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Abstract. J. Banasiak and M. Lachowicz proved in [Math. Models Methods Appl.
Sci. 12 (2002), 755 – 775] that, under certain conditions on the coefficients, the dy-
namics generated by birth-and-death type systems with proliferation was chaotic. In
this paper we extend this result to systems with parameter-dependent coefficients and
present an application to a linear Boltzmann equation describing inelastic collisions.
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1. Introduction

The phenomenon of topological chaos in infinite-dimensional linear dynamical
systems has been recently investigated in a series of papers [9, 10, 14, 15, 20, 24].
We recall below the definition of topological chaos, that was formulated in [16],
first introducing basic notation.

Let (x(t, ·))t≥0 be a continuous dynamical system in a complete metric space
(X, d). By O(p) = {x(t,p)}t≥0 we denote the orbit of (x(t, ·))t≥0, originating
from p. We say that (x(t, ·))t≥0 is topologically transitive if for any two non-
empty open sets U, V ⊂ X there is a t0 ≥ 0 such that x(t0, U) ∩ V 6= ∅. A
periodic point of (x(t, ·))t≥0 is any point p ∈ X satisfying x(T,p) = p for some
T > 0.

Definition 1.1. [16] Let X be a metric space. A dynamical system (x(t, ·))t≥0

in X is said to be (topologically) chaotic in X if it is transitive and its set of
periodic points is dense in X.
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Historically speaking, the original Devaney’s definition contained the so-
called sensitive dependence on initial conditions which sometimes is considered
central to the idea of chaos, but it can be proved, see e.g. [10, 13], that if
a system satisfies the conditions of Definition 1.1, then it is also sensitively
dependent on initial conditions. This result, as well as the following ones,
require X to be nondegenerate in the sense that no tail {x(t,p)}0≤t≤t0 , t0 < ∞,
of an orbit is dense in X.

Devaney’s definition was introduced with nonlinear dynamical systems in
mind but it turned out that it is very closely related to the property of iterates of
linear operators investigated in e.g.[18] that is called hypercyclicity: a bounded
linear operator A on a Banach space X is called hypercyclic if for some x ∈ X we
have {Anx}n≥0 = X or, rephrasing this in the language of dynamical systems,
there is an orbit of the discrete dynamical system generated by A that is dense
in X. In [18] the authors proved the theorem that A is hypercyclic if and only
if it is topologically transitive and this theorem can be easily generalized to
continuous systems [10, 15]. Thus, we can rephrase Devaney’s definition by
saying that (x(t, ·))t≥0 is chaotic if and only if it has an orbit that is dense in
X and its set of periodic points is dense.

That linear continuous dynamical systems appearing in applications can
be chaotic in the sense of Devaney was possibly first noticed in [24], where the
authors applied the criterion, formulated in [19], to a simple kinetic type system
with constant coefficients that could describe interactions of test particles with
the background in which the particles can only lose energy. However, it was
noticed already in [22, 26] that also first order linear hyperbolic equations can
give rise to chaotic dynamics, though the definition of chaos used in these papers
was slightly different, see also [27].

The results of [24] were later extended in [8, 9, 11] to more general birth-and-
death type systems with non-constant coefficients that arise, e.g., in modelling
the development of drug resistance in cancer cells. It turns out that similar
systems appear in extended kinetic theory where they describe interactions
of particles with the background in which particles can either lose or gain a
quantum of energy. Models of this type arise, for instance, in semiconductor
theory (electron scattering on the crystalline lattice) but also in the neutron
transport in gases, see e.g. [5, 18]. In this paper, for technical reasons, we shall
discuss a simplified model of this type that preserves, however, the essential
features of the original ones.

The main difference between the birth-and-death system of [9] and the mod-
els discussed here is that the coefficients now depend not only on the discrete
variable (representing the energy jump in each interaction) but also on a con-
tinuous parameter representing the so-called reduced energy, Section 4, and the
dependence of coefficients on this parameter may be quite irregular. Thus, the
main mathematical difficulty we deal with in this paper is to provide uniform
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estimates of solutions to the stationary birth-and-death type infinite systems of
equations with parameter dependent coefficients so that the methods developed
in [9] could be applied; this is done in Section 3. Section 2 is devoted to a
survey of recent results on chaotic linear systems based on [12] and in Section 4
we show how the results of the previous two sections can be applied to specific
kinetic models.

2. Analytical background

Possibly the most widely used set of conditions ensuring that a strongly contin-
uous (C0) semigroup (T (t))t≥0 generated by an operator A is chaotic is given in
the following theorem.

