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Hypoellipticity of Hankel Convolution Equations
in DL1-Type Spaces

Jorge J. Betancor

Abstract. In this paper we analyze the hypoellipticity of Hankel convolution equa-
tions in distribution spaces of Lp-growth. The spaces that we consider are DLp-type
spaces in the Hankel setting.
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1. Introduction

The space DLp , 1 ≤ p ≤ ∞, were studied by L. Schwartz ([14]). Assume that
n ∈ N \ {0}. If 1 ≤ p <∞, a smooth function φ on Rn is in DLp provided that

‖φ‖p,k =

( ∫
Rn

|Dkφ(x)|p dx
) 1

p

<∞,

for every k ∈ Nn. A smooth function φ on Rn is in DL∞ when

‖φ‖∞,k = sup
x∈Rn

|Dkφ(x)| <∞,

and lim|x|→∞Dkφ(x) = 0, for every k ∈ Nn. Here, for each k = (k1, k2, ..., kn) ∈
Nn we understand as usual

Dkφ =
∂k1+k2+...+kn

∂xk1
1 ∂x

k2
2 ...∂x

kn
n

φ.

The space DLp , 1 ≤ p ≤ ∞, is endowed with the topology associated with the
family {‖ · ‖p,k}k∈Nn of seminorms. Thus, DLp , 1 ≤ p ≤ ∞ is a Fréchet space.
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Moreover the space D of the smooth and compact support functions in Rn is
dense in DLp , 1 ≤ p ≤ ∞. The dual space D′

Lp of DLp is hence a normal space
of distributions for each 1 ≤ p ≤ ∞.

In [3] J. J. Betancor and B. González introduced the space DLp-type in the
setting of Hankel transforms. There, the rule of the derivatives was played by
the Bessel operator ∆µ = x−2µ−1Dx2µ+1D. The spaces Hµ,p and Hµ,p, µ > −1

2

and 1 ≤ p ≤ ∞, were defined in [3] as follows. Let 1 ≤ p ≤ ∞ and µ > −1
2
. A

Lebesgue measurable function f defined on (0,∞) is in Hµ,p if, for every k ∈ N,
∆k

µf ∈ Lp(x2µ+1 dx), that is, there exists hk ∈ Lp(x2µ+1 dx) such that∫ ∞

0

f(x)∆k
µ(φ)(x)x2µ+1 dx =

∫ ∞

0

φ(x)hk(x)x
2µ+1 dx, φ ∈ Se.

Here by Se we understand the space that consists of all the even functions in the
Schwartz space S(R). The space Hµ,p is equipped with the topology generated
by the family {γp,µ

k }k∈N of seminorms, where

γp,µ
k (φ) = ‖∆k

µφ‖µ,p, φ ∈ Hµ,p, k ∈ N,

and ‖ · ‖µ,p being the usual norm in the Lebesgue space Lp(x2µ+1 dx). Note that
L∞(x2µ+1 dx) = L∞( dx). Thus Hµ,p is a Fréchet space ([3, Proposition 2.1]).
It is not hard to see that Se is properly contained in Hµ,p. The space Hµ,p is
defined as the closure of Se into Hµ,p.

In [3] the author and B. González investigated the Hankel convolution on
the spaces Hµ,p, Hµ,p and their duals. Motivated by the paper of D. H. Pahk
[13] in [3, open question 3.3] J. J. Betancor and B. González propose the study
of the hypoellipticity of Hankel convolution equations on the spaces H ′

µ,1, the
dual space of Hµ,1. This is our objective in this paper.

We now recall some definitions and properties concerning to Hankel trans-
forms and Hankel convolution that will be useful in the sequel.

The Hankel transform hµ(f) of f ∈ L1(x2µ+1 dx) is defined by (see [10] and
[11], for instance)

hµ(f)(y) =

∫ ∞

0

(xy)−µJµ(xy)f(x)x2µ+1 dx, y ∈ (0,∞),

where Jµ denotes the Bessel function of the first kind and order µ ([16]). Here we
assume that µ > −1

2
. The Hankel transform, that is also called Hankel-Schwartz

transform (see [7]), is an automorphism in Se ([1, Satz 5]). hµ is defined on
S ′e, the dual space of Se, by transposition. Each function f ∈ Lp(x2µ+1 dx),
1 ≤ p ≤ ∞, defines an element of S ′e, that will be continue denoting by f , as
follows:

〈f, φ〉 =

∫ ∞

0

f(x)φ(x)
x2µ+1

2µΓ(µ+ 1)
dx, φ ∈ Se.
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Throughout this paper, when we say that a function defines a functional on a
suitable function space it must understood as above.

The convolution equation associated with the Hankel transform hµ was
investigated by D. T. Haimo [9] and I. I. Hirschman [11] on the Lebesgue spaces
Lp(x2µ+1 dx). If f, g ∈ L1(x2µ+1 dx), the Hankel convolution f#µg of f and g is
given through

(f#µg)(x) =

∫ ∞

0

(µτxg)(y)f(y)
y2µ+1

2µΓ(µ+ 1)
dy, x ∈ (0,∞),

where the Hankel translation operator µτx, x ∈ [0,∞), is defined by

(µτxg)(y) =

∫ ∞

0

Dµ(x, y, z)g(z)
z2µ+1

2µΓ(µ+ 1)
dz, x, y ∈ (0,∞),

and µτ0g = g, and being, for each x, y, z ∈ (0,∞),

Dµ(x, y, z) = (2µΓ(µ+ 1))2

∫ ∞

0

(xt)−µJµ(xt)(yt)−µJµ(yt)(zt)−µJµ(zt)t2µ+1 dt.

