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General Orlicz–Pettis Theorem

Cui Chengri and Wen Songlong

Abstract. In this paper, we establish two general Orlicz–Pettis theorems for G-
valued duality pairs, where G is an Abelian topological group. These results give
substantial improvements of many important results such as the Vitali–Hahn–Saks
theorem, the Hahn–Schur theorem and the Stiles theorem.
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1. Introduction

Let G be an abelian topological group. For a nonempty abstract set E and a
nonempty F ⊆ GE we call (E, F ) an abstract duality pair with respect to G or,
simply, G-valued duality pair. Dual pairs in linear analysis are scalar valued du-
ality pairs consisting of vector spaces, and the locally convex space theory is just
the exhaustive discussion on dual pairs. In fact, each analysis field is discussing
its own special duality pair such as the vector measure system (Σ, ca(Σ, X)), the
abstract function system (Ω, C(Ω, X)) and the operator system (X, L(X, Y )).

In this paper we establish two powerful subseries convergence theorems for
the general case of G-valued duality pairs. As well known, subseries convergence
was a central problem in Functional Analysis. Since W. Orlicz gave out his first
result in 1929, various Orlicz–Pettis type results were obtained in locally con-
vex space theory [3, 9, 18, 19, 23]. Moreover, N. Kalton [8], G. Thomas [22],
C. Swartz [20], Li Ronglu and C. Swartz [11] have discussed the subseries con-
vergence problem in other special duality pairs such as in (Ω, C(Ω, X)) and
(X, L(X, Y )). Especially, the measure theory contains a series of subseries con-
vergence results, e.g., the classical Vitali–Hahn–Saks theorem, the Nikodym
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convergence theorem, the Phillips lemma and results on vector measures due to
W. H. Graves and W. Ruess [4, 6]. We shall see that all of these results will be
special cases of our general theorems and, especially, these special results will
have a series of true improvements.

2. General subseries convergence theorems

If
∑

gj is a series in G which is subseries convergent and if ∆ is an infinite
subset of N, we write Σj∈∆gj =

∑∞
k=1 gjk

where ∆ = {j1, j2, . . .} with j1 <
j2 < . . .. For a G-valued duality pair (E, F ), let w(E, F ) denotes the topology
on E of pointwise convergence induced by F, i.e., xα → x in (E, w(E, F )) iff
f(xα) → f(x) for every f ∈ F ([17]). w(E, F ) is often abbreviated to wF .
Let x(f) = f(x) for x ∈ E, f ∈ F , we have E ⊆ GF and wE, the topology
of pointwise convergence on E. A subset B ⊆ F is said to be conditionally
wE-sequentially compact if every sequence {fj} in B has a subsequence {fjk

}
such that limk fjk

(x) exists at each x ∈ E ([5]).

A sequence {xj} ⊆ E is said to be subseries wF -convergent if for every
nonempty ∆ ⊆ N there exists an x∆ ∈ E such that

∑
j∈∆ f(xj) = f(x∆) for all

f ∈ F . Let F be a family of subsets of F . Then we say a sequence {xj} ⊆ E is
subseries convergent in the topology of uniform convergence on sets in F if for
every nonempty ∆ ⊆ N there exists an x∆ ∈ E such that the series

∑
j∈∆ f(xj)

converges to f(x∆) uniformly with respect to f ∈ B for each B ∈ F .

In order to shorten the proof of our general theorem we cite the following
matrix theorem (see [1], Theorem 2.2.).

Theorem (Antosik-Mikusinski). Let G be an Abelian topological group and
xij ∈ G for i, j ∈ N. Suppose

(I) limi xij = xj exists for each j ∈ N, and

(II) for each increasing sequence {mk} in N there is a subsequence {nk} of
{mk} such that {

∑∞
k=1 xink

}∞i=1 is Cauchy.

Then limi xij = xj uniformly for j ∈ N and, in particular, xii → 0.

Lemma 1. Let X be a countably compact Hausdorff space and (Y, d) a met-
ric space. If f : X → Y is continuous, one to one and onto, then f is a
homeomorphism between X and (Y, d).

