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Boundedness in Asymmetric Oscillations
at Resonance

Xiaojing Yang

Abstract. The boundedness problem of all solutions for the nonlinear equation

(φp(x′))′ + (p− 1)[αφp(x+)− βφp(x−)] = f(t)

is discussed, where φp(u) = |u|p−2u, p > 1, α, β are positive constants satisfying the

condition α
− 1

p +β
− 1

p = 2
n , where n ∈ N, f ∈ C∞(S1) (S1 =: R/2πpZ) is 2πp-periodic,

x± = max{±x, 0} and πp = 2π
p sin(π/p) .
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1. Introduction

In this paper, motivated by the papers [1, 7] and [8], we consider the bound-
edness problem of all the solutions for the following p-Laplacian like nonlinear
equation:

(φp(x
′))′ + (p− 1)[αφp(x

+)− βφp(x
−)] = f(t) (1)

(′= d/dt), where φp(u) = |u|p−2u, p > 1 is a constant, x± = max{±x, 0}, α, β
are positive constants satisfying

α−
1
p + β−

1
p =

2

n
(n ∈ N), (2)

where f ∈ C∞(S1) is a 2πp-periodic function (S1 =: R/2πpZ), πp = 2π
p sin(π/p)

. If

p = 2, eq. (1) reduces to the linear equation

x′′ + αx+ − βx− = f(t) (3)
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and π2 = π with α, β satisfying 1√
α

+ 1√
β

= 2
n
. The unboundedness problem of

solutions of (3) was recently discussed in [1] in case α 6= β.

Let C(t) be the solution of the initial value problem

x′′ + αx+ − βx− = 0

x(0) = 1, x′(0) = 0.

Then it is well-known that C(t) ∈ C2(R) is τ -periodic with

τ =
π√
α

+
π√
β
.

Define a 2π-periodic function λ(θ)(see also [7]) if τ = 2mπ
n

, with m,n ∈ N,

λ(θ) =

∫ 2π

0

C
(mθ
n

+ t
)
f(t) dt, θ ∈ R/2πZ .

Then it is proved in [1] that if the set Ω = {θ ∈ R/2πZ, λ(θ) = 0} is nonempty
and for every θ ∈ Ω, λ′(θ) 6= 0, then there exists an R0 > 0 such that every
solution x(t) of (3) with initial value (x(t0), x

′(t0)) such that (x(t0))
2+(x′(t0))

2 >
R2

0 for some t0 ∈ R, goes to infinity in the future or in the past.

If Ω = ∅, Liu [7], by applying Ortega’s version of Moser’s twist theorem [11],
proved that all solutions of (3) are bounded provided f ∈ C6. The author [12]
generalized Liu’s results to nonlinear equations, which are a little more general
than (1), under some additional conditions. For more recent results on the
boundedness and unboundedness problem of solutions of equations which are
similar to (1), we refer [2–6, 10, 13, 14] and the references therein.

In case Ω 6= ∅, no boundedness results for solutions of (1) are available as
far as the author knows. As a special case, we assume in this paper λ(θ) ≡ 0.
In this case, the higher-order terms of perturbation must be considered. After
a series of somewhat tedious calculations, we obtain some relations between the
higher-order terms. By using a method similar to the one used in [7] and by
applying Ortega’s version of Moser’s twist theorem, we obtain some sufficient
conditions for the boundedness and unboundedness of all the solutions of (1)
in case λ(θ) ≡ 0. The results obtained in this paper are natural generalizations
and refinements of the results obtained in [7] for the case m = 1.

The method of proving the boundedness of solutions of (1) is as follows. By
means of action and angle variables transformations, equation (1) is , outside of
a large disc Dr = {(x, x′) ∈ R2, x2+(x′)2 ≤ r2} in the (x, x′)-plane, transformed
into a perturbation of an integrable Hamiltonian system. The Poincaré map
of the transformed system is close to a so-called twist map in R2/Dr. Then
Ortega’s version of Moser’s twist theorem guarantees the existence of arbitrary
large invariant curves diffeomorphic to circles and surrounding the origin in the
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(x, x′)-plane. Every such curve is the base of a time-periodic and flow-invariant
cylinder in the extended phase space (x, x′, t) ∈ R2 × R, which confines the
solutions in the interior and which leads to a bound of these solutions.