The Hankel convolution and the Hankel translations are related to the Hankel
transformation hµ by the following formulas (see [11]):

hµ(f#µg) = hµ(f)hµ(g)

hµ(µτxg)(y) = 2µΓ(µ+ 1)(xy)−µJµ(xy)hµ(g)(y),

where x, y ∈ [0,∞) and f, g ∈ L1(x2µ+1 dx). The Hankel convolution was
studied in distribution spaces in [5], [6] and [12].

In the sequel, to simplify we will write #, τx, x ∈ [0,∞), and D, instead
#µ, µτx, x ∈ [0,∞), and Dµ, respectively. Throughout this paper by C we
always denote a suitable positive constant that can be changed from the one to
the other line.

2. Hankel convolution operators in the space H ′
µ,1

We introduce the space Hµ,∞ as the closure of Hµ,1 in Hµ,∞. In this Section,
we characterize H′

µ,∞ as the space of Hankel convolution operators on H ′
µ,1.

Let f ∈ Hµ,1. As it was proved in [3, Remark 1], ykhµ(f) ∈ L1(x2µ+1 dx)
for every k ∈ N. Hence, according to [11, Corollary 2.e],

f(x) =

∫ ∞

0

(xy)−µJµ(xy)hµ(f)(y)y2µ+1 dy for a.e. x ∈ (0,∞). (2.1)
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Here, a.e. refers to the Lebesgue measure on (0,∞). Moreover, the right hand
side of (2.1) defines a smooth function on (0,∞) and by [17, (7), Chapter 5],
for every k ∈ N,(

1

x

d

dx

)k ∫ ∞

0

(xy)−µJµ(xy)hµ(f)(y)y2µ+1 dy

= (−1)k

∫ ∞

0

(xy)−µ−kJµ+k(xy)hµ(f)(y)y2µ+1+2k dy,

for each x ∈ (0,∞). Thus we can consider Hµ,1 as a subspace of C∞(0,∞).
Moreover the distributional and classical operator ∆µ coincide on Hµ,1.

Moreover, from (2.1) and [17, (6) and (7), Chapter 5] we can deduce that,
for every k ∈ N,

∆k
µf(x) =

∫ ∞

0

(xy)−µJµ(xy)(−y2)khµ(f)(y)y2µ+1 dy, f ∈ Hµ,1. (2.2)

Hence, Hµ,1 is continuously contained in Hµ,∞. From (2.2), according to the
Riemann-Lebesgue Lemma for the Hankel transform, we infer that, for every
f ∈ Hµ,1 and k ∈ N,

lim
x→∞

∆k
µf(x) = 0.

Also, (2.2) implies that, for every f ∈ Hµ,1 and k ∈ N,

lim
x→0

∆k
µf(x) =

(−1)k

2µΓ(µ+ 1)

∫ ∞

0

f(y)y2k+2µ+1 dy.

Then, it is not hard to see that, for every f ∈ Hµ,∞ and k ∈ N,

lim
x→∞

∆k
µf(x) = 0,

and, there exists limx→0 ∆k
µf(x).

By H ′
µ,1 and H′

µ,∞ we denote, as usual, the dual spaces of Hµ,1 and Hµ,∞,
respectively. Since Hµ,1 is a dense subspace of Hµ,∞, H′

µ,∞ is a subspace of H ′
µ,1.

We now present characterizations of the elements of H ′
µ,1 and H′

µ,∞. They can
be proved by employing standard procedures (see [3, Proposition 2.2]).

Proposition 1.

(i) Let T be a functional on Hµ,1. Then T ∈ H ′
µ,1 if, and only if, there exist

n ∈ N and fk ∈ L∞( dx), k = 0, 1, ..., n, such that

〈T, φ〉 =
n∑

k=0

∫ ∞

0

fk(x)∆
k
µφ(x)x2µ+1 dx, φ ∈ Hµ,1.
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(ii) Let T be a functional on Hµ,∞. Then T ∈ H′
µ,∞ if, and only if, there exist

n ∈ N and regular complex Borel measures γk on [0,∞), k = 0, 1, ..., n,
such that

〈T, φ〉 =
n∑

k=0

∫ ∞

0

∆k
µφ(x)dγk(x), φ ∈ Hµ,∞.

To study the Hankel convolution on the space H ′
µ,1 we need to analyze the

behaviour of the Hankel translation τx, x ∈ [0,∞), on the space Hµ,1.

Proposition 2. Let x ∈ (0,∞). The Hankel translation τx defines a continuous
linear mapping from Hµ,1 into itself.

Proof. Let f ∈ Hµ,1. Since f ∈ L1(x2µ+1 dx), by [4, (3.1)], we can write

hµ(τxf)(y) = 2µΓ(µ+ 1)(xy)−µJµ(xy)hµ(f)(y), y ∈ (0,∞).

Moreover, since hµ(f) ∈ L1(x2µ+1 dx) and z−µJµ(z) is a bounded function on
(0,∞), we get

(τxf)(y) = 2µΓ(µ+ 1)hµ((xt)−µJµ(xt)hµ(f)(t))(y), y ∈ (0,∞).

Then, for every k ∈ N,

∆k
µ(τxf)(y) = (−1)k2µΓ(µ+ 1)hµ((xt)−µJµ(xt)t2khµ(f)(t))(y)

= τx(∆
k
µf)(y), y ∈ (0,∞).

Note that the differentiation under the integral sign is justified because, for
every k ∈ N, y2khµ(f) ∈ L1(x2µ+1 dx).

By invoking now [15, p. 17], for every k ∈ N, we get

‖∆k
µ(τxf)‖µ,1 ≤ C‖∆k

µf‖µ,1. (2.3)

Hence τxf ∈ Hµ,1. That the mapping f → τxf is continuous from Hµ,1 into
itself follows also from the inequality (2.3).