Proof. Let A be an open set in X and {f(xn)} a sequence in f(X \ A). The
sequence {xn} in X \ A has a cluster point x ∈ X \ A because A is open.
Since f is continuous, for every δ > 0 there is a neighborhood Nx of x such
that d(f(x), f(z)) < δ for all z ∈ Nx. But x is a cluster point of {xn} so
d(f(x), f(xn)) < δ for infinite many xn, i.e., f(x) is a cluster point of {f(xn)}.
This shows that (f(X\A), d) is countably compact and, hence, compact and
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sequentially compact. Let yn ∈ f(X \ A) and yn → y. Then {yn} has a
subsequence converging to z ∈ f(X \ A) and, hence, y = z ∈ f(X \ A). This
shows that f(X \ A) is closed in (Y, d) and f(A) = Y \ f(X \ A) is open, i.e.,
f is an open mapping.

Our main results are the following.

Theorem 1. Let G be an Abelian topological group, E a nonempty abstract set
and F a family of mappings from E into G. If a sequence {xj} in E is subseries
wF -convergent, then {xj} is subseries convergent in the topology of uniform
convergence on wE-compact subsets of F , wE-countably compact subsets of F
and conditionally wE-sequentially compact subsets of F .

Proof. Step 1. Let {q1, q2, . . .} be a strictly increasing sequence in N and B
a conditionally wE-sequentially compact subset of F . If the convergence of∑∞

k=1 f(xqk
) is not uniform with respect to f ∈ B, then there exist sequences

n1 < m1 < n2 < m2 < . . . in N, {fp} ⊆ B and a neighborhood U of 0 in G such
that

mp∑
k=np

fp(xqk
) /∈ U, p = 1, 2, 3, . . . . (∗)

Set ∆p = {qk : np ≤ k ≤ mp}. For every nonempty ∆ ⊆ N, let x∆ denote
an element in E for which

∑
q∈∆ f(xq) = f(x∆) holds for each f ∈ F , and let

S = {x∆ : ∆ ⊆ N, ∆ 6= φ}, be the set of partial sums of {xq}. Clearly, we can
require that {xq} ⊆ S.

There exist a subsequence {fpi
} ⊆ {fp} and f ∈ GE such that limi fpi

(x) =
f(x) for each x ∈ E. We consider the matrix

[
fpi

(x∆pj
)
]
i,j

. For each j,

limi fpi
(x∆pj

) = f(x∆pj
). If {jk} is a strictly increasing sequence in N, then

for each i we have

∞∑
k=1

fpi
(x∆pjk

) =
∞∑

k=1

∑
q∈∆pjk

fpi
(xq) =

∑
q∈

⋃∞
k=1 ∆pjk

fpi
(xq) = fpi

(
x⋃∞

k=1 ∆pjk

)
.

Therefore, limi

∑∞
k=1 fpi

(x∆pjk
) = limi fpi

(x⋃∞
k=1 ∆pjk

) = f(x⋃∞
k=1 ∆pjk

). Now, us-

ing the Antosik-Mikusinski matrix theorem, limi fpi
(x∆pi

) = 0. This contradicts
(∗) and, hence,

∑∞
k=1 f(xqk

) converges uniformly for f ∈ B.

Step 2. Suppose the group topology on G is generated by a group norm
| · |. Note that | · | is a group seminorm but |g| = 0 implies g = 0. Let B be a
wE-countably compact subset of F and S the set of partial sums of {xj} as was
stated in Step 1. Define an equivalence relation on B by f ∼ g iff f(xj) = g(xj)
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for all j. Let B̂ be the collection of equivalence classes and f̂ the class to which
f belongs. Now define a metric d(·, ·) on B̂ by

d(f̂ , ĝ) =
∞∑

j=1

1

2j

|f(xj)− g(xj)|
1 + |f(xj)− g(xj)|

.

Then f̂α
d→ f̂ iff limα fα(xj) = f(xj) for each j.

If f, g ∈ B and f ∼ g, then f(x) = g(x) for all x ∈ S because {xj} is

subseries wF -convergent. So we may define f̂ on S by f̂(x) = f(x) for each
x ∈ S, and then (S, B̂) becomes a G−valued duality pair. The convergence

fα
wE−→ f implies fα

wS−→ f and, hence, f̂α
wS−→ f̂ , so the correspondence f 7−→ f̂

is a continuous mapping from (B, wE) onto (B̂, wS) and B̂ is wS-countably

compact because B is wE-countably compact. Moreover, if f̂α
wS−→ f̂ , then

limα fα(xj) = limα f̂α(xj) = f̂(xj) = f(xj) for each j because {xj} ⊆ S, i.e.,

f̂α
d−→ f̂ . This shows that the correspondence f̂ 7−→ f̂ is a continuous mapping

from the countably compact space (B̂, wS) onto the metric space (B̂, d). Fur-
thermore, we can prove that (B̂, wS) is also a Hausdorff space, so, by Lemma 1,
(B̂, wS) is a countably compact metric space and, hence, (B̂, wS) is sequen-
tially compact. Now, the sequence {xj} in S is subseries wB̂-convergent and,

by Step 1, every subseries of the series
∑

f̂(xj) converges uniformly with re-

spect to f̂ ∈ B̂. This shows that every subseries of
∑

f(xj) converges uniformly
with respect to f ∈ B.

