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Abstract. This paper deals with analytic studies for solving the inverse problem
of identifying purely price-dependent volatilities from given option price data. Us-
ing the classical theory of parabolic di�erential equations we formulate and analyze
the forward operator as a mapping between the Hilbert spaces H1(R) and L2(R).
We investigate continuity and Fréchet di�erentiability of this operator and prove the
discontinuity of the inverse operator. We use Tikhonov regularization and present
assertions to the stable solvability of this problem.
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1. Introduction

An European call option gives the holder the right to buy the underlying asset
at the expiration date (or maturity) T for the strike price (or exercise price) K
� independent of the actual price X of the asset at time T . We assume that
the price X of the underlying asset follows a stochastic process of the form

dX

X
= µ(X) dt + σ(X) dWt (1)

with parameters drift µ and local volatility σ. Here Wt denotes a standard
Wiener process. We suppose that the volatility σ is a deterministic function
which depends on the asset price X. The model (1) represents a generalization
of the model of geometric Brownian motion which forms the fundamentals for
calculating option prices via the well-known Black-Scholes formula (see e.g. [4]).
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We denote by c(X, t, K, T ) the (fair) market price of a call option as a
function of the variable asset price X, time t ≥ 0, strike price K and expiration
date T ≥ t. Let the strike price K and expiration date T be �xed. Using the
Black-Scholes analysis we can show that the option price function c satis�es the
(generalized) Black-Scholes equation

∂c

∂t
+

1

2
X2σ2(X)

∂2c

∂X2
+ r X

∂c

∂X
− r c = 0, (X, t) ∈ (0,∞)× [0, T ), (2)

(see e.g. [4] or [18]). Furthermore, the �nal condition

c(X, T, K, T ) = max(X −K, 0), X ∈ (0,∞), (3)

holds. The additional parameter r represents the interest rate of a risk-less
investment and is assumed to be known. On the other hand we can �x the
asset price X and the time t. Then the price function c ful�lls the Dupire
equation

∂c

∂T
=

1

2
K2σ2(K)

∂2c

∂K2
− r K

∂c

∂K
, (K, T ) ∈ (0,∞)× (t,∞), (4)

together with the initial condition

c(X, t, K, t) = max(X −K, 0), K ∈ (0,∞). (5)

Equation (4) was originally derived in [10] for the case r = 0. For an alternative
derivation we refer to [7].

We see that the volatility σ plays an important role in option pricing. The
Cauchy problems (2)-(3) respectively (4)-(5) suggest to introduce a mapping

σ 7→ c(X, t, K, T ). (6)

Calculating option prices by a given volatility σ is called the forward problem
of option pricing. Otherwise the inverse problem seems to be of high interest.
The volatility function σ is a market parameter which is not directly observable.
On the other hand, options are traded on the stock market for a given asset
price X and time t but di�erent strike prices K and maturities T . Therefore
we formulate the following question:

Is it possible to identify the corresponding volatility function σ
from given option price data?

This problem is known in the literature as the inverse problem of option pricing
or model calibrating problem. It was �rst mentioned in [10] for the more general
case that the volatility σ is a function as well of the asset price X as of the time t.
Knowing the prices of European call options for all strike prices K > 0 and all
maturities T > t we can determine the corresponding volatility uniquely via
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the Dupire formula (see [2, 10]). For practical determination of local volatilities
the Dupire formula does not play an important role. One reason is due to the
nature of the given data: Normally option prices are given only on a discrete set
of strike prices and maturities. The second point is more crucial. Calculating
local volatilities via the Dupire formula demands the di�erentiation of the given
data. As it is well-known this leads to instability phenonemons. The obtained
results do not depend continuously on the given data.

In [2, 3] and [20] di�erent approaches are suggested to solve the inverse
option pricing problem in a stable way. In this context the development of
numerical methods plays the principle part without studying the analytic back-
ground. First [9] gives an in-depth analytic study of this problem. The direct
problem (6) is formulated as a mapping between the Hilbert space H1 and Ba-
nach spaces Lp with p ∈ (2, 3). In particular the case p = 2 is excluded. On the
other hand mappings between Hilbert spaces are of particular interest in the
regularization theory.