We now study the behaviour of the Hankel convolution on the space Hµ,1.

Proposition 3. The Hankel convolution defines a continuous bilinear mapping
from Hµ,1 ×Hµ,1 into Hµ,1 .

Proof. Let f, g ∈ Hµ,1, φ ∈ Se and k ∈ N. Then, f#φ ∈ C∞(0,∞) and we
can write

∆k
µ(f#φ) = (∆k

µf)#φ = f#(∆k
µφ).
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Moreover,

〈∆k
µ(f#g)(x), φ〉 = 〈f#g,∆k

µφ〉

=

∫ ∞

0

(f#g)(y)∆k
µφ(y)

y2µ+1

2µΓ(µ+ 1)
dy

=

∫ ∞

0

f(y)(g#∆k
µφ)(y)

y2µ+1

2µΓ(µ+ 1)
dy

=

∫ ∞

0

f(y)((∆k
µg)#φ)(y)

y2µ+1

2µΓ(µ+ 1)
dy

=

∫ ∞

0

(f#∆k
µg)(y)φ(y)

y2µ+1

2µΓ(µ+ 1)
dy.

Hence ∆k
µ(f#g) = f#∆k

µg. Then, according to [11, Theorem 2.b], we get

‖∆k
µ(f#g)‖µ,1 ≤ ‖f‖µ,1‖∆k

µg‖µ,1.

Thus we conclude that the #-convolution defines a bilinear and continuous
mapping from Hµ,1 ×Hµ,1 into Hµ,1.

By virtue of Proposition 2 we can define the Hankel convolution T#f of
T ∈ H ′

µ,1 and f ∈ Hµ,1 as the function

(T#f)(x) = 〈T, τxf〉, x ∈ [0,∞).

Proposition 4. Let T ∈ H ′
µ,1 and f ∈ Hµ,1. Then T#f is a continuous and

bounded function on (0,∞). Hence T#f ∈ H ′
µ,1 and, for every k ∈ N, we have

that

∆k
µ(T#f) = (∆k

µT )#f = T#(∆k
µf).

Proof. According to Proposition 1, (i) we can find n ∈ N and gk ∈ L∞( dx),
k = 0, 1, ..., n, such that

〈T, φ〉 =
n∑

k=0

∫ ∞

0

gk(x)∆
k
µφ(x)x2µ+1 dx, φ ∈ Hµ,1.

Then,

(T#f)(x) =
n∑

k=0

∫ ∞

0

gk(y)∆
k
µ,yτx(f)(y)y2µ+1 dy

=
n∑

k=0

∫ ∞

0

gk(y)τx(∆
k
µf)(y)y2µ+1 dy, x ∈ (0,∞).
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Hence, by taking into account [15, p. 17], we can conclude that T#f is a
continuous and bounded function on (0,∞). Then T#f defines an element of
H ′

µ,1 by

〈T#f, φ〉 =

∫ ∞

0

(T#f)(x)φ(x)
x2µ+1

2µΓ(µ+ 1)
dx, φ ∈ Hµ,1.

Moreover, we can write

〈T#f, φ〉 =
n∑

k=0

∫ ∞

0

φ(x)

∫ ∞

0

gk(y)τx(∆
k
µf)(y)y2µ+1 dy 2MΓ(µ+ 1)

=
n∑

k=0

∫ ∞

0

gk(y)

∫ ∞

0

φ(x)τy(∆
k
µf)(x) 2MΓ(µ+ 1) y2µ+1 dy

=
n∑

k=0

∫ ∞

0

gk(y)(φ#∆k
µf)(y)y2µ+1 dy

=
n∑

k=0

∫ ∞

0

gk(y)∆
k
µ(φ#f)(y)y2µ+1 dy

= 〈T, f#φ〉, φ ∈ Hµ,1.

Then, a straightforward manipulation leads, for every k ∈ N and φ ∈ Hµ,1, to

〈∆k
µ(T#f), φ〉 = 〈T#f,∆k

µφ〉 = 〈T, f#∆k
µφ〉 = 〈T,∆k

µ(f#φ)〉
= 〈(∆k

µT )#f, φ〉 = 〈T, (∆k
µf)#φ〉 = 〈T#∆k

µf, φ〉 .

Our next objective is to characterize to H′
µ,∞ as the subspace of H ′

µ,1 that
defines convolution operators on Hµ,1.

Proposition 5. Let T ∈ H ′
µ,1. If T ∈ H′

µ,∞, then T#φ ∈ Hµ,1 for every
φ ∈ Hµ,1.

Proof. Assume that T ∈ H′
µ,∞. Then there exist n ∈ N and regular complex

Borel measures γk, k = 0, 1, ..., n, on [0,∞) such that

〈T, f〉 =
n∑

k=0

∫ ∞

0

∆k
µf(x)dγk(x), f ∈ Hµ,∞.

Let φ ∈ Hµ,1. We have that

(T#φ)(x) =
n∑

k=0

∫ ∞

0

τx(∆
k
µφ)(y)dγk(y)

=
n∑

k=0

2µΓ(µ+ 1)

∫ ∞

0

hµ((xt)−µJµ(xt)hµ(∆k
µφ)(t))(y)dγk(y).
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Hence, since y2khµ(φ) ∈ L1(x
2µ+1 dx), for every k ∈ N, [17, (7), Chapter 5]

allows us to prove that T#φ is an smooth function on (0,∞). Moreover, for
every l ∈ N, we get

∆l
µ(T#φ)(x) =

n∑
k=0

∫ ∞

0

τx(∆
k+l
µ φ)(y)dγk(y), x ∈ (0,∞).