Step 3. Suppose the group topology on G is generated by a group semi-
norm | · |. Define an equivalence relation on G by g ∼ h iff |g − h| = 0. Let
Q be the quotient set and q : G → Q the quotient map. If g ∼ h, then
|g| = |g − h + h| 6 |g − h| + |h| so |g| = |h|. Now define a function ‖ · ‖ on Q
by ‖q(g)‖ = |g| and let q(g)+ q(h) = q(g +h), then ‖ · ‖ is a group norm on the
quotient group (Q, +) and q is an isometric homomorphism from (G, | · |) onto
(Q, ‖ · ‖).

Suppose B is a wE-countably compact subset of F . Let q(F ) = {q ◦ f :
f ∈ F} and q(B) = {q ◦ f : f ∈ B}. Then (E, q(F )) is a Q-valued duality
pair and q(B) is wE-countably compact because |fn(x) − f(x)| → 0 implies
‖q(fn(x))− q(f(x))‖ → 0 for each x ∈ E, i.e., (q(B), wE) is a continuous image
of the countably compact space (B, wE). Now let 4 = {j1, j2, . . .} be a strictly
increasing sequence in N. Since

∑∞
k=1 f(xjk

) = f(x4),∥∥∥q
(
f(x4)

)
−

n∑
k=1

q
(
f(xjk

)
)∥∥∥ =

∥∥∥q
(
f(x4)−

n∑
k=1

f(xjk
)
)∥∥∥

=
∣∣∣f(x4)−

n∑
k=1

f(xjk
)
∣∣∣ −→ 0



General Orlicz–Pettis Theorem 641

as n → ∞ for each f ∈ F , so {xj} is subseries wq(F )-convergent. By Step 2,
for 4 = {j1, j2, . . .} and ε > 0 there is an n0 ∈ N such that∣∣∣f(x4)−

n∑
k=1

f(xjk
)
∣∣∣ =

∥∥∥q
(
f(x4)

)
−

n∑
k=1

q
(
f(xjk

)
)∥∥∥ < ε

for all n > n0 and all f ∈ B, i.e., each subseries of
∑

f(xj) converges uniformly
with respect to f ∈ B.

Step 4. Any group topology is generated by a family of group seminorms.
Suppose the group topology on G is generated by the family {| · |α : α ∈ I} of
group seminorms. Then G is homeomorphic to a subspace of the product space∏

α∈I(G, | · |α) and sets in the shape of {g ∈ G : |g|αi
< εi, 1 ≤ i ≤ n} make a

neighborhood base at 0 in G. Note that this kind of neighborhood depends on
finitely many of group seminorms. Thus, by Step 3, {xj} is subseries convergent
in the topology of uniform convergence on wE-countably compact subsets of F .

Step 5. Let B be a wE-compact subset of F . Then (B, wE) is compact
and, hence, countably compact so the desired assertion holds by Step 4. The
theorem is proved.

For every H ⊆ GE, let

H
s
=

{
f ∈ GE : ∃{fk} ⊆ H such that f(x) = lim

k
fk(x)∀x ∈ E

}
,

be the sequential wE-closure of H. Clearly, GE
s
= GE and H

s ⊇ H, so we have
the smallest subfamily [F ] of GE satisfying F ⊆ [F ] and [F ]

s
= [F ].

In fact, [F ] =
⋂
{H ⊆ GE : H ⊇ F, H

s
= H}. [F ] is called the Baire family

generated by F ([7]). Now we can strengthen Theorem 1 as follows.

Theorem 2. Let G be an Abelian topological group, E a nonempty abstract set,
F a family of mappings from E into G and [F ] the Baire family generated by F .
Then there exists the largest subfamily Φ of GE satisfying the conditions

(1) Φ ⊇ [F ];

(2) Φ
s
= Φ, i.e., Φ is sequentially wE-closed in GE;

(3) subseries wF -convergent sequences in E are subseries convergent in the
topology of uniform convergence on wE-compact subsets of Φ, wE-
countably compact subsets of Φ and wE-sequentially compact subsets of
Φ. In particular, subseries wF -convergent sequences in E are subseries
wΦ-convergent.