In [5, 6] and [7] another idea is suggested to study the inverse option pricing
problem. To simplify the analysis the authors assume initially that the volatility
is purely price-dependent. Later on these results are generalized to the case the
volatility is a function which is piecewise constant in respect of time t. The
inverse problem is analyzed in spaces of continuous functions. There is given
a su�cient condition for uniqueness by using option prices for di�erent strike
prices but only one maturity. Some numerical methods for solving the inverse
problem are introduced (see also [8] for a numerical implementation and a case
study for these methods). Under strong conditions on the given data even
stability was proved. In [21] a nonlinear Tikhonov regularization approach is
used for stabilizing the inverse problem. Methods of optimal control are applied
to derive necessary and su�cient optimality conditions for the corresponding
optimization problem. But neither [7] nor [21] includes a deep analytic study of
the direct mapping (6) in concrete function spaces. A �rst step in this direction
is done in [12]. Speci�c Hilbert spaces are constructed to apply the well-known
convergence analysis for nonlinear Tikhonov regularization (see e.g. [14]). The
case that the volatility is purely time-dependent is analyzed in [15].

Our aim is to introduce a formulation of the mapping (6) as (nonlinear) op-
erator between the Hilbert spaces H1 and L2 for purely price-dependent volatil-
ities. A detailed analysis of the forward operator shall show that we can apply
again the theory of nonlinear Tikhonov regularization to the inverse option
pricing problem. Consequently all known stability and convergence results and
assertions for convergence rates can be formulated.

The paper is organized as follows: In Section 2 we introduce appropriate
variable transformations which allow us to apply the known (classical) solv-
ability theory of parabolic equations. Additionally a close relationship between
option prices and the fundamental solutions of the Black-Scholes equation and
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Dupire equation is derived. This fact plays a crucial role in the further investiga-
tions. In Section 3 we deal with formulating the forward operator as a mapping
from H1(R) into L2(R). Continuity of the forward operator is proved and the
speci�c inverse problem is formulated. Section 4 is dedicated to the Fréchet dif-
ferentiability of the forward operator. Finally we show that the inverse problem
is ill-posed. We can prove that the well-known theory of nonlinear Tikhonov
regularization (see e.g. [14]) is applicable to get stability and convergence results
of regularized solution of the inverse problem.

2. Option prices and fundamental solutions

The (classical) solvability theory of parabolic di�erential equation (see e.g. [11]
or [19]) is not directly applicable to the Cauchy problems (2)-(3) and (4)-(5).
It's due to the coe�cient of the second derivative, which in both equations is
unbounded and tends to zero for X → 0 respectively K → 0. Therefore we
introduce the following well-known transformations:

x := ln X, y := ln K, τ := T − t, u(x, τ, y) := c(X, t, K, T )

and

a(x) :=
1

2
σ2(X).

In [21] a slightly modi�ed transformation is used. Let T > 0 be �xed. Then we
obtain from (2) and (4), respectively, the equations

∂u

∂τ
= a(x)

∂2u

∂x2
+ (r − a(x))

∂u

∂x
− r u, (x, τ) ∈ R× (0, T ] (7)

∂u

∂τ
= a(y)

∂2u

∂y2
− (r + a(y))

∂u

∂y
, (y, τ) ∈ R× (0, T ], (8)

respectively. Additionally the initial condition

u(x, 0, y) = max(ex − ey, 0), x, y ∈ R, (9)

holds for both equations.

Now conditions to the parameter a can be speci�ed to obtain unique solv-
ability of the Cauchy problems (7),(9) and (8),(9). In this context we de�ne

Dλ
c := {a ∈ Cλ(R) : c ≤ a(y) ≤ c, y ∈ R}

for two constants 0 < c < c < ∞ and a Hölder index 0 < λ ≤ 1. Thereby
Cλ(R) denotes as usual the Banach space of bounded and Hölder continuous
functions (with Hölder index λ) with norm

‖a‖Cλ(R) := sup
y∈R

|a(y)|+ sup
y1 6=y2

|a(y1)− a(y2)|
|y1 − y2|λ

< ∞.

Dλ
c is a convex set as well in Cλ(R) as in C(R). In Cλ(R) it is even closed.
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Proposition 2.1. Let T > 0, r ∈ R and a ∈ Dλ
c be �xed.

(i) For every y ∈ R the Cauchy problem{
uτ (x, τ) = a(x) uxx(x, τ) + (r − a(x)) ux(x, τ)− r u(x, τ),

u(x, 0) = max(ex − ey, 0),

for (x, τ) ∈ R× (0, T ], x ∈ R, possesses an unique (classical) continuous
solution u on R× [0, T ] which satis�es a growth condition of the form

|u(x, τ)| ≤ C1 exp
(
C2 |x|2

)
for two positive constants C1 and C2.