2. Generalized polar coordinates transformation

Introduce a new variable y = φp(x
′), then (1) is equivalent to the planar system

x′ = φq(y), y′ = −(p− 1)
[
αφp(x

+)− βφp(x
−)

]
+ f(t) , (4)

where q = p
p−1

is the conjugate exponent of p.

Let u = sinp t be the solution of the initial value problem(
φp(u

′)
)′

+ (p− 1)φp(u) = 0

u(0) = 0, u′(0) = 1,

which for t ∈ [0, πp

2
] can be expressed implicitly by (see [8])

t =

∫ sinp t

0

ds

(1− sp)
1
p

.

It follows from [9], that u = sinp t can be extended to R as a 2πp-periodic odd
C2-function which satisfies sinp t : [0, πp

2
] → [0, 1] and sinp(πp − t) = sinp t for

t ∈ [πp

2
, πp], sinp(2πp − t) = − sinp t for t ∈ [πp, 2πp].

Let S(t) be the solution of the initial value problem(
φp(x

′)
)′

+ (p− 1)
[
αφp(x

+)− βφp(x
−)

]
= 0

x(0) = 0, x′(0) = 1.

Then it is well-known that S ∈ C2(R) is 2πp

n
-periodic which can be given by

S(t) =

{
α−

1
p sinp α

1
p t, t ∈

[
0, α−

1
pπp

]
−β−

1
p sinp β

1
p
(
t− α−

1
pπp

)
, t ∈

[
α−

1
pπp,

2πp

n

]
Define C(t) = φp(S

′(t)), then C ∈ C1(R) is 2πp

n
-periodic and the equality holds

|C(t)|q + α(S+(t))p + β(S−(t))p ≡ 1, t ∈ R (5)

holds. For ρ > 0, θ (mod 2πp), we define the canonical transformation T :
(ρ, θ) → (x, y) as

x = d
1
pρ

1
pS

( θ
n

)
, y = d

1
q ρ

1
qC

( θ
n

)
, d = nq.
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Under this transformation and by using (11), system (4) is changed into the
generalized polar coordinates system

ρ′ =
d

1
p

n
ρ

1
pS ′

( θ
n

)
f(t), θ′ = n− d

1
p

p
ρ−

1
qS

( θ
n

)
f(t). (6)

If we further define r = ρ
1
q , then system (6) is of the form

r′ = d
−1
q S ′

( θ
n

)
f(t), θ′ = n− d

1
pp−1r−1S

( θ
n

)
f(t). (7)

Since the right side of (7) is only C1 or C2 in θ, we cannot apply Moser’s twist
theorem directly, therefore we change the rule of θ and t as follows:

For r � 1, we can solve t = t(θ) from the second equation of (7) and (7)
can be rewritten as

dr

dθ
=

d1S
′( θ

n

)
f(t)

1− d2r−1S
(

θ
n

)
f(t)

,
dt

dθ
=

1

n
(
1− d2r−1S

(
θ
n

)
f(t)

) , (8)

where d1 = d
−1
q /n, d2 = d

1
p/(np), θ ∈ [0, 2nπp].

For r0 � 1, let (r(θ), t(θ)) = (r(θ; r0, t0), t(θ; r0, t0)) be the solution of (8)
with initial value (r0, t0). Then for large initial value, i.e., for r0 � 1, by the
boundedness of f, S and S ′, for θ ∈ [0, 2nπp], we have the expressions

r(θ) = r0 + µ0(θ, t0) + µ1(θ, t0)r
−1
0 + µ2(θ, t0)r

−2
0 +O(r−3

0 )

t(θ) = t0 +
θ

n
+ λ1(θ, t0)r

−1
0 + λ2(θ, t0)r

−2
0 + λ3(θ, t0)r

−3
0 +O(r−4

0 ).
(9)

From the first equation of (9), we obtain for r0 � 1

r−1(θ) = r−1
0

[
1− µ0(θ, t0)r

−2
0 + (µ2

0(θ, t0)− µ1(θ, t0))r
−2
0 +O(r−3

0 )
]
. (10)

