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Dirichlet and Hardy Spaces
of Harmonic and Monogenic Functions
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Abstract. In this paper we obtain a characterization of the Dirichlet Dp-spaces of
monogenic Clifford algebra valued functions in the unit ball in Rm+1 by the coefficients
of a homogeneous series expansion.
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1. Introduction

Let U := {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let
A be the class of analytic functions on U . For p ∈ R, consider the well-known
fractional Dirichlet space Dp, defined by

Dp =

{
f(z) =

∞∑
n=0

anz
n ∈ A :

∞∑
n=1

n1−p|an|2 < ∞
}

.

For p = 0, we obtain the well-known classical Dirichlet space and it is easy to
show that (see [7, p. 28])

∞∑
n=1

n|an|2 =

∫∫
U

|f ′(z)|2dx dy
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and this integral is equal to the area of the image f(U), counting multiplicities.
In 1980 Stegenga proved (see [11, p. 114 ]) the next important result.

Theorem 1.1. Let f : U → C be an analytic function and let −1 < p, then
f ∈ Dp if and only if ∫∫

U

|f ′(z)|2
(
1− |z|2

)p
dx dy < ∞.

The space Dp is a Banach space under the norm

‖f‖Dp := |f(0)|+
(∫∫

U

|f ′(z)|2(1− |z|2)pdx dy

) 1
2

.

Dp-spaces belong to the family of the so-called weighted function spaces
and they are intensively studied in the recent years by several authors as
R. Aulaskari [2], K. Stroethoff [12], K. Zhu [15] among others. These spaces
constitute an important tool to clarify and explore the behaviour of functions
near to the boundary. In a parallel way M.V. Shapiro et al. [8], Malonek et al. [9]
and Cnops et al. [6] have worked on generalizations of these scales of spaces to
Clifford algebra valued functions defined in Rn, n > 2.

Due to the double characterization by series expansions and by integral ex-
pressions given by Theorem 1.1, Dp-spaces become important because through
these characterizations it is possible to give a precise answer to an elementary
question: To which spaces belong derivatives and primitives of Dp-functions?
It is easy to prove (see [4] that if f (k) is the k-th derivative and F(k) the k-th
primitive of f ∈ Dp, then f (k) ∈ Dp+2k and F(k) ∈ Dp−2k.

In this paper we present a generalization of this concept to Dp-spaces of
harmonic or monogenic Clifford algebra valued functions. Thus in Sections 2
and 3 we introduce the harmonic Dirichlet spaces and prove that Theorem 1.1
can be extended to these kind of functions. In Section 4 we prove that for
different values of p > −1 these spaces form a scale and the inlusions are
strict. Finally, in Section 5 we find that if f is a monogenic function in Dp

and admits a harmonic primitive, then the results for analytic functions extend
to this case, i.e., the primitive belongs to Dp−2. It is important to remark
an essential difference between analytic and monogenic functions. Monogenic
functions can have several primitives. In [5] and explicitly in [9] it is proved
that any monogenic function has a monogenic primitive. But two monogenic
primitives of a monogenic function can differ by functions and not only by a
constant, and they can have very different regularity. The same is true for
harmonic primitives of monogenic functions.
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Remark 1.2. We have chosen the denotations for the different situations that
occur in our paper in the following way: Not to confuse the reader we denote
by Dp(B) the Dirichlet spaces of holomorphic functions in the unit disk, the
Dirichlet spaces of harmonic functions in the unit ball B ⊂ Rm+1 are denoted
by Dp(B) and the Dirichlet spaces of harmonic Clifford-valued functions in the
unit ball by Dp(Cl0,n, B). The Bloch spaces Bα, the Bergman spaces b2 and
the Hardy spaces h2 are denoted in the same manner. Opposite to the other
denotations the Dirichlet spaces of monogenic Clifford valued functions in the
unit ball are denoted by Dp(M,Cl0,n, B).

1.1. Clifford algebras. Let e1, . . . , en be the elements of an orthonormal basis
of the Euclidean vector space Rn and Cl0,n the 2n-dimensional universal Clifford
algebra over R generated modulo the relation x2 = −|x|2e0, where x ∈ Rn and
e0 is the identity of Cl0,n. The corresponding multiplication rules are given
by eiej + ejei = −2δij, i, j = 1, . . . , n. Then the set {eA : A ⊂ {1, . . . , n}}
with eA = eh1 , . . . ehr , 1 ≤ h1 < · · · < hr ≤ n, eϕ = e0 = 1, forms a basis
of Cl0,n, and therefore each element a ∈ Cl0,n can be represented in the form
a =

∑
A aAeA, where aA are real numbers. A conjugate element to a is defined

by a =
∑

A aAeA, where eA = ehr . . . ehr , ek = −ek, k = 1, . . . , n, e0 = e0 = 1.

Given a Clifford number a =
∑

A aAeA its norm is given by |a|0 = (
∑

A a2
A)

1
2 .

1.2. Clifford analysis. Let Ω ⊂ Rm+1 be an open set. For m ≤ n, let D denote
the generalized Cauchy-Riemann operator and D its conjugate operator:

D =
∂

∂x0

+ e1
∂

∂x1

+ · · ·+ em
∂

∂xm

D =
∂

∂x0

− e1
∂

∂x1

− · · · − em
∂

∂xm

.