By interchanging the order of integration and according to [15, p. 17] we can
obtain

‖∆l
µ(T#φ)‖µ,1 ≤

n∑
k=0

∫ ∞

0

∫ ∞

0

|τx(∆k+l
µ φ)(y)|d|µk|(y)x2µ+1 dx

≤ C
n∑

k=0

‖∆k+l
µ φ‖µ,1, l ∈ N.

Thus we have proved that T#φ ∈ Hµ,1.

We now define the Hankel convolution T#S of T ∈ H ′
µ,1 and S ∈ H′

µ,∞ as
follows:

〈T#S, φ〉 = 〈T, S#φ〉, φ ∈ Hµ,1.

Thus T#S ∈ H ′
µ,1. Next we prove some properties of the #-convolution on the

spaces under consideration that will be useful in the sequel.

Proposition 6. Let T ∈ H ′
µ,1 and R,S ∈ H′

µ,∞. Then:

(i) R#S ∈ H′
µ,∞ and R#S = S#R.

(ii) ∆µ(T#R) = (∆µT )#R = T#(∆µR).

(iii) T#(R#S) = (T#R)#S.

Proof. (i): According to Proposition 1, (ii), we can write

〈R, φ〉 =
r∑

k=0

∫ ∞

0

∆k
µφ(x)dγk(x), φ ∈ Hµ,∞ (2.4)

〈S, φ〉 =
α∑

k=0

∫ ∞

0

∆k
µφ(x)dνk(x), φ ∈ Hµ,∞,

where r, α ∈ N and γ0,...,γk and ν0,...,να are complex regular Borel measures on
[0,∞). Let φ ∈ Hµ,1. We can write

〈R#S, φ〉 = 〈R,S#φ〉

=
r∑

k=0

∫ ∞

0

∆k
µ(S#φ)(x)dγk(x)

=
r∑

k=0

∫ ∞

0

∆k
µ,x

α∑
l=0

∫ ∞

0

τx(∆
l
µφ)(y)dνl(y)dγk(x)
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and hence, by using [4, (3.1)] and Fubini’s theorem,

〈R#S, φ〉 =
r∑

k=0

α∑
l=0

∫ ∞

0

∫ ∞

0

τx(∆
k+l
µ φ)(y)dνl(y)dγk(x) (2.5)

= 2µΓ(µ+ 1)
r∑

k=0

α∑
l=0

∫ ∞

0

∫ ∞

0

hµ((xt)−µJµ(xt)

× hµ(∆k+l
µ φ)(t))(y)dνl(y)dγk(x)

= 2µΓ(µ+ 1)
r∑

k=0

α∑
l=0

∫ ∞

0

∫ ∞

0

(xt)−µJµ(xt)hµ(∆k+l
µ φ)(t)

× t2µ+1hµ(νl)(t) dtdγk(x)

= 2µΓ(µ+ 1)
r∑

k=0

α∑
l=0

∫ ∞

0

hµ(∆k+l
µ φ)(t)hµ(νl)(t)hµ(γk)(t)

× t2µ+1 dt.

(2.6)

Here, if γ is a complex regular Borel measure on [0,∞), hµ(γ) is defined by

hµ(γ)(x) =

∫ ∞

0

(xt)−µJµ(xt)dγ(t), x ∈ (0,∞).

From (2.5) we deduce that,

|〈R#S, φ〉| ≤ C
r∑

k=0

α∑
l=0

‖∆k+l
µ φ‖µ,∞.

Thus, we conclude that R#S defines a linear and continuous mapping on Hµ,1

when we consider on Hµ,1 the topology induced by Hµ,∞. Hence, since Hµ,1 is
dense in Hµ,∞, R#S can be extended in a unique way to Hµ,∞ as an element
of H′

µ,∞. The equality R#S = S#R follows immediately from (2.6).

(ii): Suppose that R admits the representation (2.4) and that

〈T, φ〉 =
α∑

l=0

∫ ∞

0

fl(x)∆
l
µφ(x) dx, φ ∈ Hµ,1,

where α ∈ N and fl ∈ L∞( dx), l = 0, ..., α. We can write, for every φ ∈ Hµ,1,

〈∆µ(T#R), φ〉 = 〈T#R,∆µφ〉

= 〈T,R#(∆µφ)〉

=
α∑

l=0

∫ ∞

0

fl(t)∆
l
µ,t

r∑
k=0

∫ ∞

0

τt(∆
k+1
µ φ)(x)dγk(x) dt

=
α∑

l=0

∫ ∞

0

fl(t)
r∑

k=0

∫ ∞

0

τt(∆
k+l+1
µ φ)(x)dγk(x) dt ,
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which proves (ii).

(iii): By using the procedure developed in the proof of (i) and (ii) and
according to Proposition 1, it is sufficient to prove the property when

〈T, φ〉 =

∫ ∞

0

f(t)∆k
µφ(t)t2µ+1 dt, φ ∈ Hµ,1

〈R, φ〉 =

∫ ∞

0

∆l
µφ(t)dγ(t), φ ∈ Hµ,∞

〈S, φ〉 =

∫ ∞

0

∆m
µ φ(t)dν(t), φ ∈ Hµ,∞,

where f ∈ L∞( dx), γ and ν are complex regular Borel measures on [0,∞) and
k, l,m ∈ N.

Let φ ∈ Hµ,1. By (2.6) we have

〈R#S, φ〉 = 2µΓ(µ+ 1)

∫ ∞

0

hµ(∆l+m
µ φ)(t)hµ(γ)(t)hµ(ν)(t)t2µ+1 dt.