Substituting (9), (10) into (8) and integrating from 0 to θ, we obtain

r(θ) = r0 + d1

∫ θ

0

S ′
(τ
n

)
f(t(τ)) dτ

+ d1d2

∫ θ

0

r−1(τ)S
(τ
n

)
S ′

(τ
n

)
f 2(t(τ)) dτ

+ d1d
2
2

∫ θ

0

r−2(τ)S2
(τ
n

)
S ′

(τ
n

)
f 3(t(τ)) dτ +O(r−3

0 )

(11)
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t(θ) = t0 +
θ

n
+
d2

n

∫ θ

0

r−1(τ)S
(τ
n

)
f(t(τ)) dτ

+
d2

2

n

∫ θ

0

r−2(τ)S2
(τ
n

)
f 2(t(τ)) dτ

+
d3

2

n

∫ θ

0

r−3(τ)S3
(τ
n

)
f 3(t(τ)) dτ +O(r−4

0 ).

(12)

Substituting (9) and (10) into (11) and (12) respectively, we obtain formulas
for µ0, λ1, µ1, λ2, µ2 and λ3. Let µk(t) = µk(2nπp, t), k = 0, 1, 2, . . . ; λm(t) =
λm(2nπp, t), m ∈ N, we obtain by using S(0) = S(2πp) = 0,

µ0(t) = d1

∫ 2nπp

0

S ′
( θ
n

)
f
(
t+

θ

n

)
dθ = −nd1

∫ 2πp

0

S(θ)f ′(t+ θ) dθ,

λ1(t) =
d2

n

∫ 2nπp

0

S
( θ
n

)
f
(
t+

θ

n

)
dθ = d2

∫ 2πp

0

S(θ)f(t+ θ) dθ

µ1(t) = nd1d2

[ ∫ 2πp

0

S ′(θ)f ′(t+ θ)

∫ θ

0

S(τ)f(t+ τ) dτ dθ

+

∫ 2πp

0

S(θ)S ′(θ)f 2(t+ θ) dθ

]
.

(13)

If we simply write S(·), f(t+ ·) as S and f respectively, we can also obtain the
expressions

λ2(t) = d2
2(2− p)

[ ∫ 2πp

0

Sf ′
∫ θ

0

Sf +

∫ 2πp

0

S2f 2

]
+ (p− 1)λ1(t)λ

′
1(t)]

µ2(t) = nd1d
2
2

[ ∫ 2πp

0

S ′f ′
∫ θ

0

Sf ′
∫ τ

0

Sf +

∫ 2πp

0

S ′f ′
∫ θ

0

S2f 2

− (p− 1)

∫ 2πp

0

S ′f ′
∫ θ

0

Sf

∫ τ

0

S ′f +
1

2

∫ 2πp

0

S ′f ′′
( ∫ θ

0

Sf
)2

+ 2

∫ 2πp

0

SS ′ff ′
∫ θ

Sf − (p− 2)

∫ 2πp

0

S2S ′f 3

+ (p− 1)

∫ 2πp

0

SS ′f 2

∫ θ

0

Sf ′
]

λ3(t) = d3
2

[ ∫ 2πp

0

Sf ′
∫ θ

0

Sf ′
∫ τ

0

Sf +

∫ 2πp

0

Sf ′
∫ θ

0

S2f 2

− (p− 1)

∫ 2πp

0

Sf ′
∫ θ

0

Sf

∫ τ

0

S ′f +
1

2

∫ 2πp

0

Sf ′′
( ∫ θ

0

Sf
)2

+ 2

∫ 2πp

0

S2ff ′
∫ θ

0

Sf − 2(p− 1)

∫ 2πp

0

S2f 2

∫ θ

0

S ′f

(14)
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+

∫ 2πp

0

S3f 3 + (p− 1)2

∫ 2πp

0

Sf
( ∫ θ

0

S ′f
)2

− (p− 1)

∫ 2πp

0

Sf ′
∫ θ

0

S ′f

∫ θ

0

Sf − (p− 1)

∫ 2πp

0

Sf

∫ θ

0

S ′f ′
∫ τ

0

Sf

− (p− 1)

∫ 2πp

0

Sf

∫ θ

0

SS ′f 2

]
.