(ii) For every x ∈ R the Cauchy problem{
uτ (y, τ) = a(y) uyy(y, τ)− (r + a(y)) uy(y, τ),

u(y, 0) = max(ex − ey, 0),

for (y, τ) ∈ R × (0, T ], y ∈ R, possesses an unique (classical) bounded
continuous solution u on R× [0, T ].

In both cases the existence of a classical solution follows directly from [11,
Theorem 1.12]. The uniqueness we conclude from [11, Theorem 1.16].

In the next step we will derive a relationship between the fundamental so-
lutions of the equations (7) and (8) and the transformed option price function
u(x, τ, y) which is important for the further investigations. For a detailed read-
ing on fundamental solutions we refer to [11, pp. 4�.]. We prove the following
lemma.

Lemma 2.2.

(i) For every a ∈ Dλ
c the parabolic equation (7) admits a fundamental solution

Γ(x, τ, ξ, η) (x, ξ ∈ R, τ > η ≥ 0) and

Γ(x, T, y, t) = e−y (uyy(x, T − t, y)− uy(x, T − t, y)) .

(ii) For every a ∈ Dλ
c the parabolic equation (8) admits a fundamental solution

Γ̂(y, τ, ξ, η) (y, ξ ∈ R, τ > η ≥ 0) and

Γ̂(y, T, x, t) = e−x (uxx(x, T − t, y)− ux(x, T − t, y)) .

Proof. For the solution u of (7),(9) we derive from [11, Theorem 1.12] that

u(x, τ, y) :=

∫ ∞

−∞
max(eξ − ey, 0) Γ(x, τ, ξ, 0) dξ =

∫ ∞

y

(eξ − ey) Γ(x, τ, ξ, 0) dξ.
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We di�erentiate twice by y to achieve

uy(x, τ, y) = −
∫ ∞

y

ey Γ(x, τ, ξ, 0) dξ

uyy(x, τ, y) = eyΓ(x, τ, y, 0)−
∫ ∞

y

ey Γ(x, τ, ξ, 0) dξ.

We take the di�erence and obtain

uyy(x, τ, y)− uy(x, τ, y) = eyΓ(x, τ, y, 0).

The �rst statement of the lemma we conclude now by using the relation

Γ(x, τ, y, 0) = Γ(x, τ + t, y, 0 + t) = Γ(x, T, y, t),

which is valid for parabolic equations with time-independent coe�cients. The
proof of the second part occurs analogous.

These results we use later to obtain L2-estimates for solutions of appropriate
Cauchy problems.

3. Formulation of the inverse problem

For evaluating option prices we consider the transformed Dupire equation

ut = L(a) u on R× (0, T ] (10)

with the elliptic di�erential operator

L(a) u(x, t) := a(x) uxx(x, t)− (r + a(x)) ux(x, t),

which depends on the parameter a. As consequence of Proposition 2.1 (ii) we
can introduce the following notation.

De�nition 3.1. Let T > 0, r ∈ R and the logarithmized asset price x0 ∈ R
be �xed. We set QT := R × (0, T ). For given parameter a ∈ Dλ

c we de�ne
u(a) ∈ C(QT ) ∩ C2,1(QT ) as bounded classical solution of the Cauchy problem{

ut(x, t) = L(a) u(x, t), (x, t) ∈ R× (0, T ]

u(x, 0) = max(ex0 − ex, 0), x ∈ R.
(11)
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Now we investigate how variations in the volatility function a in�uence
the option price function u(a). Let a1, a2 ∈ Dλ

c , and let u(a1), u(a2) be the
corresponding solutions of (11). We set v := u(a1)− u(a2). Then

vt = ut(a1)− ut(a2)

= L(a1) u(a1)− L(a2) u(a2)

= a1 uxx(a1)− (r + a1)ux(a1)− [a2 uxx(a2)− (r + a2)ux(a2)]

= a2 [uxx(a1)− uxx(a2)]− (r + a2) [ux(a1)− ux(a2)]

+ (a1 − a2) [uxx(a1)− ux(a1)]

= L(a2) v + (a1 − a2) [uxx(a1)− ux(a1)]

= L(a1) v + (a1 − a2) [uxx(a2)− ux(a2)] .

Additionally we get the initial condition v(x, 0) = 0, x ∈ R. This motivates the
following de�nition.