Theorem 2.1. [15, Theorem 3.1] Let X be a separable Banach space and let
A be the infinitesimal generator of a strongly continuous semigroup (T (t))t≥0

on X. (T (t))t≥0 is chaotic if the following conditions are satisfied:

1. The point spectrum of A, σp(A), contains an open connected set U such
that U ∩ iR 6= ∅;

2. There exists a selection U 3 λ → xλ of eigenvectors of A such that the
function FΦ(λ) = 〈Φ,xλ〉 is analytic in U for any Φ ∈ X∗;

3. FΦ ≡ 0 on U if and only if Φ = 0.

For further development it is important to understand some details of the
proof of this theorem. It uses the observation [15] that for (T (t))t≥0 to be
hypercyclic it is sufficient that the following two spaces

X0 =
{
x ∈ X; lim

t→∞
T (t)x = 0

}
X∞ =

{
w ∈ X; ∀ε>0∃x∈X, t>0 ‖x‖ < ε and ‖T (t)x−w‖ < ε

}
are dense in X. Thus, density of these two spaces together with the density
of the set of periodic points Xp gives chaoticity of (T (t))t≥0 in X. Equivalence
of concepts of weak and strong analyticity of a function, e.g. [25], yields that
λ → xλ is an analytic function. Condition 3 is used through the following
argument. If U ′ is any subset of U having an accumulation point in U and if
Φ ∈ X∗ is any functional that annihilates {xλ; λ ∈ U ′}, that is, 〈Φ,xλ〉 = 0 for
λ ∈ U ′, then from the principle of isolated zeros the analytic function FΦ(λ) =
〈Φ,xλ〉 vanishes everywhere in U which, by Condition 3, is possible only if
Φ = 0. This in turn shows that Span{xλ; λ ∈ U ′} = X. Now, it is easy to
see that the sets U− = U ∩ {λ; <λ < 0}, U+ = U ∩ {λ; <λ > 0}, U0 =
U ∩ {λ; <λ = 0,=λ is rational} have accumulation points in U . Moreover
Span{xλ; λ∈U−}⊂X0, by xλ = T (t)e−λtxλ we see that Span{xλ; λ∈U+}⊂X∞



678 J. Banasiak

and Span{xλ; λ ∈ U0} ⊂ Xp so that if Condition 3 is satisfied, X0, X∞ and Xp

are dense in X and therefore (T (t))t≥0 is chaotic.

A closer look at the above analysis shows that if xλ is analytic in some
open connected U , then Span{xλ; λ ∈ U ′} is the same for any U ′ having an
accumulation point in U . The following result was proved in [12].

Lemma 2.2. If A is a closed operator in X and for some function xλ that is
analytic in an open connected set U we have

Axλ = λxλ,

then, denoting by an,λ0 the n-th coefficient of Taylor’s expansion of xλ at λ0 ∈ U ,
the set

Z = Zλ0 = Span{an,λ0 ; n ∈ N0}

is independent of λ0. Moreover, for any U ′ ⊂ U having an accumulation point
in U we have

Z = Span{xλ; λ ∈ U ′} = Span{xλ; λ ∈ U}.

An extensive and detailed discussion of the above result is given in [12].
Here we analyse its implications that are relevant to this paper.

Theorem 2.3. Assume that the point spectrum σp(A) of the generator A of
a C0-semigroup (T (t))t≥0 contains an open connected subset U of C on which
there exists an analytic selection λ → xλ of eigenvectors of A. Denote Y =
Span{xλ; λ ∈ U}. Then

1. if iR ∩ U 6= ∅, then (T (t))t≥0 is chaotic in Y ;

2. if U ⊂ C− with iR ∩ ∂U 6= ∅; then the dynamics is unstable in the sense
that an arbitrarily small perturbation εf of the generator, ε > 0, makes
the system chaotic in Y ;

3. if U ⊂ C+ with iR ∩ ∂U 6= ∅, then the dynamics is unstable in the sense
that an arbitrarily small perturbation −εf of the generator, ε > 0, makes
the system chaotic in Y ;

4. there is a ∈ R such that (A + aI)|Y generates a chaotic semigroup in Y ;

5. if iR ∩ σp(A) ⊂ U , then any periodic point of (T (t))t≥0 is unstable in the
sense that in each neighbourhood of each periodic point there are points
producing orbits that are converging to zero or unbounded.

Proof. Point 1 follows directly from Lemma 2.2 as Y is invariant under
(T (t))t≥0, see [12, Criterion 3.3]. For 2. we observe that there is an ε0 such
that for any 0 < ε < ε0, iR ∩ U + ε 6= ∅. Indeed, otherwise we could find a
sequence εn → 0 such that U ∩ iR− εn = ∅. Since U is connected, there would
be ε′ such that U ⊂ {z; <z ≤ −ε0}, contradicting iR ∩ ∂U 6= ∅. Next, we
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observe that the set of eigenvectors {xλ}λ∈U of an operator A for eigenvalues
in a set U is the same as the set of eigenvectors {xµ}µ∈U+ε of A + εI in the
domain ε+U with xλ = xε

λ+ε: λxλ = Aλxλ if and only if (λ+ ε)xλ = (A+ εI)xλ

and U 3 λ → xλ is analytic if and only if U + ε 3 µ → xε
µ is analytic. There-

fore, for given ε, Span{xλ; λ ∈ U} = Span{xε
µ; µ ∈ U + ε}. Since the open set

U + ε ⊂ σp(A+ εI) satisfies the assumptions of point 1, the statement is proved.