Using integration by parts, for t ∈ [0, 2πp], we can verify the equations

µ0(t) = −(p− 1)λ′1(t) (15)

λ′2(t) =
(p− 2

p− 1

)
µ1(t) + (p− 1)λ1(t)λ

′′
1(t) +

p

2

(
λ′1(t)

)2

. (16)

From above equations, under the assumption λ1(t) ≡ 0, after a series of tedious
calculations and simplifications, we obtain that

λ′3(t) =
(2p− 3)

p− 1
µ2(t). (17)

Especially for p = 2, we have

λ2(t) = λ1(t)λ
′
1(t), (18)

and for λ1(t) ≡ 0,

λ′3(t) = µ2(t). (19)

For p 6= 2, 3
2

and λ1(t) ≡ 0, we obtain from (16) and (17) the relations

µ1(t) =
p− 1

p− 2
λ′2(t)

µ2(t) =
p− 1

2p− 3
λ′3(t).

Remark 1. For k ∈ N, it is conjectured that under the assumption λ1(t) =
λ2(t) = . . . = λk−1 ≡ 0, for p 6= k+1

k
, the following equality holds:

µk(t) =
p− 1

k(p− 1)− 1
λ′k+1(t). (20)

For k > 1, p = 2 the conjecture (29) becomes

µk(t) =
λ′k+1(t)

k − 1
.
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3. Bounded motions of planar mappings

In this section, we adopt the notations used in [1]. Given σ > 0, let the set Eσ

be the exterior of the open ball Bσ centered at the origin and of radius σ, that
is Eσ = R2 −Bσ. Then Eσ = {(θ, r)|r ≥ σ, θ ∈ S1}.

Lemma 1. Let P be the Poincaré map of (9) having the form

t1 = t0 + 2πp + λk(t0)r
−k
0 + Fk+1(t0, r0)

r1 = r0 + µk−1(t0)r
−(k−1)
0 +Gk(t0, r0),

(21)

where k ∈ N, λk(t) 6= 0 for all t ∈ S1, λk, µk−1, Fk+1, Gk are C∞-functions and

Fk+1 = O(r
−(k+1)
0 ), Gk = O(rk

0) for r0 � 1 and periodic in t . If µk−1(t) =
−ckλ′k(t) for some nonzero constant ck, then the map P has an invariant curve
Γ ⊂ [0, πp]× [ 1

∆
, ∆] for some ∆ > 1.

Proof. In order to prove the above proposition, we need a variant of Moser’s
twist theorem which is due to Ortega[10]. Let A = S1×[a, b] be a finite cylinder
with universal cover R× [a, b]. Consider the map M : A→ S1×R. We assume
the map M has the intersection property, that is , for every Jordan curve Γ ⊂ A
which is homotopic to the circle u = constant satisfies M(Γ) ∩ Γ 6= ∅. Suppose
that a lift of M has the form

θ1 = θ + 2mπ + δL1(θ, u) + δψ1(θ, u)

u1 = u+ δL2(θ, u) + δψ2(θ, u),
(22)

where m ∈ N, δ ∈ (0, 1) is a parameter and L1, L2, ψ1 and ψ2 are functions
satisfying

L1 ∈ C6(A), L1(θ, u) > 0,
∂L1

∂u
(θ, u) > 0 ∀ (θ, u) ∈ A (23)

L2, ψ1, ψ2 ∈ C5(A). (24)

In addition we assume that there exists a function I : A → R satisfying I ∈
C6(A),

∂I

∂u
(θ, u) > 0 ∀ (θ, u) ∈ A (25)

L1(θ, u)
∂I

∂θ
(θ, u) + L2(θ, u)

∂I

∂u
(θ, u) = 0 ∀ (θ, u) ∈ A. (26)

Define on [a, b] the functions I(u) = maxθ∈R I(θ, u) and I(u) = minθ∈R I(θ, u).
Since the function I is periodic in θ, the above two functions are well-defined
and finite.
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Lemma 2. ([10, Theorem 3.1]) Let M be such that (22)–(24) hold. Assume in
addition that there exists a function I satisfying (25) and (26). If there exist
numbers a′ and b′ with a < a′ < b′ < b such that

I(a) < I(a′) ≤ I(a′) < I(b′) ≤ I(b′) < I(b),

then there exist ε, δ0 > 0 such that if 0 < δ < δ0 and ‖ψ1‖C5(A) +‖ψ2‖C5(A) < ε,
the map M has an invariant curve Γ ⊂ A. The constant ε is independent of δ.
Furthermore, if we denote by R(Γ,δ) ∈ S1 the rotation number of M , then

lim
δ→0

R(Γ, δ) = 0.