Proof. Let E be the collection of all sequences in E which are subseries wF -
convergent. For {xj} ∈ E and ∆ ⊆ N, let x∆ denote an element in E satisfying∑

j∈∆ f(xj) = f(x∆) for all f ∈ F .
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Consider the family

Φ =
{

f ∈ GE :
∑
j∈∆

f(xj) = f(x∆), {xj} ∈ E , ∆ ⊆ N
}

.

Clearly, Φ ⊇ F and each {xj} ∈ E is subseries wΦ-convergent so (3) holds by
Theorem 1. Suppose fk ∈ Φ and limk fk(x) = f(x) exists at each x ∈ E. Let
{xj} ∈ E and ∆ ⊆ N. Then {xj} is subseries wΦ-convergent and {fk : k ∈ N} is
a conditionally wE-sequentially compact subset of Φ. By Theorem 1, the series∑

j∈∆ fk(xj) converges to fk(x∆) uniformly with respect to k ∈ N and∑
j∈∆

f(xj) =
∑
j∈∆

lim
k

fk(xj) = lim
k

∑
j∈∆

fk(xj) = lim
k

fk(x∆) = f(x∆).

Thus, f ∈ Φ and (2) holds. The theorem is proved.

Note that the main part [F ] of Φ has a clear structure. In fact, set F1 = F
and for every ordinal number α define Fα = ∪γ<αFγ

s
. This transfinite induction

is similar to the definition of Baire functions ([7], §43; [10], p.236). It is easy to
see that if Fα0

s
= Fα0 for some ordinal number α0, then [F ] = Fα0 .

If F
s

= F , then [F ] = F . This is a very special case even if (E, F ) is a
scalar valued dual pair of vector spaces. In fact, for a locally convex space X
and its dual X ′, X ′s = X ′ iff every closed graph linear map from X into the
sequence space (c, ‖ · ‖∞) is weakly continuous ([24], p.206). It is difficult to
limit the exact expansion scale for X ′s but there is a result which shows that
X ′s ⊆ (X, β(X, X ′))′, the dual with respect to the strongest (X, X ′)-admissible
topology β(X, X ′) ([13]).

3. Special cases of general subseries
convergence theorems

Theorem 1 and Theorem 2 present two fundamental principles in analysis. Many
of Orlicz–Pettis type results become immediately special cases of our general
version, e.g., let (E, F ) be a scalar valued dual pair of vector spaces, then
Theorem 1 becomes the famous Orlicz–Pettis–Bennet–Kalton–Dierolf theorem,
immediately. It is a satisfaction to see that our general results give a series of
substantial improvements of many important special results. We would like to
show a few of typical results.

3.1. Vitali-Hahn-Saks type results. Let
∑

be a σ-algebra of subsets of a
set. The classical Vitali–Hahn–Saks theorem says that if {fn} is a sequence in
ca(

∑
, C) such that limn fn(A) exists at each A ∈

∑
, then {fn} is uniformly
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countably additive. So this is a result on a conditionally w
∑

-sequentially com-
pact families of scalar valued measures. In 1980, W. H. Graves and W. Ruess [6]
have proved that any w

∑
-compact family K ⊆ ca(

∑
, X) is uniformly count-

ably additive, where ca(
∑

, X) is the family of countably additive measures
valued in a locally convex space X ([6], Lemma 6, Theorem 7). However, as
well known, w

∑
-compact families must be w

∑
-countably compact and, in

general, the converse is not true ([24], Theorem 14.1.9). Now we can improve
the Vitali–Hahn–Saks–Graves–Ruess theorem as follows.

Theorem 3. Let G be an Abelian topological group and
∑

a σ-algebra of subsets
of a set. If a subset K of ca(

∑
, G) is conditionally w

∑
-sequentially compact

or w
∑

-countably compact or, in particular, w
∑

-compact, then K is uniformly
countably additive.

Proof. (
∑

, ca(
∑

, G)) forms a G-valued duality pair and each disjoint sequence
in

∑
is subseries w[ca(

∑
, G)]-convergent.

As a special case of Theorem 2 or, an immediate consequence of Theorem 3,
we have the following Nikodym convergence theorem.

Theorem 4. Let G be an abelian topological group and
∑

a σ-algebra of subsets
of a set. If fn ∈ ca(

∑
, G) and fn(A) → f(A) at each A ∈

∑
, then the limit

measure f belongs to ca(
∑

, G).