De�nition 3.2. For given a0 ∈ Dλ
c we set

D(a0) :=
{
a ∈ Cλ(R) : a + a0 ∈ Dλ

c

}
⊂ Cλ(R). (12)

Let a ∈ D(a0). We de�ne v(a) ∈ C(QT ) ∩ C2,1(QT ) as solution of the Cauchy
problem{

vt(a) = L(a0) v(a) + a [uxx(a0 + a)− ux(a0 + a)] on R× (0, T ]

v(x, 0; a) = 0, x ∈ R.
(13)

Remark 3.3. As seen in the derivation of (13) we can de�ne v(a) analogously
via the Cauchy problem{

vt(a) = L(a0 + a) v(a) + a [uxx(a0)− ux(a0)] on R× (0, T ]

v(x, 0; a) = 0, x ∈ R.
(14)

In the further investigations we will use both versions to derive continuity and
di�erentiability properties of the option pricing problem.

As consequence of Lemma 2.2 we prove the following estimate.

Lemma 3.4. For given a ∈ Dλ
c and u(a) as the classical solution of (11) the

property uxx(a)− ux(a) ∈ L2(QT ) holds.

Proof. Using Lemma 2.2 we know

uxx(x, t; a)− ux(x, t; a) = ex Γ(x0, t, x, 0),
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whereby Γ(x0, t, x, 0) is the fundamental solution of (7). From the estimate

0 < Γ(x0, T, x, t) ≤ c1√
T − t

exp

(
−c2

(x0 − x)2

T − t

)
(15)

for two positive constants c1 and c2 (which depends only on Dλ
c , see e.g.,

[11, Theorem 1.11]), we derive

‖uxx(a)− ux(a)‖2
L2(QT ) ≤ c2

1

∫∫
QT

1

t
exp

(
−2 c2

(x0 − x)2

t
+ 2 x

)
dx dt

≤ c2
1

√
π

2 c2

exp(2 x0)

∫ T

0

1√
t
exp

(
t

2 c2

)
dt

≤ c2
1

√
π

2 c2

exp

(
2 x0 +

T

2 c2

) ∫ T

0

1√
t
dt

= c2
1

√
2 π T

c2

exp

(
2 x0 +

T

2 c2

)
= C2(x0, T ) < ∞.

Now we can formulate a �rst important statement.

Theorem 3.5. For given a0 ∈ Dλ
c , let a ∈ D(a0) be arbitrarily and v(a) be the

solution of (13). Then v(a) ∈ L2(0, T ; H2(R))∩C([0, T ]; H1(R)). In particular,
the estimate

‖v(·, T ; a)‖L2(R) ≤ C‖a‖L∞(R) (16)

holds for a constant C > 0 independent of a.

Proof. This is a result of the well-known theory of parabolic equations con-
sidering v(a) as weak solution of (13). From [19, Theorem III.5.2] we conclude
v(a) ∈ L2(0, T ; H1(R)) ∩ C([0, T ]; H1(R)), and from [19, Theorem III.2.1] we
obtain the estimate

‖v(·, T ; a)‖L2(R) ≤ sup
t∈[0,T ]

‖v(·, T ; a)‖L2(R)

≤ c ‖a (uxx(a0 + a)− ux(a0 + a))‖
≤ C ‖a‖L∞(R)‖uxx(a0 + a)− ux(a0 + a)‖L2(R)

≤ c C(x0, T ) ‖a‖L∞(R).

The higher regularity v(a) ∈ L2(0, T ; H2(R)) is a consequence of [19, Theo-
rem III.6.1].

Using the fact that H1(R) is continuously embedded in C(R) (and therefore
in L∞(R)) we can de�ne the following operator.
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De�nition 3.6. For given a0 ∈ Dλ
c , x0, r ∈ R and T > 0 we de�ne the nonlinear

operator F : D(a0) ⊂ H1(R) −→ L2(R) via

F (a) := v(·, T ; a) = u(·, T ; a0 + a)− u(·, T ; a0). (17)

The choise of the spaces seems to be natural in the framework of Tikhonov
regularization. Considering a 'smooth' parameter a ∈ H1(R) instead of
a ∈ L2(R) usually leads to better regularization results. The following result is
an immediate consequence of Theorem 3.5.

Corollary 3.7. The operator F is Lipschitz continuous for every a ∈ D(a0).

Proof. For given a ∈ D(a0) let ã ∈ D(a0) be arbitrarily. We set h := ã−a and
consider ṽ := v(ã)− v(a). Then

ṽ = v(a + h)− v(a)

= v(a + h)− v(0)− [v(a)− v(0)]

= u(a0 + a + h)− u(a0)− [u(a0 + a)− u(a0)]

= u(a0 + a + h)− u(a0 + a).