Remark 2. In Lemma 1, it can be proved that the assumptions L1 > 0, ∂L1

∂u
> 0

can be replaced by L1 < 0, ∂L1

∂u
< 0.

Proof. Now taking Remark 2 into consideration, we can assume, without loss
of generality, that λk(t) > 0 for all t ∈ R. For fixed ∆ > 1, we introduce a new
variable u varying in the closed interval [ 1

∆
, ∆] and a small positive parameter

δ by the formula
r = uδ

and the positive constant ∆ > 1 will be determined later. In the new variables
(t, u), eq. (21) has the form

t1 = t+ 2πp + λk(t)δ
kuk +H1(t, δ, u)

u1 = u− ckλ
′
k(t)δ

kuk+1 +H2(t, δ, u),
(27)

where H1, H2 = O(δk+1) and C∞ in t and u. If we introduce a new variable
ε = δk, then (27) has the form

t1 = t+ 2πp + λk(t)εu
k + J1(t, ε, u)

u1 = u− ckλ
′
k(t)εu

k+1 + J2(t, ε, u),

where J1, J2 = O(ε1+λ) for some λ > 0.

Define a function Q(t) as

Q(t) = exp

[ ∫ t

0

−ckλ′k(s) ds
λk(s)

]
=

(
λk(t)

λk(0)

)−ck

,

then Q is positive and 2πp–periodic. Let I(t, u) = uQ(t), L1(t, u) = ukλk(t),
L2(t, u) = −ckuk+1λ′k(t). Then I > 0, ∂I

∂u
= Q > 0. Now we choose the constant

∆ with ∆ = 4 Qmax

Qmin
≥ 4, where Qmax = maxt∈RQ(t), Qmin = mint∈RQ(t). Then

it is easy to see that L1, L2, I, H1, H2 ∈ C∞(A) and for all (t, u) ∈ A,

L1(t, u) > 0,
∂L1

∂u
(t, u) > 0

L1(t, u)
∂I

∂t
(t, u)+L2(t, u)

∂I

∂u
(t, u) = 0,
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and I(∆−1) < I(∆1) ≤ I(∆1) < I(∆2) ≤ I(∆2) < I(∆), where ∆1 = 1 < ∆2 =
∆
2
. Now, by applying Lemma 1, we see for each ε � 1, the map M has an

invariant closed curve diffeomorphic to u = const.

4. Main result

We can now state and prove the main result of this paper.

Theorem. Consider equation (1). Let µk−1(t), λk(t), k ∈ N, be given as in
Section 2. Assume λ1(t) ≡ 0.

(I) If one of the conditions

(i) p = 2, λ3(t) 6= 0 and µ1(t) ≡ 0 for all t ∈ R
(ii) p 6= 2, λ2(t) 6= 0 for all t ∈ R
(iii) p 6= 2, p 6= 3

2
, λ2(t) ≡ 0 and λ3(t) 6= 0 for all t ∈ R

holds, then every solution of (1) is bounded, i.e., if x(t) is a solution of (1),
then

sup
t∈R

(
x2(t) + (x′(t))2

)
< +∞.

(II) If, however, p = 2, λ1(t) ≡ 0 and µ1(t) 6= 0, for all t ∈ R, then every
solution with large initial value, i.e., (x(0))2+(x′(0))2 � 1, are unbounded
in the future if µ1(t) > 0 for all t ∈ R, or they are unbounded in the past
if µ1(t) < 0 for all t ∈ R.

Proof. Proof of (I): We need only prove the fact that every solution of (7)
is bounded if one of the assumptions of (i)–(iii)holds.