Theorem 1 and Theorem 2 also imply the Vitali-Hahn-Saks-Nikodym the-
orem for strongly additive vector measures ([2], [4]), but we omit it.

3.2. Hahn-Schur type results. As an application of the matrix methods
in analysis, P. Antosik and C. Swartz gave a general version of the Hahn-Schur
theorem ([1], Theorem 8.1). We strengthen this version as follows.

Theorem 5. Let G be an Abelian topological group and xij ∈ G for all i, j ∈ N.
Suppose for each i the series

∑∞
j=1 xij is subseries convergent and limi

∑
j∈∆ xij

exists for each ∆ ⊆ N . Let xj = limi xij for all j. Then

(a)
∑∞

j=1 xij is uniformly subseries convergent for i ∈ N;

(b)
∑

xj is subseries convergent;

(c) limi

∑
j∈∆ xij =

∑
j∈∆ xj uniformly for ∆ ⊆ N.

To see this, for each i define fi : 2N → G by fi(∆) =
∑

j∈∆ xij and con-

sider the G-valued duality pair (2N , {fi}). It is easy to see that the singleton
sequence {1},{2},{3},. . . in 2N is subseries w{fi}-convergent and {fi : i ∈ N} is
conditionally w[2N ]-sequentially compact by hypothesis. Thus, Theorem 1 and
Theorem 2 imply (a) and (b). Condition (c) can be obtained by (a) and (b). A
more general version of Theorem 5 can be found in [12].
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A series of useful results in functional analysis and measure theory follows
immediately from the abstract version above ([1], Chapter 8). Especially, The-
orem 5 can be used to obtain versions of the Nikodym convergence theorem for
certain finitely additive measures which need not be countably additive.

3.3. Thomas-Swartz type results. For a compact space Ω and C(Ω),
G. Thomas [22], C. Swartz [19], Li Ronglu and C. Swartz [11] have established
an Orlicz–Pettis type result. As was stated above, compactness is stronger than
countable compactness. So we would like to establish the same conclusion for
spaces which are countably compact or sequentially compact.

Theorem 6. Let Ω be a countably compact or sequentially compact or, in par-
ticular, a compact space and C(Ω, G) the family of continuous functions from Ω
into an abelian topological group G. If a series

∑
fj in C(Ω, G) is subseries

convergent in the topology of pointwise convergence on Ω, then
∑

fj is sub-
series convergent in the topology of uniform convergence on Ω, i.e., for every
subsequence {fjk

} of {fj} there exists an f ∈ C(Ω, G) such that
∑∞

k=1 fjk
(w)

converges to f(w) uniformly for w ∈ Ω.

Proof. If wα → w in Ω, then f(wα) → f(w) for each f ∈ C(Ω, G). This
shows that (Ω, wC(Ω, G)) is a continuous image of Ω with its original topology.
Hence, for example, if Ω is countably compact in the original topology, then
(Ω, wC(Ω, G)) is also countably compact, and Theorem 1 is available for the
pair (C(Ω, G), Ω).

3.4. An improvement of the Stiles theorem. Stiles type results [18]
require metrizability of spaces and continuity of coordinate functionals, now,
we can drop these conditions.

Theorem 7. Let X be a sequentially complete topological vector space with a
basis {ek} and {fk} the coordinate functionals with respect to {ek}. If a series∑

xj in X is subseries w{fk}-convergent, then
∑

xj is subseries convergent in
the original topology of X.

Proof. Define Pn : X → X by Pnx =
∑n

k=1 fk(x)ek. Then Pnx → x for each
x ∈ X, i.e., {Pn : n ∈ N} is conditionally wX-sequentially compact. If {yi} is a
subsequence of {xj}, then let

∑∞
i=1 yi denote its w{fk} − sum. For each n ∈ N

and {yi} ⊆ {xj},
∑∞

i=1 fn(yi)en = limm

∑m
i=1 fn(yi)en =

[
limm

∑m
i=1 fn(yi)

]
en

=
[∑∞

i=1 fn(yi)
]
en = fn(

∑∞
i=1 yi)en and

∞∑
i=1

Pn(yi) =
∞∑
i=1

n∑
k=1

fk(yi)ek =
n∑

k=1

fk

( ∞∑
i=1

yi

)
ek = Pn

( ∞∑
i=1

yi

)
,
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i.e., the subseries w{fk}-convergent sequence {xj} is subseries w{Pn}-conver-
gent. Thus, for every ∆ ⊆ N the series

∑
j∈∆ Pn(xj) converges in X uniformly

with respect to n ∈ N.