Then 〈T#(R#S), φ〉 = 〈T, (R#S)#φ〉, and hence

〈T#(R#S), φ〉 =

∫ ∞

0

f(t)∆k
µ((R#S)#φ)(t)t2µ+1 dt

=

∫ ∞

0

f(x)∆k
µ,x

(
2µΓ(µ+ 1)

∫ ∞

0

hµ(∆l+m
µ τxφ)(t)

× hµ(γ)(t)hµ(ν)(t)t2µ+1 dt
)
x2µ+1 dx

= 2µΓ(µ+ 1)

∫ ∞

0

f(x)

∫ ∞

0

hµ(τx(∆
l+m+k
µ φ))(t)

× hµ(γ)(t)hµ(ν)(t)t2µ+1 dtx2µ+1 dx

= (2µΓ(µ+ 1))2

∫ ∞

0

f(x)

∫ ∞

0

(xt)−µJµ(xt)hµ(∆k+l+m
µ φ)(t)

× hµ(γ)(t)hµ(ν)(t)t2µ+1 dt x2µ+1 dx.

Also we can write

〈T#R, φ〉 = 〈T,R#φ〉

=

∫ ∞

0

f(x)∆k
µ,x

∫ ∞

0

∆l
µ,t(τxφ)(t)dγ(t)x2µ+1 dx

= 2µΓ(µ+ 1)

∫ ∞

0

f(x)

∫ ∞

0

hµ((xz)−µJµ(xz)

× hµ(∆l+k
µ φ)(z))(t)dγ(t)x2µ+1 dx

= 2µΓ(µ+ 1)

∫ ∞

0

f(x)

∫ ∞

0

(xz)−µJµ(xz)

× hµ(∆l+k
µ φ)(z)hµ(γ)(z)z2µ+1dzx2µ+1 dx.
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Hence, by using (ii),

〈(T#R)#S, φ〉 = 〈T#R,S#φ〉

= 2µΓ(µ+ 1)

∫ ∞

0

f(x)

∫ ∞

0

(xz)−µJµ(xz)hµ(∆l+k
µ (S#φ))(z)

× hµ(γ)(z)(zx)2µ+1 dz dx

= 2µΓ(µ+ 1)

∫ ∞

0

f(x)

∫ ∞

0

(xz)−µJµ(xz)hµ(γ)(z)∫ ∞

0

(tz)−µJµ(tz)

∫ ∞

0

τt(∆
k+l+m
µ φ)(y)dν(y) (tzx)2µ+1 dt dz dx

= (2µΓ(µ+ 1))2

∫ ∞

0

f(x)

∫ ∞

0

(xz)−µJµ(xz)hµ(γ)(z)∫ ∞

0

(yz)−µJµ(yz)dν(y)hµ(∆k+l+m
µ φ)(y)(zx)2µ+1 dz dx

= (2µΓ(µ+ 1))2

∫ ∞

0

f(x)

∫ ∞

0

(xz)−µJµ(xz)hµ(γ)(z)hµ(ν)(z)

× hµ(∆k+l+m
µ φ)(y)(zx)2µ+1 dz dx.

Thus we conclude that T#(R#S) = (T#R)#S.

Proposition 7. Let T ∈ H ′
µ,1. Then, T ∈ H′

µ,∞ provided T#φ ∈ Hµ,1, for
every φ ∈ Hµ,1.

Proof. Suppose that T#φ ∈ Hµ,1, for every φ ∈ Hµ,1. By [3, Proposition 1.1],
for every m ∈ N there exists an r ∈ N such that

δ = (1−∆µ)rϕ+ ψ, (2.7)

where δ is the Dirac functional, ψ ∈ Se and ϕ ∈ C2m(0,∞), for which ψ(x) =
ϕ(x) = 0, x ≥ 1, and

lim
x→0+

(
1

x

d

dx

)k

ϕ(x) = 0,

for every k = 0, 1, ..., 2m. The equality in (2.7) is understood in [3] in S ′e. It is
not hard to see that (2.7) also holds in H′

µ,∞.

We now choose m ∈ N large enough. According to Proposition 6 we have

T = T#δ = (1−∆µ)r(T#ϕ) + T#ψ.

By the assumption, T#ψ ∈ Hµ,1. Then T#ψ ∈ H′
µ,∞.

Assume now (kn)n∈N is a sequence in Se such that, for every n ∈ N, kn

satisfies the following properties:
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(a) kn ≥ 0

(b) kn(x) = 0, x /∈ ( 1
n+1

, 1
n
)

(c)
∫∞

0
kn(x)x2µ+1dx = 2µΓ(µ+ 1).

From [4, Proposition 3.5] we deduce that kn#ϕ ∈ Se and (kn#ϕ)(x) = 0, x ≥ 2,
for every n ∈ N, and

sup
x∈(0,∞)

|∆k
µ(kn#ϕ− ϕ)(x)| → 0, as n→∞,

for k = 0, 1, ...,m. According to Proposition 1 (i), there exist l ∈ N and
fk ∈ L∞(dx), k = 0, ..., l, such that, for every φ ∈ Hµ,1,

(T#φ)(x) =
l∑

k=0

∫ ∞

0

fk(y)τx(∆
k
µφ)(y)y2µ+1 dy, x ∈ (0,∞).

Then, by [15, p. 17] we get

|(T#(kn#ϕ)− T#ϕ)(x)| ≤ C
l∑

k=0

‖∆k
µ(ϕ#kn − ϕ)‖µ,1

≤ C
l∑

k=0

sup
x∈(0,∞)

|∆k
µ(ϕ#kn − ϕ)(x)| → 0

as n→∞, uniformly in (0,∞).

On the other hand, T#(kn#ϕ) ∈ Hµ,1, for every n ∈ N. Moreover, we can
write, for certain l ∈ N,

‖T#(kn#ϕ)‖µ,1 ≤ C
l∑

k=0

‖∆k
µϕ‖µ,1‖kn‖µ,1 ≤ C

l∑
k=0

‖∆k
µϕ‖µ,1

for every n ∈ N. Hence we conclude that T#ϕ ∈ L1(x2µ+1dx).

