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Vector Valued Baire Functions

H. R. Shatery and J. Zafarani

Abstract. In this paper, we study some properties of the Banach space β◦α(X, E),
consists of all Baire functions with relatively compact ranges from a perfectly normal
space X into a Banach space E. Moreover, we establish that if β◦α(X, E) is linear
isometric with β◦α(Y, E), then some compactification of X and Y are homeomorphic.
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1. Introduction

Let K be a compact Hausdorff space and E a Banach space. We designate by
C(K,E) (resp. C(K)), the space of all E-valued (resp. real-valued) continuous
functions on K, provided with sup-norm. It is well known that C(K) ⊗ E is
dense in C(K,E) ([8]). The Banach–Stone Theorem says that for two locally
compact Hausdorff spaces X and Y , if T : C◦(X) → C◦(Y ) is an isometric
isomorphism, then there is a homeomorphism ϕ : Y → X and a continuous
map u : Y → {λ ∈ R : |λ| = 1} such that T (f) = u(f ◦ϕ), for every f ∈ C◦(X).
Here C◦(X) denotes the set of all real continuous functions on X which tends to
zero at infinity ([2]). Some other versions of Banach–Stone Theorem have been
proved by many authors (cf. [2, 4, 5, 11]). The Banach–Stone Theorem also
has been generalized for the vector valued continuous functions (cf. [2]). The
aim of this article is to replace the class of continuous functions in the above
results with the class of Baire functions with relatively compact ranges and to
establish similar results.

For the remainder of this section, we introduce some definitions and basic
facts. Throughout this paper, X and Y are two perfectly normal topological
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spaces [1, 9, 10]. A topological space X is perfectly normal if it is Hausdorff,
and every closed subset is the zero set of some real continuous function.

For a finite ordinal number α, we denote the Borel sets of multiplicative
(additive) class α by Pα (Sα), beginning with P0 = F (S0 = G), as ([15]):

Pα : F ,Gδ,Fσδ, . . .
Sα : G,Fσ,Gδσ, . . . .

As X is perfectly normal, so the Pα’s (Sα’s) form a chain and F ⊆ Gδ, similar to
the metric case (see [15]). For each A ∈ Pα, there exists a sequence (Gn)∞n=1 ⊆
Sα−1 such that A = ∩∞n=1Gn. For additive sets, ”S”, ”P”, and ”∩” are replaced
by ”P”, ”S”, and ”∪”, respectively (see [15, §30] for details). The ambiguous
set of class α is denoted by Hα [15] and defined as Hα = Sα ∩ Pα. One can
easily see that the separation theorem for Borel sets in metric spaces is valid
for Borel sets in perfectly normal topological spaces ([15, §30]).

Let X be a topological space and β0(X) = C(X) be the set of all real valued
continuous functions on X. Then for each ordinal α, we define Baire functions
of class α as

βα(X) =

{
f : X → R :

there exists (fn)∞n=1 ⊆ βα−1(X) such

that lim fn(x) = f(x) for each x ∈ X

}
.

We also define Borel functions of class α as

Bα(X) =
{
f : X → R : f−1(F ) ∈ Pα for each closed set F in R,

}
When X is a perfectly normal space, then by the same induction as in [17],
βα(X) ⊆ Bα(X). It’s obvious that Bα(X) ⊆ Bα+1(X).

More generally, for a Banach space E, suppose that C◦(X,E) is the set
of all of E-valued continuous functions with relatively compact ranges. Now,
we define

β◦0(X,E) = C◦(X,E)

β◦α(X,E) =

{
f : X → E :

f is the point-wise limit of some sequence in

βα−1(X,E), the range of f is relatively compact

}
B◦
α(X,E) =

{
f : X → E :

f−1(F ) ∈ Pα for each F , closed in E

and the range of f is relatively compact

}
equipped with the sup-norm.

Here, we give a Baire-α characterization of Hα elements in X. Let H be a
subset of X. We denote the characteristic function of H ⊆ X by χH .

Lemma 1.1. Let X be a perfectly normal space and E a Banach space with
0 6= e ∈ E. Then H ∈ Hα if and only if e χH ∈ βα(X,E).
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Proof. We prove by induction. Suppose H is in Hα. As X is perfectly normal,
then it is normal and the theorem is true for α = 1. Suppose that the statement
holds for (α− 1). There is a nondecreasing sequence (Fn)∞n=1 of elements Pα−1

in X and a nonincreasing sequence (Gn)∞n=1 of elements Sα−1 in X such that
∪∞n=1Fn = H = ∩∞n=1Gn. For each positive integer n, Fn ⊆ Gn. Thus there
exists a separating set Hn ∈ Hα−1 such that Fn ⊆ Hn ⊆ Gn ([15],§30). By
our induction hypothesis, the function fn = e χHn ∈ βα−1(X,E). This function
trivially satisfies fn(Fn) = {e} and fn(Gc

n) = {0}. Hence, e χH is the point-wise
limit of fn. The proof of the other direction is obvious and is omitted.