The proof of point 3 is the same as of 2., and the proof of 4. follows the
same lines with a fixed a such that a + U ∩ iR 6= ∅. Finally, 5. follows from
the spectral mapping theorem for semigroups for the point spectrum, [23], and
from the fact that T (t)u is periodic with period τ if and only if 1 ∈ σp(T (τ))
with the corresponding eigenvector u.

3. Birth-and-death type problems
with parameter dependent coefficients

In this section we shall discuss the existence of solutions of the following system,
that are in some sense behaving uniformly with respect to the parameter so that
they are analytic functions of λ valued in X = L1(Ω, l1):

λF0(ϑ) = −a0(ϑ)F0(ϑ) + d1(ϑ)F1(ϑ)

λFn(ϑ) = −an(ϑ)Fn(ϑ) + bn−1(ϑ)Fn−1(ϑ) + dn+1(ϑ)Fn+1(ϑ) (n ≥ 1) ,
(1)

where Ω is a bounded measurable subset of Rd, ϑ ∈ Ω, n ∈ N0, an, bn, cn are
measurable, almost everywhere finite and non-negative functions on Ω. Further,
we assume that there exists a (possibly empty) set K of isolated points of Ω
such that an, bn ∈ L1,loc(Ω

′) and 1/dn ∈ L∞,loc(Ω
′), where Ω′ = Ω \ K. We

assume that for almost every ϑ ∈ Ω′ there exist the limits

lim
n→∞

an(ϑ) = a(ϑ), lim
n→∞

bn(ϑ) = b(ϑ), lim
n→∞

dn(ϑ) = d(ϑ),

with b(ϑ) > 0 and d(ϑ) < +∞ for a.e. ϑ. We shall also introduce the limit
equation to (1)

λF0(ϑ) = −a(ϑ)F0(ϑ) + d(ϑ)F1(ϑ)

λFn(ϑ) = −a(ϑ)Fn(ϑ) + b(ϑ)Fn−1(ϑ) + d(ϑ)Fn+1(ϑ) (n ≥ 1) .
(2)

Before we start, it is advantageous to take a quick look at the aims of the analysis
to follow. System (1) arises as the eigenvalue problem for an evolution equation
in X with the generator given by the right-hand side of (1) (or is somehow
related to it). To prove that the corresponding evolution is chaotic we should
prove, by Theorem 2.3, that there are solutions to (1) that form an X-analytic
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function in some open connected set. In the following sequence of lemmas we
shall prove a weaker but still sufficient result that there is a family of X-analytic
solutions (Fn(ϑ, λ))n∈N to (1) with varying domains of analyticity Uϑ 3 λ that,
nevertheless, has the property that the closed linear envelopes of elements of this
family with <λ R 0 are equal. Thus, the closed linear envelope of (Fn(ϑ, λ))n∈N
can be taken as the chaoticity space Y of Theorem 2.3. An important additional
consequence of the construction is that the subspace Y j X is determined by
point-wise in ϑ properties of (Fn(ϑ, λ))n∈N in l1: roughly speaking, the system
is chaotic in X if and only if it is chaotic in l1 for almost each ϑ.

Lemma 3.1. Assume that for almost every ϑ ∈ Ω′, b(ϑ) < d(ϑ) and a(ϑ) <
b(ϑ)+ d(ϑ) and a(ϑ) 6= 2

√
b(ϑ)d(ϑ). Then, for a.e. ϑ ∈ Ω′ there exists an open

connected set Uϑ, 0 ∈ Uϑ ⊂ C such that any solution to (2) is an l1-analytic
function of λ ∈ Uϑ.

Proof. Since the coefficients of (2) are constant for each ϑ, any solution F(ϑ, λ)
=(Fn(ϑ, λ))n∈N to (2) is a linear combination of (ωn

1 (ϑ, λ))n∈N and (ωn
2 (ϑ, λ))n∈N,

where

ω1,2(ϑ, λ) =
λ + a(ϑ)±

√
(λ + a(ϑ))2 − 4b(ϑ)d(ϑ)

2d(ϑ)
,

so it is sufficient to show that max{ω1,2(ϑ, λ)} ≤ q(ϑ) < 1 for λ from some
complex neighbourhood of 0. Let us drop the dependence on ϑ and focus on
real λ. To simplify, we denote λ

d
= z, a

d
= ā and b

d
= b̄ and note that the

branching points of ω1,2 are at z± = −ā± 2
√

b̄, with z− = −ā− 2
√

b̄ < 0; while

z+ may be larger than zero. Let first −ā + 2
√

b̄ > 0 and take −ā− 2
√

b̄ < z <

−ā + 2
√

b̄. In this case |ω1,2(z)| =
∣∣(z + ā ± i

2

√
−(z + ā)2 + 4b̄)

∣∣ =
√

b̄ < 1

independently of z. Next, if −ā + 2
√

b̄ < 0, then for z > −ā + 2
√

b̄ we have
|ω2(z)| = 1

2
(z + ā +

√
(z + ā)2 − 4b̄) as both terms are positive. Differentiating,

we check that ω2(z) is a strictly increasing function for z+ ā > 0, with ω2(z) = 1
attained at z = b̄ + 1 − ā > 0. Hence, if the assumptions are satisfied, there
is a closed interval I ⊂ (−ā − 2