We claim that {
∑k

i=1 yi}∞k=1 is Cauchy in X for each {yi} ⊆ {xj} and,
therefore, convergent since X is sequentially complete. Let U be a closed neigh-
borhood of 0 in X. There exists an integer N such that

n∑
i=m

Pkyi = Pk(
n∑

i=m

yi) ∈ U ∀k ∈ N, n > m ≥ N.

Hence,
∑n

i=m yi = limk Pk(
∑n

i=m yi) ∈ U for n > m ≥ N since U is closed. The
theorem is proved.

3.5. A generalization of Kalton’s theorem. Let (X,Y ) be a scalar valued
dual pair of vector spaces and τ a polar topology on X. The Kalton’s theorem
says that if (X, τ) is separable, then subseries wY -convergent sequences in X
are subseries τ -convergent [9].

For a (X, Y )-polar topology τ , there is a family F of wX-bounded subsets
of Y such that τ is just the topology of uniform convergence on each member
of F . Since each set in F is wX-bounded, for every B ∈ F and x ∈ X the set
{f(x) : f ∈ B} is relatively sequentially compact in the scalar field. We show
that this pointwise sequential compactness is just the key point in Kalton’s
result and its generalization.

Definition 1. Let (E, F ) be a G-valued duality pair. A subset B ⊆ F is said to
be sequentially compact at each x ∈ E if {f(x) : f ∈ B} is relatively sequentially
compact in G for each x ∈ E.

There is a typical example. Let X and Y be Banach spaces and K(X, Y ) the
family of compact operators from X into Y . Then (K(X, Y ), X) is an Y -valued
duality pair in the sense of x(T ) = Tx for x ∈ X, T ∈ K(X, Y ), and every
bounded subset of X is sequentially compact at each T ∈ K(X, Y ). Similarly,
for the family L(X,Y ) of continuous operators and the pair (L(X, Y ), X), every
compact subset of X is sequentially compact at each T ∈ L(X, Y ).

Theorem 8. Let G be a sequentially complete Abelian topological group, E a
nonempty abstract set and F a family of mappings from E into G. Let F be a
family of subsets of F such that each set in F is sequentially compact at each
x ∈ E and τ the topology on E of uniform convergence on sets in F . If (E, τ)
is separable, then each set in F is conditionally wE-sequentially compact and,
hence, every subseries wF -convergent sequence in E is subseries τ -convergent.

Proof. Let D = {dk : k ∈ N} be dense in (E, τ), B ∈ F and {fk} ⊆ B. By
the diagonal procedure {fk} has a subsequence {fnk

} such that the sequence
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{fnk
(d)} converges at each d ∈ D. Let x ∈ E. There is a net {dα} in D such

that dα
τ−→ x so limα f(dα) = f(x) is uniformly with respect to f ∈ B. Now

let U be a neighborhood of 0 in G. Pick a symmetric neighborhood V of 0 for
which V + V + V ⊆ U . Then there is a dα such that fnk

(dα)− fnk
(x) ∈ V for

all k. But the sequence {fnk
(dα)}∞k=1 is convergent, so there is a k0 ∈ N such

that fnk
(dα)− fnj

(dα) ∈ V for all k, j > k0. Thus, if k, j > k0, then

fnk
(x)− fnj

(x) = fnk
(x)− fnk

(dα) + fnk
(dα)− fnj

(dαfnj
(dα)− fnj

(x)

∈ V + V + V ⊆ U.

This shows that {fnk
(x)}∞k=1 is Cauchy and, hence, convergent since G is se-

quentially complete.

Theorem 8 contains much useful information. For example, if the space
K(X, Y ) of compact operators is separable in the operator norm, then every
series in K(X,Y ) which is subseries convergent in the weak operator topology is
subseries convergent in the operator norm. In fact, by Theorem 1 or the classi-
cal Orlicz–Pettis theorem, subseries convergence in the weak operator topology
implies subseries convergence in the pointwise topology wX and, hence, The-
orem 6 is available. Note that the condition of separability of (K(X, Y ), ‖ · ‖)
holds for many of useful cases, e.g., if either Y or X ′ has the approximation
property, and they have also the separability of both of these spaces, in par-
ticular, if either has a Schauder basis, then the separability of (K(X, Y ), ‖ · ‖)
holds.

We will omit other many interesting applications of our general theorem.
We would like to say that our discussions on abstract duality pairs yield a series
of nice results not only in the subseries convergence problem, but also in other
analysis problems [12, 14 – 16, 21, 25 – 28].
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