Definition 1.2. Let X be a perfectly normal topological space and E a Banach
space, we define

Σα,E(X) =

{ n∑
i=1

eiχHi
: n ∈ N, ei ∈ E and Hi ∈ Hα in X for each i

}
,

and when E equals the real numbers, we denote it simply by Σα(X).

In the following theorem, we give an approximation theorem for Baire func-
tions by simple functions.

Theorem 1.3. Let X be a perfectly normal topological space. For a Frechet
space E, the uniform closure of Σα,E(X) is β◦α(X,E).

Proof. Suppose that E is a Banach space and f ∈ β◦α(X,E). As range(f)
is relatively compact, therefore there exists a countable set Z ⊆ E such that
range(f) is in the norm closure of Z. For each positive integer n, let Cn be the
collection of open balls of radius 1

n
in E with members of Z as their centers.

Hence range(f) is covered by finite members of Cn, denoted by Bn, labeled
by the finite set In. Set B′

n = f−1(Bn). Thus B′
n is a covering of X and

each of its elements belongs to Sα. Hence, its members are Pα and X has a
finite refinement consisting of mutually disjoint elements of Hα sets. Therefore,
An = {Ai,n : i ∈ In } is a refinement of B′

n with Hα sets. We can suppose that
for any n ≥ 2, An refines An−1.

Now, for each n ≥ 1 and each i ∈ In, choose yi,n ∈ f(Ai,n). Let x ∈ X
and for each n ≥ 1 let i(x, n) ∈ In be such that x ∈ Ai(x,n),n. If m ≥ n, then
Ai(x,m),m ⊆ Ai(x,n),n. Consequently, since f(Ai(x,n),n) has a diameter at most 2

n
,

{yi(x,n),n : n ≥ 1} is a Cauchy sequence. Now, for each n ∈ N, we define
fn =

∑
i∈In yi,nχAi,n

. It is obvious that the fn’s are in Σα,E(X), and f is the
uniform limit of the fn’s.

For the case when E is a Frechet space, it is enough to work with a countable
collection of semi-norms that introduce its topology.

By the above theorem, it is obvious that Sα = Pα if and only if β◦α(X,E) =
β◦α+1(X,E).
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2. A Banach–Stone type theorem for Baire functions

In this section, we will establish a Banach–Stone type theorem for Baire classes.
For this aim, we define α-continuous and α-homeomorphism maps between
topological spaces. For f : X → Y , the following three statements are equiva-
lent (see, e.g., [13]):

(1) The inverse image by f of every Pα set in Y is a Pα set in X.

(2) The inverse image by f of every Sα set in Y is an Sα set in X.

(3) The inverse image by f of every Hα set in Y is an Hα set in X.

If one of the three above equivalent statements holds, then we say that f is an
α-continuous map. Let f be bijective. If f and f−1 are both α-continuous, then
we say that f is an α-homeomorphism between X and Y , and we say that X
and Y are α-homeomorphic. Now, we mention some results for these classes of
functions (see [13]). It is trivial that every continuous function is α-continuous.
Let X, Y and Z be three topological spaces. Suppose that α and β are two
finite ordinal numbers such that α ≤ β. Then:

(1) If f : X → Y and g : Y → Z are α-continuous and β-continuous, respec-
tively, then g ◦ f : X → Z is β-continuous.

(2) If f ∈ Bα(X) and τ : Y → X is α-continuous, then f ◦ τ ∈ Bα(Y ). Also
if τ : X → Y is an α-homeomorphism, then θ : B◦

α(Y ) → B◦
α(X) defined

by θ(f) = f ◦ τ is a Banach algebra isometry.

It is obvious that every homeomorphism is an α-homeomorphism for each α ≥ 1.
Now, we are ready to prove a Banach–Stone type theorem for Borel classes and
therefore, for Baire classes of finite order (cf. [18, 19]). In [7, 12, 13], it has
been proved that for completely regular spaces X and Y , if the Banach spaces
β◦α(X) and β◦α(Y ) are isometric, then some compactifications of X and Y are
homeomorphic. In the following theorem, by a direct proof, we give a relation
between these two spaces and not between their compactifications when X
and Y are two perfectly normal spaces.