√
b̄,−ā + 2

√
b̄) in the first case, and I ⊂

(−ā−2
√

b̄, b̄+1−ā) in the second case, that contains zero and over which ω2(z) ≤
q < 1 for some constant q. Taking now ω1(z) = 1

2
(z + ā −

√
(z + ā)2 − 4b̄)

for z > −ā − 2
√

b̄, we see that 0 < ω1(z) < ω2(z) and therefore there is
a closed interval I containing 0 such that max{|ω1,2(z)|} ≤ q < 1 on this
interval. Since both |ω1,2(z)| are continuous functions of complex z (as we

excluded the branching points at −ā± 2
√

b̄), for each z ∈ I there is a complex
neighbourhood in which max{|ω1,2(z)|} ≤ q′ < 1 for some fixed q′. Taking U
to be the union of these neighbourhoods we obtain a connected open complex
neighbourhood of zero, U , where the estimate z = max{|ω1,2(z)|} ≤ q′ < 1 is
valid. Hence the solution (Fn(λ))n∈N to (2) is the uniform in U limit in l1 norm
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of l1-analytic (entire) functions λ → (F0(λ), F1(λ), . . . , Fn(λ), 0, 0, . . .) and thus
it is an analytic function in U .

Lemma 3.2. Under the assumptions of Lemma 3.1 there exists a nested se-
quence (EN)N∈N of measurable sets such that

⋃∞
N=1 EN = Ω′ and for each EN

there is an open complex neigbourhood of 0, UN , and q < 1 such that for all
λ ∈ UN , ϑ ∈ EN , max{|ω1,2(λ, ϑ)|} ≤ q.

Proof. First let −a(ϑ) + 2
√

b(ϑ)d(ϑ) < 0. Define

EN=
{

ϑ∈Ω′; max{|ω1,2(λ, ϑ)|} ≤ 1− 1

N
, |λ| < 1

N
,−a(ϑ)+2

√
b(ϑ)d(ϑ) ≤− 2

N

}
.

Since ϑ → max{|ω1,2(λ, ϑ)|} is measurable for each λ, the sets{
ϑ ∈ Ω′; max{|ω1,2(λ, ϑ)|} ≤ 1− 1

N
, −a(ϑ) + 2

√
b(ϑ)d(ϑ) ≤ − 2

N

}
are measurable for each λ. Thus,

⋂
λ∈D1/N,Q

ϑ ∈ Ω′;
max{|ω1,2(λ, ϑ)|} ≤ 1− 1

N
,

|λ| < 1

N
,−a(ϑ) + 2

√
b(ϑ)d(ϑ) ≤ − 2

N

 ,

where D1/N,Q is the intersection of the radius 1
N

disc D1/N with the set of
complex numbers with rational real and imaginary parts, is measurable as the
intersection is countable. But since the only discontinuity of ω1,2(λ, ϑ) occurs

at the branching points, we see that if |ϑ| < 1
N

and −a(ϑ)+ 2
√

b(ϑ)d(ϑ) ≤ − 2
N

the function λ → max{|ω1,2(λ, ϑ)|} is continuous (λ = −a(ϑ) + 2
√

b(ϑ)d(ϑ)
is impossible). Thus, for a given ϑ, max{|ω1,2(λ, ϑ)|} ≤ 1 − 1

N
for all λ if

and only if it holds for λ with rational coefficients and we can replace the
rational lattice in the above intersection with D1/N so that EN are measurable.
Next, it is clear that if N < M , then EN ⊂ EM . Finally, if ϑ ∈ Ω′, then,
from the previous lemma and the assumptions, there are M, N, R such that
max{|ω1,2(λ, ϑ)|} ≤ 1 − 1

M
, |λ| < 1

N
and −a(ϑ) + 2

√
b(ϑ)d(ϑ) ≤ − 1

R
, that is

ϑ ∈ Emax{N,M,R}, which shows that the family (EN)N∈N exhausts Ω′.

If let −a(ϑ) + 2
√

b(ϑ)d(ϑ) > 0, then the argument is similar, with the

only difference that we have to restrict ϑ with −a(ϑ) + 2
√

b(ϑ)d(ϑ) > 2
N

and

−a(ϑ)− 2
√

b(ϑ)d(ϑ) < − 2
N

.

Lemma 3.3. Under the assumptions and notations of the previous lemmas, let
us fix an arbitrary EN with the corresponding neighbourhood of zero UN . Then
for every r > 0 there exists a measurable set Er such that µ(EN \ Er) < 1

r
and

a solution FEr(λ) = (FEr
n (λ))n∈N of (1) that is an analytic X-valued function

of λ ∈ UN . Moreover, Er1 ⊂ Er2 for r1 > r2,
⋃

r>0 Er = EN , FEr(λ, ϑ) = 0 for
ϑ /∈ Er.
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Proof. First, let us fix ϑ ∈ EN and drop dependence on ϑ in this part of the
proof. System (1) can be written as the following first order system of difference
equations:

Fn+1 = AnFn (n ≥ 1), F0 =

[
λ+a0

d1

1

]
F0

where

Fn+1 =

[
Fn+1

Fn

]
, An =

[
λ+an

dn+1
− bn−1

dn+1

1 0

]
(n ≥ 1) .