For p > 1 and f ∈ C∞(S1), the right side of (7) satisfies a local Lipschitz
condition for r > 0, hence the existence and uniqueness of solutions to initial
value is guaranteed. Therefore we need to consider the case r0 � 1, only.

Let (r(θ), t(θ)) be the solution of (9) satisfying (r(0), t(0)) = (r0, t0) with
r0 � 1. Since λ1(t) ≡ 0, we obtain from (15)–(19), µ0(t) ≡ 0. λ2(t) ≡ 0 if p = 2
and µ1(t) = p−1

p−2
λ′2(t) if p 6= 2. For p 6= 2, 3

2
, λ2(t) ≡ 0, then by (17), λ′3(t) =

2p−3
p−1

µ2(t). In all cases, Lemma 1 implies that the map P has an invariant curve
for each fixed r0 � 1. Every such curve is the base of a time-periodic and flow-
invariant cylinder in the extended phase space (r, θ, t) ∈ R2×R, which confines
the solutions in the interior and which leads to a bound of these solutions. Going
back to the (x, x′, t) space, we get the boundedness of solutions with large initial
values, by uniqueness results, every solution of (1) is therefore bounded.

Proof of (II). Now we assume p = 2, λ(t) ≡ 0, µ1(t) > 0 for all t ∈ R.
Let µ∗ = mint∈R µ1(t), then by the periodicity of µ1, µ

∗ > 0. For r0 � 1, (which
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is equivalent to (x(0))2 + (x′(0))2 � 1 ), we obtain from (21)

r1 = r0 + µ2(t)r
−2
0 +O(r−3

0 ) ≥ r0 +
µ∗

2
r−2
0 . (28)

and
r1 ≤ r0 + 2µmaxr

−2
0 , (29)

where µmax = maxt∈R µ1(t). Replacing r0 by rn, r1 by rn+1 and, by induction,
we get from (29)

rn+1 ≤ r0 + 2nµmaxr
−2
0 , (30)

which implies that rn is defined in the future. Similarly, we obtain from (28)

rn+1 ≥ rn +
1

2
µ∗r−2

n > rn, (31)

which implies that rn is monotone increasing. We claim limn→+∞ rn = +∞.
Otherwise, let limn→+∞ rn = r∗ < +∞, then by taking limits in both sides
of (31), we obtain r∗ ≥ r∗ + µ∗

2
r∗ > r∗, which is a contradiction. The case

µ1(t) < 0 can be proved similarly. This finishes our proof of the theorem.

Remark 3. We see from (16) that the case p = 2 and the case p 6= 2 have a
great difference. If the conjecture (20) holds, then our theorem can be further
generalized by applying Lemma 1. Moreover, the assumption f ∈ C∞(S1) can
be replaced by f ∈ C6(S1).

Example. Assume p = 2, f(t) = sin t, α > 0, β > 0, α 6= β satisfying (2).
Then (1) reduces to

x′′ + αx+ − βx− = sin t.

Let the Fourier expression of S(t) be S(t) = a0

2
+

∑∞
k=1

(
ak cos knt+ bk sin knt

)
,

where

ak =
1

π

∫ 2π

0

S(t) cos knt dt, bk =
1

π

∫ 2π

0

S(t) sin knt dt

for k = 0, 1, . . .. We can get the explicit expressions for ak, bk as

ak =
n(1 + cos(knπ/

√
α))(β − α)

2π(k2n2 − α)(k2n2 − β)
, bk =

n sin(knπ/
√
α)(β − α)

2π(k2n2 − α)(k2n2 − β)

if α 6= k2n2, β 6= k2n2 for all k ∈ N. From the expression of λ1, it is not difficult
to obtain

λ1(t) =

{
1√
2
π
(
a1 sin t+ b1 cos t

)
, if n = 1

0, if n ≥ 2.

For n ≥ 2, we have λ2(t) ≡ 0, and for n ≥ 3, we have µ0(t) = µ1(t) ≡ 0,
λ3(t) ≡ const > 0. Since for n ≥ 3, we have λ1(t) = λ2(t) ≡ 0 in our example,
the results of previous literature can not be applied in this case. But our theorem
implies the boundedness of all the solutions of (1) for p = 2 and n ≥ 3.
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