Thus, since the operator ∆µ defines a continuous linear mapping from Hµ,∞
into itself, we establish that T ∈ H′

µ,∞.

Proposition 8. Let T ∈ H′
µ,1. Then, T#φ ∈ Hµ,1, for every φ ∈ Hµ,1, if, and

only if, the mapping φ −→ T#φ is continuous from Hµ,1 into itself.

Proof. Assume that T#φ ∈ Hµ,1, for every φ ∈ Hµ,1. To see that the mapping
φ −→ T#φ is continuous from Hµ,1 into itself, we are going to use the closed
graph theorem. Suppose that (φn)n∈N is a sequence in Hµ,1 such that φn →
φ and T#φn → ψ, as n → ∞, in Hµ,1, where φ, ψ ∈ Hµ,1. We can write
(Poposition 1, (i))

〈T, ϕ〉 =
l∑

k=0

∫ ∞

0

fk(y)∆
k
µϕ(y)y2µ+1 dy, ϕ ∈ Hµ,1,
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for certain l ∈ N and fk ∈ L∞(dx), k = 0, 1, ..., l.

We assume that, by taking a subsequence if it is necessary, T#φn → ψ, a.e.
on (0,∞). Moreover, we have that

|(T#φn − T#φ)(x)| ≤
l∑

k=0

∫ ∞

0

|fk(y)|τx(|∆k
µ(φn − φ)|)(y)y2µ+1 dy

≤ C

l∑
k=0

‖∆k
µ(φn − φ)‖µ,1, x ∈ R.

Hence T#φn → T#φ, as n→∞, uniformly in (0,∞). Thus we conclude that
T#φ = ψ, and the proof is finished.

We summarize the above results in the following theorem, where the space
H′

µ,∞ is characterized as the space of convolution operators of Hµ,1.

Theorem 1. Let T ∈ H ′
µ,1. Then the following assertions are equivalent:

(i) T ∈ H′
µ,∞.

(ii) T#φ ∈ Hµ,1, for every φ ∈ Hµ,1.

(iii) The mapping φ −→ T#φ is continuous from Hµ,1 into itself.

3. The Hankel transformation on the space H ′
µ,1

We now define the Hankel transformation on the space H ′
µ,1. We denote by Sµ,1

the space of Hankel transforms of functions in Hµ,1, that is,

Sµ,1 = {hµ(φ) : φ ∈ Hµ,1}.

Since hµ is one to one on Hµ,1, we endow to Sµ,1 with the topology induced on
it by Hµ,1 via hµ. Thus, Sµ,1 is a Fréchet space. It is not hard to see that if
P is a polynomial, then the mapping ψ → P (x2)ψ is continuous from Sµ,1 into
itself.

Let T ∈ H ′
µ,1. The Hankel transform h′µT is defined as the element of S ′µ,1,

the dual space of Sµ,1, given by

〈h′µT, hµφ〉 = 〈T, φ〉, φ ∈ Hµ,1.

Then if T ∈ H′
µ,∞ is given by

〈T, φ〉 =
l∑

k=0

∫ ∞

0

∆k
µφ(x)dγk(x), φ ∈ Hµ,∞,
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where l ∈ N and γk is a regular complex Borel measure on [0,∞), k = 0, 1, ..., l,
we can write

〈h′µT, φ〉 =
l∑

k=0

∫ ∞

0

∆k
µhµ(φ)(y)dγk(y)

=
l∑

k=0

(−1)k

∫ ∞

0

∫ ∞

0

x2k(xy)−µJµ(xy)φ(x)x2µ+1dxdγk(y)

=
l∑

k=0

(−1)k

∫ ∞

0

φ(x)x2k

∫ ∞

0

(xy)−µJµ(xy)dγk(y)x
2µ+1dx, φ ∈ Sµ,1.

Hence, we obtain that hµ(T ) is a continuous function on (0,∞) and

h′µ(T ) = 2µΓ(µ+ 1)
l∑

k=0

(−1)kx2khµ(γk).

Hence h′µ(T ) is an slow growth function.

We now prove interchange distributional formulas.

Proposition 9. Let T ∈ H ′
µ,1, S ∈ H′

µ,∞ and φ ∈ Hµ,1. Then:

hµ(S#φ) = h′µ(S)hµ(φ) (3.1)

hµ(T#S) = h′µ(T )h′µ(S). (3.2)

Proof. Assume that

〈S, ψ〉 =
l∑

k=0

∫ ∞

0

∆k
µψ(y)dγk(y), ψ ∈ Hµ,∞,

where l ∈ N and γk, k = 0, 1, ..., l is a regular complex Borel measure on [0,∞).
Then,

(S#φ)(x) =
l∑

k=0

∫ ∞

0

τx(∆
k
µφ)(y)dγk(y), x ∈ (0,∞).

Hence, by interchanging the order of integration, we obtain

hµ(S#φ)(x) =
l∑

k=0

∫ ∞

0

∫ ∞

0

τt(∆
k
µφ)(y)dγk(y)(xt)

−µJµ(xt)t2µ+1 dt

= 2µΓ(µ+ 1)
l∑

k=0

(−1)k

∫ ∞

0

hµ(φ)(x)(xy)−µJµ(xy)x2kdγk(y)

= hµ(φ)(x)h′µ(S)(x), x ∈ (0,∞).
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Let now ψ ∈ Sµ,1. We can write

〈h′µ(T#S), ψ〉 = 〈T#S, hµ(ψ)〉 = 〈T, S#hµ(ψ)〉
= 〈h′µ(T ), h′µ(S)ψ〉 = 〈h′µ(T )h′µ(S), ψ〉.