Due to the assumptions, An can be written as An = A+ Bn where

A =

[
λ+a

d
− b

d

1 0

]
, Bn =

[
αn(λ) βn

0 0

]
,

with αn(λ) = (λ(d − dn+1) + dan − adn+1)/ddn+1 and βn = bdn+1 − dbn−1. It
is clear that αn → 0 uniformly for λ ∈ UN (as UN is bounded) and βn → 0 as
n → ∞ so ‖Bn‖ → 0 uniformly in λ (for any matrix norm). From Lemma 3.2
there is a 0 < δ < 1, independent of λ ∈ UN for which ‖An‖ ≤ cδn for all n ≥ 1.
Also, for any c1 there is an n0 such that ‖Bn‖ ≤ c1 for n ≥ n0, uniformly in
λ ∈ UN . Following the proof of the stability theorem for difference systems, [1,
Theorem 5.2.3], we obtain ‖Fn‖ ≤ C(n0)(δ(1 + cc1/δ))

n−n0 for some constant
C(n0) independent of λ so that one can pick c1 such that δ(1 + cc1/δ) = q < 1.
Hence |Fn(λ)| ≤ Cqn for n > n0 and arguing as in Lemma 3.1, we see that
λ → F(λ) = (F (λ)n)n∈N is an l1-analytic in UN .

For the next part of the proof we return to the dependence on ϑ. By the
above, for almost any ϑ ∈ EN there are C(ϑ) and q(ϑ) < 1 such that |Fn(ϑ, λ)| ≤
C(ϑ)qn(ϑ) for all n ≥ 1, uniformly for λ ∈ UN , thus we have a family of l1-
analytic functions F(λ, ϑ). To prove the second part of the lemma, let us take
a sequence of non-negative numbers (qr)r∈N such that qr ↗ 1. Consider

Er =
{
ϑ ∈ EN ; |Fn(ϑ, λ)| ≤ rqn

r , λ ∈ UN , n ≥ 1
}

First, the sets Er form a nested sequence with µ
(
EN \

⋃∞
r=1 Er

)
= 0. Since

Er =
⋂

n≥1,λ∈UN
{ϑ ∈ EN ; |Fn(ϑ, λ)| ≤ rqn

r } and from the recurrence formula,
the functions Fn are measurable with respect to ϑ provided F0 and all the
coefficients are measurable, we see, as in the proof of Lemma 3.2, that each Er

is measurable with µ(EN \ Er) → 0.

Next we observe that each Fn is uniquely determined by F0 so that we can
write F F0

n , moreover, for a given F0 and a characteristic function χE of any
E ⊂ Ω′ we have F χEF0

n = χEF F0
n . This can be immediately checked for n = 0, 1

and then by induction for arbitrary n as each Fn is a linear combination of Fn−1

and Fn−2. Thus, starting with F0 = χEN
, we find a collection (Er)r∈N of sets on
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which we have |F χEr
n (ϑ, λ)| =

∣∣χErF
χEN
n (ϑ, λ)

∣∣ =
∣∣χErF

χΩ′
n (ϑ, λ)

∣∣ ≤ rqn
r which

means that λ → FχEr (λ) = (F
χEr
n (λ))n∈N is an analytic L1(Ω)-valued function

for λ ∈ UN .

Denote FN = Span{FχEr (λ); Er ⊂ EN , λ ∈ UN} , where Er are the sets
constructed in the previous lemma and let F = {FN ; N ∈ N}, the closure in
X. By Eϑ,λ∈Uϑ

we denote the set of all l1-analytic solutions in Uϑ to (1) for a
fixed ϑ ∈ Ω′ and put

Xϑ = Span Eϑ,λ∈Uϑ
. (3)

Lemma 3.4. Φ ∈ X∗ annihilates F if and only if Φ(ϑ) annihilates Eϑ,λ∈Uϑ
for

almost all ϑ ∈ Ω′.

Proof. Using the fact that the space X is of type (L), [21, pp. 69-70], and
the Cauchy formula, we obtain that if Ak is the k-th coefficient of the Taylor
expansion of FχEr (λ) at λ = 0, and Ak(ϑ) is the k-th coefficient of the Taylor
expansion of F χΩ(ϑ, λ) at λ = 0 for a.a. ϑ ∈ Ω′, then [Ak](ϑ) = χErAk(ϑ).

Passing now to the proof of the lemma, Φ ∈ X∗ annihilates F if and only
if Φ annihilates FN for any N . By Proposition 2.2 it is equivalent to∫

Ω

χEr <Φ(ϑ), Ak(ϑ)> dϑ = 0

for any k and any Er ⊂ EN . Since sets Er and EN exhaust Ω′, we see that if Φ
annihilates F , then for almost every ϑ, Φ(ϑ) annihilates Eϑ,λ∈Uϑ

. The converse
is immediate.