We can apply Theorem 3.5 with a0 +a instead of a0 and h instead of a to obtain

‖F (ã)− F (a)‖L2(R) = ‖ṽ‖L2(R) ≤ C ‖h‖L∞(R) ≤ C̃ ‖h‖H1(R) = C̃ ‖ã− a‖H1(R),

whereby the constant C̃ does not depend on the element ã.

Now, De�nition 3.6 of the operator F allows us to formulate the following
inverse problem.

De�nition 3.8 (Inverse Problem-(IP)). Let x0 ∈ R be the actual loga-
rithmized asset price at time t = 0. Furthermore let ud(x) be an option price
function for a �xed maturity T > 0 and all logarithmized exercise prices x ∈ R.
For given interest rate r and given a priori guess a0 ∈ Dλ

c of the unknown local
volatility we try to �nd a function a ∈ D(a0), which satis�es the equation

F (a) = ud − u(·, T ; a0). (18)

4. Di�erentiability of the forward operator

We will examine the Fréchet di�erentiability of the operator F . To do this, let
the Hölder coe�cient λ in the de�nition of Dλ

c be in the interval (0, 1
2
). Then

H1(R) ⊂ Dλ
c , the interior of D(a0) in H1(R) is not empty and

a ∈ int D(a0) ⇐⇒ c < γ1 ≤ a + a0 ≤ γ2 < c on R

for two constants γ1 and γ2. Then we prove that F is Fréchet di�erentiable for
all interior points a of D(a0).

In a �rst step we show the existence of directional derivatives.
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Theorem 4.1. Let a ∈ D(a0). Then for every h 6= 0 with a + h ∈ D(a0) there
exists the directional derivative F ′(a) h. Let w be the solution of the Cauchy
problem{

wt = L(a0 + a) w + h [uxx(a0 + a)− ux(a0 + a)] on R× (0, T ]

w(x, 0) = 0, x ∈ R,
(19)

then [F ′(a) h](x) = w(x, T ), x ∈ R.

Proof. Let h 6= 0 with a + h ∈ D(a0) be arbitrarily. Then a + ε h ∈ D(a0) for
every 0 ≤ ε ≤ 1 since D(a0) is a convex set in H1(R). We set

wε :=
1

ε

(
F (a + ε h)− F (a)

)
=

1

ε

(
v(a + ε h)− v(a)

)
=

1

ε

(
u(a0 + a + ε h)− u(a0 + a)

)
and show wε → w for ε → 0. Since

wε
t =

1

ε

(
L(a0 + a + ε h) v(a + ε h)− L(a0 + a) v(a)

)
+

1

ε

[
(a + ε h)(uxx(a0)− ux(a0))− a (uxx(a0)− ux(a0))

]
= L(a0 + a) wε + h

(
vxx(a + ε h)− vx(a + ε, h) + uxx(a0)− ux(a0)

)
= L(a0 + a) wε + h

(
uxx(a0 + a + ε h)− ux(a0 + a + ε h)

)
because

v(a + ε h) + u(a0) = u(a0 + a + ε h)− u(a0) + u(a0) = u(a0 + a + ε h),

we can represent wε as solution of the Cauchy problem{
wε

t = L(a0 + a) wε + h [uxx(a0 + a + ε h)− ux(a0 + a + ε h)]

wε(x, 0) = 0,

on R × (0, T ] and x ∈ R. We consider the limit ε → 0. Let w be the solution
of the Cauchy problem (19) and w̃ := wε − w. Then w̃ satis�es

w̃t = L(a0 + a) w̃ + h
[(

uxx(a0 + a + ε h)− ux(a0 + a + ε h)
)

−
(
uxx(a0 + a)− ux(a0 + a)

)]
w̃(x, 0) = 0,

on R× (0, T ] and x ∈ R. Obviously v with v := u(a0 + a + ε h)− u(a0 + a) is a
solution of the Cauchy problem (13) with a0 + a instead of a0 and ε h instead
of a. Then v ∈ C([0, T ]; H1(R)) and

‖vxx − vx‖L2(QT ) ≤ C ε ‖h‖L∞(QT ) → 0 for ε → 0.
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Consequently w̃ → 0 for ε → 0 and therefore wε → w. The proof is
complete.