Theorem 2.1. Let X and Y be two perfectly normal spaces. If ϕ : B◦
α(Y ) →

B◦
α(X) is a surjective isometric ring isomorphism, then there exists an α-

homeomorphism τ : X → Y such that for each f in B◦
α(Y ), we have ϕ(f) = f◦τ .

Proof. Since ϕ is a ring homomorphism, for each H ∈ Hα in Y , χHχH = χH
and we have ϕ(χH)ϕ(χH) = ϕ(χH). Consequently, the value of ϕ(χH) are 0
or 1. Hence, it must be a characteristic function of exactly one member of Hα

in X. We denote this member by ψ(H). So we deduce that

ψ : Hα in Y → Hα in X and ϕ(χH) = χψ(H).

We prove that ψ is a surjective Boolean isomorphism. First, we prove ψ is
surjective. Let K be Hα in X. As ϕ is surjective, there exists an f in B◦

α(Y )
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such that ϕ(f) = χK , and ϕ(f)φ(f) = χKχK = χK = ϕ(f). The function ϕ
is one to one and ϕ(f 2) = ϕ(f), therefore f 2 = f . Consequently, f is the
characteristic function of an H ∈ Hα in Y . Also, ψ is one to one. Let H1

and H2 be two Hα elements in Y . We have χψ(H1)χψ(H2) = ϕ(χH1)ϕ(χH2) =
ϕ(χH1χH2) = ϕ(χH1∩H2). Consequently, χψ(H1)∩ψ(H2) = χψ(H1∩H2), therefore,
ψ(H1 ∩H2) = ψ(H1) ∩ ψ(H2).

In the other way, χH1 + χH2 − χH1∩H2 = χH1∪H2 . Similar to the previous
case, this implies that ψ(H1∪H2) = ψ(H1)∪ψ(H2). From the above argument,
it is obvious that ψ is one to one and onto (if ψ(H) = ∅ = ψ(∅), then ϕ(χH) =
ϕ(χ∅)). As the spacesX and Y are perfectly normal spaces and α ≥ 1, therefore,
all finite subsets of X and Y belong to Hα. If H1 ⊆ H2, then it is obvious that
ψ(H1) ⊆ ψ(H2). Now, we claim that ψ({y}) is a subset of X with exactly
one element for each y in Y . Suppose ψ({y}) = A and A has at least two
distinct elements. Let a be in A. So there exists a set F $ {y} such that
ψ(F ) = A − {a} 6= ∅, because ψ preserves order. Consequently, F must be ∅,
which contradicts the fact that ψ is a one to one map. Let τ : X → Y be
defined by ψ−1, then τ is a function that assigns a two sided correspondence
between the Hα members of X and Y and therefore, it is an α-homeomorphism.

But ϕ is a ring isomorphism, so for each rational number a = p
q
, ϕ(aχH) =

aϕ(χH) and ϕ is an isometry, thus it is continuous and therefore, for each real
number r, we have ϕ(rχH) = rχψ(H) = rχτ−1(H) for H ∈ Hα in Y .

In the other side, ψ is a Boolean isomorphism so the following relation holds:

ϕ
( m∑
i=1

aiχHi

)
=

m∑
i=1

aiχψ(Hi). (1)

By (1), we have ϕ(g) = g ◦ τ for each g ∈ Σα(Y ). Theorem 1.3 implies that
the uniform closure of Σα(Y ) is B◦

α(Y ). Hence if f is in B◦
α(Y ), then there

exists a sequence (fn)∞n=1 in Σα(Y ) such that unif −Lim fn = f. Consequently,
unif −Limϕ(fn) = ϕ(f). So we have ϕ(f) = unif −Lim fn ◦ τ = f ◦ τ.

3. Isomorphisms between vector valued Baire functions

Choban [6] investigated some of the properties of the following compactification
for a completely regular space X denoted by bαX. Let PX be the set X with
the topology generated by the Gδ sets in X for a completely regular space X.
The topology of the space PX is called the Baire topology of the space X. If
β1(X) ⊆ K ⊆ βΩ(X), where Ω is the first uncountable ordinal number, then
PX = (X, τK), the weakest topology on X generated by K. We define by
bαX the compactification of (X, τβα(X)). The compact space bαX is called the
maximal ideal space of the α-th Baire class βα(X).
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We are going to give a homeomorphic relation between X and Y when the
vector valued Baire functions on X and Y are linear isometric. Suppose that
X is a perfectly normal topological space and E is a real Banach space. In this
part, we use the notation of ([8, Chapter I])to obtain the dual of β◦α(X). Let F :
Hα → E be a bounded finitely additive vector measure on the fieldHα subsets of
X. We denote by VM(Hα, E) the space of all bounded finitely additive vector
measures from Hα into Banach space E equipped with semivariation norm.
Every operator T in  L(β◦α(X), E) is related to an element F in VM(Hα, E)
with the correspondence

TF (f) =

∫
X

fdF,

for every f in β◦α(X,E).