For further use it is convenient to rephrase this result in a slightly different
way. Define

AN =
{
FχEr (λ); Er ⊂ EN , λ ∈ UN

}
and denote by A±,0

N subsets of AN containing elements with <λ positive, nega-
tive and 0, respectively. Further, denote A =

⋃∞
N=1AN and A±,0 =

⋃∞
N=1A

±,0
N .

Corollary 3.5. SpanA±,0 = F .

Proof. Follows as the previous proof by Proposition 2.2.

4. Chaos in linear kinetic models

This section is devoted to the possibility of chaos to occur in linear kinetic
equations describing inelastic collisions in the extended kinetic theory. Here
we consider a gas of test particles of mass m endowed only with translational
degrees of freedom propagating through a three-dimensional host medium of
much heavier particles that may have a quite complicated internal structure
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and thus non-negligible internal degrees of freedom. Test particles collide with
host medium losing or gaining a unit of energy ∆E at each collision. The
particle distribution function in the space homogeneous case is governed by the
linear Boltzmann equation, see e.g. [5, 18],

∂f

∂t
= Cif, (4)

where

[Ci f ](vω) =

∫
S2

[
n1

v+

v
σ(v+, ω · ω′)f(v+ω′)

+ n2
v−
v

ν(v−, ω · ω′)H(v − δ)f(v−ω′)
]
dω′

− f(vω)

∫
S2

[n1σ(v, ω · ω′)H(v − δ) + n2ν(v, ω · ω′)] dω′

(5)

is the inelastic collision operator. Here, v = vω is the velocity variable, with
modulus v and direction ω ∈ S2 (the unit sphere in R3), v± =

√
v2 ± δ2,

δ2 = 2∆E/m. Also σ and ν are the inelastic collision frequencies (for the
endothermic and exothermic process, respectively), n1 and n2 are the number
densities of the particles in the ground and excited state, respectively (which are
assumed constant) related by n2/n1 = e−∆E/KT < 1, where K is the Boltzmann
constant and T is the background temperature, and H is the Heaviside function.

We shall consider an isotropic medium, eliminating thus the angle depen-
dence from the scattering cross-sections. This will allow to use the recent results
[9, 10, 12] on chaos in birth-and-death models to identify cases when (5) with
arbitrary small production of particles gives rise to chaotic dynamics.

In what follows it will be more convenient to use the normalized kinetic en-
ergy ζ = 1

2
v2. Since the original equation is posed in the space X = L1(R3, dv),

in (ζ, ω) variables we have X = L1(R+ × S2,
√

ζ dζdω). We also normalize the
energy jump to 1. Thus, in the isotropic case (5) can be written as

∂f

∂t
(ζ, ω, t) = n1

√
ζ + 1

ζ
σ(ζ + 1)

∫
S2

f(ζ + 1, ω′, t)dω′

+ n2

√
ζ − 1

ζ
ν(ζ − 1)H(ζ − 1)

∫
S2

f(ζ − 1, ω′, t)dω′

− 4πf(ζ, ω, t)(n2ν(ζ) + n1H(ζ − 1)σ(ζ)) .

(6)

To eliminate the weight
√

ζ from the space, we shall define F (ζ, ω) =
√

ζf(ζ, ω)
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getting

∂F

∂t
(ζ, ω, t) = [BF (·, ·, t)](ζ, ω)−N(ζ, ω)F (ζ, ω, t)

= n1σ(ζ + 1)

∫
S2

F (ζ + 1, ω′, t) dω′

+ n2ν(ζ−1)H(ζ−1)

∫
S2

F (ζ − 1, ω′, t) dω′

− 4πF (ζ, ω, t)(n2ν(ζ) + n1H(ζ − 1)σ(ζ)),

(7)

where the meaning of the operator B and the function N follows from the above
formula. It is advantageous to write this problem in the form of an infinite
system of equations by introducing the reduced energy ξ ∈ [0, 1[, ζ = ξ + n and
define Fn(ξ, ω) = F (ξ + n,ω). We shall adopt the same convention to all other
functions of ζ that appear in the problem. Note that the norm changes now to

‖F‖ =
∞∑

n=0

‖Fn‖L1([0,1]×S2) (8)

and the equation (7) takes the form

∂tF0(ξ, ω, t) = −4πn2ν0(ξ)F0(ξ, ω, t) + n1σ1(ξ)

∫
S2

F1(ξ, ω
′, t)dω′

∂tFn(ξ, ω, t) = −4π(n2νn(ξ) + n1σn(ξ))Fn(ξ, ω, t)

+ n1σn+1(ξ)

∫
S2

Fn+1(ξ, ω
′, t)dω′

+ n2νn−1(ξ)

∫
S2

Fn−1(ξ, ω
′, t)dω′ (n ≥ 1) .

