 of Theorem 5.

Remark 8. The assumptions (4.1) – (4.4) on the data of equation (1.1) allow
to handle as a special case the equation of Bernstein and Doetsch [4]

xy(x) = γ

∫ x

0

y(ξ)y(x− ξ) dξ + (1− γ)

∫ x

0

y(ξ) dξ (0 < γ < 1)

with the solutions y(x) = Eγ (Cxγ), where C ∈ R is an arbitrary parameter
and Eγ denotes the Mittag-Leffler function. But the integral equation for the
elliptic theta zero function [3 - 5]

2xy(x) =

∫ x

0

y(ξ)y(x− ξ) dξ +

∫ x

0

y(ξ) dξ − 1

cannot be dealt with by the present method because of the free term p(x) ≡ −1
and requires further investigation.
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