Thus (3.2) is shown.

4. Hypoellipticity of Hankel convolution equations.

Our next objective is to analyze the hypoellipticity of Hankel convolution equa-
tions in H ′

µ,1. Firstly we prove a useful result.

Proposition 10. Assume that (aj)j∈N ⊂ C and (ξj)j∈N ⊂ (0,∞) such that
2j ≤ 2ξj−1 < ξj, j ∈ N, and that |aj| = O(ξm

j ), as j → ∞, for some m ∈ N.
We define the functional S ∈ S ′e as follows

S(x) = 2µΓ(µ+ 1)
∞∑

j=1

(xξj)
−µJµ(xξj)aj.

Then S ∈ H ′
µ,1. Moreover, S ∈ Hµ,∞ if, and only if, |aj| = o(ξ−n

j ) as j → ∞,
for every n ∈ N.

Proof. Let l1, l2 ∈ N, l1 < l2, and φ ∈ Hµ,1. We can write∣∣∣∣ l2∑
j=l1

aj

∫ ∞

0

(xξj)
−µJµ(xξj)φ(x)x2µ+1dx

∣∣∣∣ ≤ l2∑
j=l1

|aj||hµ(φ)(ξj)|

≤ C

l2∑
j=l1

ξm
j |hµ(φ)(ξj)|.

Since ykhµ(φ) is bounded on (0,∞), for every k ∈ N (because, for each k ∈ N,
∆k

µφ ∈ L1(x2µ+1dx)), and since ξj > 2j, j ∈ N, the series
∑∞

j=1 ajhµ(φ)(ξj)
converges and S ∈ H ′

µ,1.

Suppose now that |aj| = o(ξn
j ), as j → ∞, for every n ∈ N. By [17, (6)

and (7), Chapter 5] we can see that S ∈ C∞(0,∞) and that, for every l ∈ N,

∆l
µS(x) = 2µΓ(µ+ 1)

∞∑
j=1

(−ξj)2l(xξj)
−µJµ(xξj)aj, x ∈ (0,∞).

Then, for every l ∈ N, ‖∆l
µS‖µ,∞ ≤ C

∑∞
j=1 ξ

2l
j |aj| < ∞. Thus we have proved

that S ∈ Hµ,∞.
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Assume now that S ∈ Hµ,∞. To see that |aj| = o(ξn
j ), as j →∞, for every

n ∈ N, we proceed as in the proof of [6, Proposition 3.2]. Let k ∈ N and φ ∈ Se.
By [4, (3.1)] and integrating by parts we can write〈

(xt)−µJµ(xt)∆k
µS(x), φ

〉
=

〈
∆k

µS(x), (xt)−µJµ(xt)φ(x)
〉

=
〈
S(x),∆k

µ,x((xt)
−µJµ(xt)φ(x))

〉
= 2µΓ(µ+ 1)

∞∑
j=1

〈
(xξj)

−µJµ(xξj)aj,∆
k
µ,x((xt)

−µJµ(xt)φ(x))
〉

=
∞∑

j=1

aj

∫ ∞

0

(xξj)
−µJµ(xξj)∆

k
µ,x((xt)

−µJµ(xt)φ(x))x2µ+1 dx

=
1

2µΓ(µ+ 1)

∞∑
j=1

aj(−1)kξ2k
j τξj

(hµφ)(t), t ∈ (0,∞). (4.1)

Moreover, we have〈
(xt)−µJµ(xt)∆µS(x), φ(x)

〉
=

∫ ∞

0

(xt)−µJµ(xt)∆k
µS(x)φ(x)

x2µ+1

2µΓ(µ+ 1)
dx, t ∈ (0,∞).

Since ∆k
µS(x)φ ∈ L1(x2µ+1 dx), the Riemann-Lebesgue theorem for Hankel

transforms implies that

lim
t→∞

〈(xt)−µJµ(xt)∆µS(x), φ(x)〉 = 0. (4.2)

We now choose a function φ ∈ Se such that hµ(φ)(x) = 0, x > 1, and
hµ(φ)(x) > 1

2
, x ∈ (0, 1

2
). By (4.1), since τz(hµφ)(x) = 0, provided that

|z − x| > 1, we have

|〈(xξj)−µJµ(xξj)∆
k
µS, φ〉 = |aj(−1)kξ2k

j τξj
(hµφ)(ξj)|

≥ |aj|ξ2k−2µ−1
j , j ∈ N.

To see last inequality we have used ([8, (8.11,31)]. Then, (4.2) allows us to
conclude that |aj| = o(ξ−2k+2µ+1), as j →∞. Thus the proof is finished.

Let S ∈ H′
µ,∞. We say that S is hypoelliptic in H ′

µ,1 when the folllowing
property holds: if T ∈ H ′

µ,1 and T#S ∈ Hµ,∞ then T ∈ Hµ,∞.

We now characterize the hypoellipticity of S ∈ H′
µ,∞ in terms of the growth

of the Hankel transform h′µ(S) of S.
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Proposition 11. Let S ∈ H′
µ,∞ such that there exists a polynomial p for which∣∣∣∣ dl

dxl
h′µ(S)(x)

∣∣∣∣ ≤ p(x), x ∈ (0,∞), l = 0, 1, 2, ..., 2s,

where s = [µ + 2]. Then, S is hypoelliptic in H ′
µ,1 if, and only if, there exist

a,M > 0 such that

|h′µ(S)(x)| ≥ x−a, x ∈ (M,∞). (4.3)

Proof. Suppose that firstly (4.3) does not hold for every a,M > 0. Then we can
find a sequence (ξj)j∈N ⊂ (0,∞) such that, for every j ∈ N, |h′µ(S)(ξj)| < ξ−j

j

and 2j < 2ξj−1 < ξj. We now define the functional T ∈ H ′
µ,1 by

T (x) = 2µΓ(µ+ 1)
∞∑

j=1

(xξj)
−µJµ(xξj).