(9)

Note that the transformation F → (Fn)n∈N described above is an isomorphism
between X and the space X of functional sequences defined by the finiteness of
the norm (8). Thus, in the sequel we shall move between these two descriptions
without additional explanations. The solvability of the Cauchy problem for (5)
falls into the domain of substochastic semigroups and was treated recently in
several papers, see e.g. [4, 2, 17], where in general if σ, ν ∈ L1,loc(S

2× [0, +∞)),
then there is an extension (K, D(K)) of (K,D(N)) = (−N + B, D(N)), where
D(N) = {f ∈ L1(S

2×[0,∞)); Nf ∈ L1(S
2×[0,∞)} that generates a semigroup

(GK(t))t≥0 solving a realization of (7). We shall need a relation between K and
the maximal operator Kmax defined by the same expression −N +B but on the
domain

Dmax =
{
f ∈ L1(S

2 × [0,∞)); [BF (·, ·)](ζ, ω), N(ζ, ω)F (ζ, ω)

are finite a.e, and

(ζ, ω) → [BF (·, ·)](ζ, ω)−N(ζ, ω)F (ζ, ω) ∈ L1(S
2 × [0,∞)

}
.

(10)
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In general, [6], K 6= Kmax. However, we have

Proposition 4.1. If N ∈ L1,loc(S
2 × [0,∞)) ∩ L∞(S2 × [δ,∞)) for any δ > 0,

then K = Kmax.

Proof. By [3, 21], if D(K) ( Dmax, then for any λ > 0 there is a solution
F ∈ L1(S

2 × [0,∞)) satisfying

λF0(ξ, ω) = −4πn2ν0(ξ)F0(ξ, ω) + n1σ1(ξ)

∫
S2

F1(ξ, ω
′)dω′

λFn(ξ, ω) = −4π(n2νn(ξ) + n1σn(ξ))Fn(ξ, ω)

+ n1σn+1(ξ)

∫
S2

Fn+1(ξ, ω
′)dω′

+ n2νn−1(ξ)

∫
S2

Fn−1(ξ, ω
′)dω′ (n ≥ 1) .

(11)

Putting Fn = Fn0 +Fn1, where Fn0(ξ) = 1
4π

∫
S2 Fn(ξ, ω)dω and

∫
S2 Fn1(ξ, ω)dω

= 0, we split (11) as

λ̄F00(ξ) = −n2ν0(ξ)F00(ξ) + n1σ1(ξ)F10(ξ)

λ̄Fn0(ξ) = −(n2νn(ξ) + n1σn(ξ))Fn0(ξ) + n1σn+1(ξ)Fn+1,0(ξ)

+ n2νn−1(ξ)Fn−1,0(ξ) (n ≥ 1) ,

(12)

where we denoted λ̄ = λ
4π

, and

λ̄F01(ξ, ω) = −n2ν0(ξ)F01(ξ, ω)

λ̄Fn1(ξ, ω) = −(n2νn(ξ) + n1σn(ξ))Fn1(ξ, ω) (n ≥ 1) .
(13)

In both systems the equality is in L1([0, 1) × S2) so that the equality in each
component is satisfied almost everywhere. Since we have two countable systems
of equations, we can find a set of full measure A ⊂ [0, 1) for (12) and B ⊂ [0, 1)×
S2 for (13) on which the equality in all the components hold simultaneously.
Hence for a fixed ξ ∈ A, (12) can be viewed as the equation for eigenvectors and
eigenvalues for a birth-and-death system with bounded coefficients. For such a
system we know that the generator is the maximal operator as it is bounded.
Thus, the only solution to such equation in l1 for λ > 0 is the zero solution.
Consequently, F0(ξ) = 0 a.e. on [0, 1). For (13), F1(ξ, ω) = 0 a.e. on [0, 1)×S2.
Thus F (ξ, ω) = F0(ξ) + F1(ξ, ω) = 0 a.e. on [0, 1)× S2.

To investigate possible chaotic behaviour of solutions of (7) we consider the
related eigenvalue problem (11). Thanks to Proposition 4.1, we see that the
integrable solutions to (11) are the eigenfunctions of the generator. Splitting



Chaotic Dynamics in Kinetic Models 687

this system as above, we observe that (11) is irrelevant. The first one is the
same as (1) with ϑ = (ξ, ω) and Ω = [0, 1] × S2 (we must keep ω to be able
to work in the whole space). Let us assume that limn→∞ σn(ξ) = σ(ξ) > 0
and limn→∞ νn(ξ) = ν(ξ) > 0 for almost any ξ. Then a(ξ) = 4π(n2ν(ξ) +
n1σ(ξ)), b(ξ) = 4πn2ν(ξ) and d(ξ) = 4πn1σ(ξ). To be able to apply the theory
of the previous section, we require for a.e. ξ

n2

n1

ν(ξ)

σ(ξ)
< 1. (14)

Condition a(ξ) < b(ξ) + d(ξ) is obviously not satisfied, as a(ξ) = b(ξ) + d(ξ),
which is not surprising as the model is conservative. However, if we introduce
an arbitrarily small positive perturbation of the right-hand side of (4), say εf ,
so that

∂f

∂t
= εf + Cif, (15)

then a becomes aε(ξ) = 4π(n2ν(ξ) + n1σ(ξ)) − ε, and this assumption will be
satisfied.