Let now a ∈ D(a0) be �xed. Theorem 4.1 motivates the de�nition of a
linear operator F ′(a) : H1(R) −→ L2(R) via

[F ′(a) h](x) := w(x, T ), x ∈ R (20)

whereby now h ∈ H1(R) is arbitrarily and w is the corresponding solution of
(19). Since

‖F ′(a) h‖L2(R) = ‖w(·, T )‖L2(R)

≤ C ‖h‖L∞(R)‖uxx(a0 + a)− ux(a0 + a)‖L2(QT )

≤ C̃ ‖h‖H1(R) ,

the linear operator F ′(a) is bounded. Therefore F is Gâteaux di�erentiable for
each a ∈ int D(a0), and F ′(a) denotes the Gâteaux derivative of F in a. Now
we can prove the Fréchet di�erentiability.

Lemma 4.2. For arbitrarily a, a + h ∈ D(a0) the estimate

‖F ′(a + h)− F ′(a)‖ ≤ C ‖h‖H1(R)

holds for a constant C > 0, which does not depend on h.

Proof. Let h̃ ∈ H1(R) be arbitrarily. We set w(a) := F ′(a) h̃, w(a + h) :=
F ′(a + h) h̃ and ŵ := w(a + h)− w(a). Then ŵ satis�es

ŵt = L(a0 + a + h) w(a + h) + h̃
[
uxx(a0 + a + h)− ux(a0 + a + h)

]
− L(a0 + a) w(a)− h̃

[
uxx(a0 + a)− ux(a0 + a)

]
= L(a0 + a) ŵ + h

[
(wxx(a + h)− wx(a + h)

]
+ h̃

[
[uxx(a0 + a + h)− ux(a0 + a + h)]− [uxx(a0 + a)− ux(a0 + a)]

]
on R × (0, T ], together with the initial condition ŵ(x, 0) = 0, x ∈ R. From
Theorem 3.5 with a0 + a instead of a0 and h instead of a we derive∥∥[

uxx(a0 + a + h)− ux(a0 + a + h)
]

−
[
uxx(a0 + a)− ux(a0 + a)

]∥∥
L2(QT )

≤ C ‖h‖L∞(R).

Furthermore, from Theorem 4.1 follows w(a+h) ∈ L2(0, T ; H2(R)) and therefore∥∥h
[
wxx(a + h)− wx(a + h)

]∥∥
L2(QT )

≤ C ‖h‖L∞(R) ‖h̃‖L∞(R).

Analogously to the proof of Theorem 3.5 we obtain

‖ŵ(·, T )‖L2(R) = ‖F ′(a + h) h̃− F ′(a) h̃‖L2(R) ≤ C ‖h‖H1(R) ‖h̃‖H1(R).

This proves the lemma.
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The Fréchet di�erentiability of F follows now immediately from this lemma
(see e.g. [17, Proposition 1]).

Theorem 4.3. For every a ∈ int D(a0) the operator F is Fréchet di�erentiable.
F ′(a) is de�ned via (20), and for every h with a + h ∈ D(a0) the estimate

‖F (a + h)− F (a)− F ′(a) h‖L2(R) ≤
L

2
‖h‖2

H1(R)

holds for a constant L > 0, which does not depend on h.

5. Tikhonov regularization of the inverse problem

First of all we show that the problem (IP) is ill-posed. Following [17, De�-
nition 2] we prove the local ill-posedness of equation (18) for every function
a ∈ D(a0). Consequently solutions a of (18) does not depend continuously on
the given data ud.

Theorem 5.1. For every a ∈ D(a0) and every ball Br(a) := {â ∈ H1(R) :
‖â − a‖H1(R) < r} (r > 0) there exists a sequence {an} ⊂ D(a0) ∩ Br(a) with
an 6→ a but F (an) → F (a), in particular equation (18) is locally ill-posed.

Proof. Let a ∈ D(a0) be arbitrarily. Then∫ ∞

−∞
[a0(x) + a(x)− c]2 dx = ∞ or

∫ ∞

−∞
[c− (a0(x) + a(x))]2 dx = ∞.

We assume the �rst case. Furthermore we de�ne a sequence of functions {an},
n = 1, 2, . . ., with the following properties

an(x) :=

{
c− a0(x), |x| < n

a(x), |x| > n + 1.

On the intervals [−n − 1,−n] and [n, n + 1] we choose an(x) in the way that
they are elements of D(a0) ⊂ H1(R) and

‖an − a‖L∞(R) = sup
x∈[−n,n]

|an(x)− a(x)|.

For given 0 < r ≤ 1 we introduce

ãn := a +
r

2

an − a

max
{
1, ‖an − a‖H1(R)

} .