According to Proposition 10, T ∈ H ′
µ,1. Moreover, for every φ ∈ Hµ,1, from (3.1)

we infer

〈T#S, φ〉 = 〈T, S#φ〉

=
∞∑

j=1

∫ ∞

0

(xξj)
−µJµ(xξj)(S#φ)(x)x2µ+1 dx

=
∞∑

j=1

h′µ(S)(ξj)hµ(φ)(ξj)

=
∞∑

j=1

h′µ(S)(ξj)

∫ ∞

0

(xξj)
−µJµ(xξj)φ(x)x2µ+1 dx

=

∫ ∞

0

∞∑
j=1

hµ(S)(ξj)(xξj)
−µJµ(xξj)φ(x)x2µ+1 dx.

Hence, we can conclude that

T#S = 2µΓ(µ+ 1)
∞∑

j=1

h′µ(S)(ξj)(xξj)
−µJµ(xξj).

By Proposition 10 we deduce that T#S ∈ Hµ,∞ because the function z−µJµ(z)
is bounded on (0,∞). However, T is not in Hµ,∞. Thus we prove that S is not
hypoelliptic in H ′

µ,1.

Assume that |h′µ(S)(x)| > x−a, x ∈ (M,∞), for certain a,M > 0. We
choose a function φ ∈ Se such that φ(x) = 1, x ∈ (0,M), and φ(x) = 0,
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x ∈ (M + 1,∞), and we define the function F as follows

F (x) =

{
1−φ(x)

h′µ(S)(x)
, x ∈ (M,∞)

0, x ∈ (0,M ].

By using an iterated Leibniz rule, since there exists a polynomial p such that∣∣∣∣ dl

dxl
h′µ(S)(x)

∣∣∣∣ ≤ p(x), x ∈ (0,∞), l = 0, 1, ..., 2s,

where s = [µ + 2], we can find a k ∈ N such that by defining f = hµ( F (x)
(1+x2)k ),

we have

f(x) =
1

(1 + x2)s
hµ

(
(1−∆µ)s

(
F (x)

(1 + x2)k

))
(x), x ∈ (0,∞),

where s = [µ + 2], being ∆s
µ( F (x)

(1+x2)k ) ∈ L1(x2µ+1 dx). Hence f ∈ L1(x2µ+1 dx)

and (1−∆µ)kf = h′µ(F ) ∈ H′
µ,1. Moreover, Fh′µ(S) = 1− φ. Then

G#S = δ − ψ,

where G = (1−∆µ)kf and ψ = hµ(φ). Indeed, for every ϕ ∈ Hµ,1, (3.2) implies
that

〈G#S, ϕ〉 = 〈h′µ(G)hµ(S), hµ(ϕ)〉
= 〈1− φ, hµ(ϕ)〉

=

∫ ∞

0

hµ(ϕ)
x2µ+1

2µΓ(µ+ 1)
dx−

∫ ∞

0

φ(x)hµ(ϕ)(x)
x2µ+1

2µΓ(µ+ 1)
dx

= ϕ(0)−
∫ ∞

0

hµ(φ)(x)ϕ(x)
x2µ+1

2µΓ(µ+ 1)
dx

= 〈δ, ϕ〉 − 〈ψ, ϕ〉.

Suppose now that T#S = R ∈ Hµ,∞, where T ∈ H ′
µ,1. Since T#δ = T , by

using Proposition 6, we can write

T = T#δ = T#(G#S) + T#ψ = (T#S)#G+ T#ψ = R#G+ T#ψ.

There exist k ∈ N and fj ∈ L∞( dx), j = 0, 1, ..., k, such that

〈T, ϕ〉 =
k∑

j=0

∫ ∞

0

fj(x)∆
j
µϕ(x)x2µ+1 dx, ϕ ∈ Hµ,1.
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In particular,

(T#ψ)(x) =
k∑

j=0

∫ ∞

0

fj(y)τx(∆
j
µψ)(y)y2µ+1 dx.

According to [15, p. 17], we get that, for every m ∈ N,

‖∆m
µ (T#ψ)‖µ,∞ ≤ C

k+m∑
j=0

‖∆j
µψ‖µ,1.

Hence T#ψ ∈ Hµ,∞.

On the other hand, we have

R#G = R#(1−∆µ)kf = (1−∆µ)kR#f.

Moreover, for every m ∈ N,

‖∆m
µ (R#G)‖µ,∞ = ‖(∆m

µ (1−∆µ)kR)#f‖µ,∞

≤ C‖∆m
µ (1−∆µ)kR‖µ,∞‖f‖µ,1.

Hence T#G ∈ Hµ,∞. Thus we conclude that T ∈ Hµ,∞ and the hypoellipticity
of S on H ′

µ,1 is established.
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[5] Betancor, J. J. and L. Rodŕıguez-Mesa: Hankel convolution on distribution
spaces with exponential growth. Studia Math. 121 (1996), 35 – 52.
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[15] Stempak, K.: La théorie de Littlewood-Paley pour la transformation de
Fourier-Bessel. C. R. Acad. Sci. Paris 303 Serie I (1986)(1), 15 – 18.

[16] Watson, G. N.: A Treatise on the Theory of Bessel Functions. Cambridge:
Cambridge University Press 1959.

[17] Zemanian, A. H.: Generalized Integral Transformations. New York: Inter-
science Publishers 1968.

Received 02.06.2004