Next, the condition aε(ξ) 6= 2
√

b(ξ)d(ξ) here takes the form n2ν(ξ) +

n1σ(ξ) − ε − 2
√

n1n2ν(ξ)σ(ξ) 6= 0 that is (
√

n2ν(ξ) −
√

n1σ(ξ))2 6= ε which
introduces a slightly stronger condition than (14):

n1σ(ξ) > n2ν(ξ) + ε. (16)

Clearly, we could also assume ε > (
√

n2ν(ξ)−
√

n1σ(ξ))2, but our main interest
is in small perturbations of (4).

Let us denote by Xξ the closed linear envelope of all analytic solutions
to (12) for a fixed ξ, as in (3). We can now formulate

Theorem 4.2. Let the assumption (16) be satisfied for some ε0. Then for
any ε ∈ (0, ε0), there is a subspace Y of L1(R3) such that the dynamical system
generated by (15) is chaotic in Y. Moreover, f ∈ Y if and only if (fn(ξ, ω))n∈N ∈
Xξ for almost any ξ ∈ [0, 1], ω ∈ S2. In particular, if for almost any ξ, Xξ = l1,
then the system is chaotic in L1(R3).

Proof. The result follows immediately from Corollary 3.5 and Theorem 2.3 as
the sets A±,0 contain eigenvectors of the generator with positive, negative and
zero real parts of the corresponding eigenvalues.

In [9] we proved that a birth-and-death system with proliferation is chaotic
in l1 when the birth coefficient bn is quickly decaying to zero and the coefficients
an and bn are close to a constant. Specifying these assumptions to the present
case we obtain the following result.
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Corollary 4.3. If for almost any ξ ∈ [0, 1]

|σn(ξ)− σ(ξ)|
σ(ξ)

≤ qn+1,
n2

n1

νn(ξ)

σ(ξ)

σn(ξ)

σ(ξ)
≤ q2(n+1), (17)

where q is any constant smaller than 2−
√

3, n1σ(ξ) ≥ ε0 for some ε0 > 0, then
for 0 < ε < ε0 the dynamical system generated by (15) is chaotic in L1(R3).

Proof. The conditions of [9] require n2

n1

νn(ξ)
σ(ξ)

σn(ξ)
σ(ξ)

≤ Q2(n+1) and

n2

n1

νn(ξ)

σ(ξ)
+
|σn(ξ)− σ(ξ)|

σ(ξ)
≤ Qn+1, (18)

where Q =
√

3−1
2

and

inf
n∈N

σ(ξ)−n

n∏
i=1

σi(ξ) > 0. (19)

We must prove that (18) is satisfied. Let us fix ξ and drop it from the notation

in the proof. Denoting n2

n1

νn(ξ)
σ(ξ)

= an and bn = σn(ξ)
σ(ξ)

, we have

an + |bn − 1| ≤ q2(n+1)

1− qn+1
+ qn+1 =

qn+1

1− qn+1
.

It is clear, that if Q/q < 1, then 1/(1−q) < Q/q yields 1/(1−qn+1) < Qn+1/qn+1,
as the left-hand side of the last inequality decreases and the right hand side
increases with n. Taking Q = 1

2
(
√

3− 1) we see, that we must have q < 2−
√

3.
Condition (19) requires infn∈N

∏n
i=1 bi > 0. However, by (17) and positivity of

σn we obtain 0 < bn < 1 + qn+1 with q < 1, so that
∏∞

i=1 bi converges and (19)
is satisfied.

In many applications the up-scattering and down-scattering cross-sections
are related through the so-called microreversibility conditions that in the present
case read

√
ζν(ζ) =

√
ζ + 1σ(ζ + 1), see e.g. [5]. Using the reduced energy

formulation, we obtain νn(ξ) = Dn+1(ξ)σn+1(ξ), where Dn+1(ξ) =
√

ξ+n+1
ξ+n

.

System (12) takes then the form

λF00(ξ) = −4πn2D1(ξ)σ1(ξ)F00(ξ) + 4πn1σ1(ξ)F10(ξ)

λFn0(ξ) = −4π(n2Dn+1(ξ)σn+1(ξ) + n1σn(ξ))Fn0(ξ)

+ 4πn1σn+1(ξ)Fn+1,0(ξ) + 4πn2Dn(ξ)σn(ξ)(ξ)Fn−1,0(ξ) .

(20)

Since the coefficient D1(ξ) is singular at 0, we shall work in Ω′ = (0, 1) × S2.
In this case a(ξ) = −4πσ(ξ)(n2 + n1), d(ξ) = 4πn1σ(ξ) and b(ξ) = 4πn2σ(ξ).
Condition (16) is satisfied if σ(ξ) ≥ ε0 > 0 for some ε0 and again we shall
consider the perturbation (15) with ε > 0. We see that this case fits into the
framework of Theorem 4.2 so that the dynamical system generated by (15) is
chaotic in a subspace of L1(R3) determined by the pointwise behaviour of (20).
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Remark 4.4. We should note that in the discussed applications only non–
negative solutions make sense and it is only fair to point that such solutions
cannot display the chaotic properties described here. In fact, since the kinetic
part is conservative, the L1 norm of any non-negative solution to (15) must
grow as eεt and hence the solution cannot wander. On the other hand, as we are
dealing with linear systems, the difference between two physical (non–negative)
solutions may be of varying sign and therefore may be chaotic.
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