Then {ãn} ⊂ D(a0) ∩ Br(a), ‖ãn − a‖H1(R) = r
2
for n large enough and

‖ãn − a‖L∞(R) → 0 for n → ∞ since ‖an − a‖L2(R) → ∞ for n → ∞ (and
therefore ‖an − a‖H1(R) →∞). From Theorem 3.4 we obtain now

‖F (ãn)− F (a)‖L2(R) ≤ C ‖ãn − a‖L∞(R) → 0 for n →∞

for a constant C > 0. Thus we have proved the instability of equation (18).
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Theorem 5.2. The operator F is weakly closed. Moreover for an ∈ D(a0),
an ⇀ a it follows that a ∈ D(a0) and F (an) → F (a).

Proof. From the convexity and closedness of D(a0) follows the weak closedness
of D(a0). Let {an} ⊂ D(a0) be a sequence which converges weakly to an element
a ∈ H1(R). Consequently a ∈ D(a0) holds. We consider F (an) − F (a). Again
we have

F (an)− F (a) = vn(·, T ),

where vn is the solution of (13) with a0 + a instead of a0 and an − a instead of
a. We show∥∥ (an − a) (uxx(a0 + a)− ux(a0 + a))︸ ︷︷ ︸

=: fn

∥∥
L2(QT )

→ 0 for n →∞.

Then � from [19, Theorem III.2.1] � we can conclude vn → 0 and therefore
F (an) → F (a) for n →∞. We consider

‖fn‖2
L2(QT )

=

∫ T

0

∫ ∞

−∞
f 2

n(x, t) dx dt

=

∫ T

0

∫ y1

−∞
f 2

n(x, t) dx dt︸ ︷︷ ︸
=: I1(y1)

+

∫ T

0

∫ y2

y1

f 2
n(x, t) dx dt︸ ︷︷ ︸

=: I2(y1, y2)

+

∫ T

0

∫ ∞

y2

f 2
n(x, t) dx dt︸ ︷︷ ︸

=: I3(y2)

.

We prove: for every ε > 0 there exist y1, y2 ∈ R and n ∈ N such that

I1(y1) <
ε

3
, I2(y1, y2) <

ε

3
, I3(y2) <

ε

3
.

Since uxx(a0 + a)− ux(a0 + a) ∈ L2(QT ) there exist y1, y2 ∈ R such that

‖uxx(a0 + a)− ux(a0 + a)‖L2((−∞,y1)×(0,T )) ≤
ε

3(c− c)

‖uxx(a0 + a)− ux(a0 + a)‖L2((y2,∞)×(0,T )) ≤
ε

3(c− c)
,

and therefore
I1(y1) ≤

ε

3
, I3(y2) ≤

ε

3
for all n ∈ R. Let now y1, y2 be �xed. Then we have

I2(y1, y2) =

∫ T

0

∫ y2

y1

(an − a)2
(
uxx(a0 + a)− ux(a0 + a)

)2
dx dt

≤ ‖an − a‖2
L∞(y1,y2)‖uxx(a0 + a)− ux(a0 + a)‖2

L2(0,T ;L2(y1,y2))

≤ ‖an − a‖2
L∞(y1,y2)‖uxx(a0 + a)− ux(a0 + a)‖2

L2(QT ).
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Since an − a converges weakly to 0 in H1(R) we can conclude the strong con-
vergence an − a|(y1,y2) → 0 in L∞(y1, y2) by the Rellich-Kondrachov Theorem
(see [1, Theorem 6.2]), and consequently I2(y1, y2) → 0 for n →∞.

Theorem 5.2 allows us to apply the convergence and stability results of the
well-known theory of nonlinear Tikhonov regularization (see [14]). To do this,
we consider instead of equation (18) the minimization problem

‖F (a)− uδ − u(·, T ; a0)‖2
L2(R) + α ‖a− a0‖2

H1(R) −→ min
a∈D(a0)

(21)

for given noisy data uδ (instead of the exact data ud) with ‖uδ−ud‖ ≤ δ, δ > 0.
Then (21) admits for every α > 0 a (not necessarily unique) solution aδ

α ∈
D(a0) which depends continuously of the data uδ (see [14, Theorem 2.1]). We
formulate the following lemma.

Lemma 5.3. Let α > 0, {uk} and {ak} are sequences with uk → uδ and ak

is a solution of (21) with uk instead of uδ. Then there exists a convergent
subsequence of {ak}, and the limit of each convergent subsequence is a solution
of (21).

Under the additional assumption that equation (18) admits a solution for
exact data ud we can prove the convergence aδ

α to a solution of (18) for uδ → ud

and an appropriate parameter choice α = α(δ) (see [14, Theorem 2.3]).