The following theorem is exactly like that of vector valued continuous func-
tions defined on a compact space [8].

Theorem 3.1. For a perfectly normal space X and a Banach space E , we have
β◦α(X,E) = β◦α(X)⊗̌E.

Proof. We use the notation of [8]. We define θ : β◦α(X)⊗ E → β◦α(X,E) as

θ
( n∑
i=1

fi ⊗ ei

)
(x) =

n∑
i=1

eifi(x).

The map θ is well-defined because the fi’s are bounded, and functions in the
range of θ have finite dimension ranges. One can show easily that this linear
map is an isometry, and the range of θ contains all functions in Σα,E(X). But
by Theorem 1.3, Σα,E(X) is dense in β◦α(X,E) and therefore, θ is an onto
isometry.

By the above theorem, the functional ψ is in the dual of β◦α(X,E) if and
only if there exists regular Borel measure µ on ∆ = BVM(Hα,R)×BE∗ such that

ψ(f⊗̌e) =

∫
∆

p(f)e∗(e)dµ(p, e∗)

for each f⊗̌e ∈ β◦α(X,E) (see [8, page 231, Theorem 5].)

We say that a Banach space E has the Banach–Stone property if for any
compact Hausdorff spaces Ω1 and Ω2, the space C(Ω1, E) is linearly isometric
with C(Ω2, E) if and only if Ω1 and Ω2 are topologically homeomorphic. Jeri-
son [14] proved that if E is a real strictly convex Banach space, then E has
the strong Banach–Stone property (and hence the Banach–Stone property).
Behrends [2] proved that every Banach space E, such that Z(E) (the cen-
tralizer of E) is one dimensional, has the strong Banach–Stone property ([2,
Theorem 8.11]). For example, if E is nonzero and fulfills each of the conditions
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(i) E is smooth

(ii) E is strictly convex

(iii) E has no nontrivial M -ideal

(iv) E is reflexive and all M -summands of E are trivial,

then Z(E) is one dimensional ([2, Proposition 5.1]).

More recently Behrends and Pelant [3] proved that if K is a strongly rigid
compact Hausdorff space, then the Banach space C(K) has the Banach–Stone
property. Now, we prove the following theorem.

Theorem 3.2. Let X and Y be two perfectly normal spaces and E be a Banach
space with the Banach–Stone property. If β◦α(X,E) and β◦α(Y,E) are isometric,
then the compact spaces bαX and bαY are homeomorphic.

Proof. The Banach algebra βα(X) is unitary and commutative. Thus there is
a compact Hausdorff space K such that βα(X) ∼= C(K). Moreover, we know
that K is the set of all multiplicative functionals on βα(X). Suppose that µ is
a member of K, therefore for each f, g ∈ β◦α(X), we have∫

X

fg dµ =

∫
X

f dµ

∫
X

g dµ. (2)

We show that µ = δx for some suitable x ∈ X or µ is zero on finite subsets of X.
Suppose that these cases are not occurred. Thus, there exist x and y in X such
that µ({x}) = r 6= 0 and µ({y}) = s 6= 0. If f = mδx 6= 0 and g = nδy 6= 0, then
by (2), we have 0 = mr · ns which is a contradiction. If we identify each x ∈ X
by δx, then one can embed X as a subspace of K. The relative topology on
X is induced by the weak∗-topology, the topology which is induced by Baire-α
functions and has as a subbase

Bf,n =
{
x ∈ X : |f(x)| < 1

n

}
, f ∈ β◦α(X).

Note that these sets are all of Pα sets in X. The set {x} is a Pα set for each
x ∈ X, therefore this topology is discrete, and K is exactly the compactification
bαX of X, as in [6]. Suppose that β◦α(X,E) and β◦α(Y,E) are linear isometric.

By Theorem 3.1, we have

β◦α(X,E) = β◦α(X)⊗̌E = C(bαX)⊗̌E = C(bαX,E).

The last equality is obtained from ([8, page 231, Theorem 5]). Hence, we
have C(bαX,E) ∼= C(bαY,E). Since the Banach space E has the Banach–Stone
property, thus spaces bαX and bαY are homeomorphic.
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