Now we turn to convergence rates. As a consequence of Theorem 4.3 we
can apply [14, Theorem 2.4] to present the following statement.

Proposition 5.4. Assume there exists a solution a∗ ∈ D of (18) for exact data
ud and an element ω ∈ L2(R) such that

(i) a∗−a0 = F ′(a∗)∗ ω, whereby F ′(a∗)∗ denotes the adjoint operator of F ′(a∗)
and

(ii) L‖ω‖L2(R) < 1, where L is the constant in Theorem 4.3.

Then, for an a-priory parameter choice α ∼ δ, we can verify a convergence rate

‖aδ
α − a∗‖H1(R) = O

(√
δ
)
.

We will examine the conditions (i) and (ii). Let a ∈ D(a0) be a �xed
element. To give an interpretation of the source condition (i) we decompose the
operator F ′(a) into

F ′(a) = F̃ ′(a) ◦ I,

where I : H1(R) −→ L2(R) denotes the embedding operator from H1(R)
into L2(R). Furthermore F̃ ′(a) is de�ned analogously to F ′(a) by (20) with
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ω ∈ L2(R) instead of h ∈ H1(R). We introduce the adjoint equation of (10)
which is given by

ut + L∗(a) u = ut + (a u)xx + ((r + a) u)x = 0 on R× [0, T ).

For given ω ∈ L2(R) let z(a, ω) denotes the solution of the Cauchy problem{
zt(a, ω) + L∗(a) z(a, ω) = 0 on R× [0, T )

z(x, T ; a, ω) = ω(x), x ∈ R.
(22)

Furthermore, let g(a, ω) be de�ned via

g(x; a, ω) :=

∫ T

0

z(x, t; a, ω) (uxx(x, t; a0 + a)− ux(x, t; a0 + a)) dt, x ∈ R.

Then we can show (see [16, Lemma 7.3]) that g(a, ω) ∈ L2(R) and the adjoint
operator F̃ ′(a)∗ : L2(R) −→ L2(R) is given by

F ′(a)∗ω = g(a, ω) ∀ω ∈ R,

(see [16, Theorem 6.1] and the proof therein). It is well-known that the adjoint
I∗ : L2(R) −→ H1(R) is given by I∗g = v, g ∈ L2(R), where v ∈ H1(R) solves

v − v′′ = g a.e. on R, (23)

(see e.g. [14, Example 3.2]). Using the fact that F ′(a)∗ = (F̃ ′(a) ◦ I)∗ =
I∗ ◦ F̃ ′(a)∗ we now derive that

F ′(a) ω = v(a, ω) ,

where v(a, ω) is given by (23) with g(a, ω) instead of g. Applying this result we
can formulate the following consequence out of Proposition 5.4.

Corollary 5.5. Assume there exists a solution a∗ ∈ D of (18) for exact data ud.
Then the conditions (i) and (ii) of Proposition 5.4 say that (a∗ − a0)

′′ ∈ L2(R),
and there exists a constant C > 0 such that

|a∗(x)− a0(x)| ≤ C

L
exp(−|x|) ∀x ∈ R.

The regularity condition (a∗ − a0)
′′ ∈ L2(R) follows immediately out of the

di�erential equation (23). The exponential decay was proven in [16] using the
exponential decay of fundamental solutions of parabolic equations.
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6. Concluding remarks

With a deeply analytic study we have shown that instability e�ects arising by
the numerical determination of price-dependent volatilities are a consequence
of the ill-posedness of equation (18). Furthermore, we have proved that the
Tikhonov regularization approach (21) provides a stable way for solving the in-
verse option pricing problem (18) for purely price-dependent volatilities. There-
fore we can close the gap between the numerical results of Tikhonov regulariza-
tion as presented, e.g., in [20] and the convergence analysis behind this approach.
Finally, we have formulated conditions to the a-priori guess a0 in (21) to obtain
convergence rates when the noise levels δ decays to zero.

On the other hand, there is still the open problem of uniqueness of the
inverse problem (18). The uniqueness result of [6] is based on the additional
assumption that the volatility σ is known on a interval (a, b) ⊂ R. Recently in
[13] a di�erent way is applied to obtain convergence rates. The problem (21)
is reformulated in that way that data on a stripe R × [T − ∆T, T ] are used to
reconstruct price-dependent volatilities. Note that in this overdetermined case
the Dupire formula (see, e.g., [7]) gives an explicite expression for estimating
the volatility σ uniquely.
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