A function f ∈ C1(Ω;Cl0,n) is said to be left monogenic if Df=0. We denote
by M(Cl0,n) the set of left monogenic functions. Consider the real Euclidean

space Rm+1 with norm |x| =
√

x2
0 + x2

1 + · · ·+ x2
m for x = (x0, x1, . . . , xm) ∈

Rm+1. As above, we define the ball of radius r > 0 Br = { x ∈ Rm+1 : |x| < r }.
We denote B1 = B and its boundary by S. For −1 < p, consider the fractional
Dirichlet space Dp(M,Cl0,n, B) of left monogenic functions, defined by

Dp(M,Cl0,n, B) =

{
f ∈M(Cl0,n) :

∫
B

|Df |20
(
1− |x|2

)p
dV < ∞

}
.

We observe that Df =
∑

i, A ∂ifAeieA, and then

|Df |20 ≤ (m + 1)
∑
i,A

(∂ifA)2 = (m + 1)
∑

A

|∇fA|2, (1.1)
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where ∇ denotes the gradient. We have then∫
B

|Df |20
(
1− |x|2

)p
dV ≤ (m + 1)

∑
A

∫
B

|∇fA|2
(
1− |x|2

)p
dV .

It is well known that DDf = ∆f = 0, then each fA : B → R is a harmonic
function. Therefore it is natural to characterize at first the Dirichlet spaces of
harmonic scalar-valued functions.

2. Harmonic Dirichlet spaces

We begin with the study of spaces of harmonic functions. Following the nota-
tions of classical harmonic analysis we denote by n > 2 the dimension of the real
Euclidean space Rn with norm |x| =

√
x2

1 + · · ·+ x2
n for x = (x1, . . . , xn) ∈ Rn.

We define the ball of radius r > 0 by Br = {x ∈ Rn : |x| < r}. Let S be the
boundary of the unit ball B1. Let Ω ⊂ Rn be an open set, a twice continu-
ously differentiable, complex-valued function u defined on Ω is harmonic on Ω
if ∆u ≡ 0, where ∆ = ∂2

1 + · · ·+∂2
n and ∂2

j denotes the second partial derivative
with respect to the j − th variable. We recall Green‘s identity∫

Ω

(u∆v − v∆u) dV =

∫
∂Ω

(
u

∂v

∂n
− v

∂u

∂n

)
ds ,

where Ω ⊂ Rn is a bounded open set with smooth boundary, and u and v are
C2-functions on a neighborhood of Ω; the symbol ∂u

∂n
denotes differentiation with

respect to the outward unit normal n. Thus for ζ ∈ ∂Ω, (∂u
∂n

)(ζ) = (∇u)(ζ)·n(ζ),
where ∇u = (∂1u, . . . , ∂nu) denotes the gradient of u and · denotes the usual
Euclidean inner product.

Let u, v be twice differentiable scalar-valued functions, the product rule of
the Laplacian is

∆(uv) = u∆v + 2∇u · ∇v + v∆u . (2.1)

We recall also the polar coodinates formula for integration on Rn for a Borel
measurable and integrable function f on Rn:∫

Rn

f dV = n vol(B)

∫ ∞

0

rn−1

∫
S

f(rζ) dσ(ζ) dr . (2.2)

The constant n vol(B) arises from the normalization of σ, the normalized surface
area measure on S, such that σ(S) = 1. The measure σ is the unique Borel
probability measure on S that is invariant under rotations (that is σ(T (E)) =
σ(E) for every Borel set E ⊂ S and every orthogonal transformation T ).

Let us denote by Pm(Rn) the complex vector space of all homogeneous
polynomials on Rn of degree m. Let Hm(Rn) denote the subspace of Pm(Rn)
consisting of all homogeneous harmonic polynomials on Rn of degree m. We
recall the following results.
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Proposition 2.1. [3, Proposition 5.9] If p, q are polynomials on Rn and q is
harmonic and homogeneous with degree higher than the degree of p, then∫

S

p q dσ =

∫
S

p q dσ = 0 .

Proposition 2.2. [3, Theorem 5.14] Let p =
∑

α aαxα and q =
∑

β bβxβ be
harmonic polynomials on Rn, then∫

S

p q dσ =
∑

α

aαbαcα ,

where cα = α
n(n+2)···(n+2|α|−2)

.

The following corollary is immediate.

Corollary 2.3. If p =
∑

|α|=m aαxα is a harmonic polynomial on Rn, then∫
S

|p|2 dσ =
1

n(n + 2) · · · (n + 2m− 2)

∑
|α|=m

|aα|2α! .

The following lemma gives an idea about the behaviour of ∇p and p on the
sphere.

Lemma 2.4. Let p ∈ Hm(Rn) and q ∈ Hs(Rn) be. Then∫
S

∇p · ∇q dσ =

{
m(n + 2m− 2)

∫
S

pq dσ if m = s

0 if m 6= s .

Proof. Let p ∈ Hm(Rn) and q ∈ Hs(Rn). For σ ∈ S, the normal derivative of
pq on S is

(∂n)pq(σ) = ∇(pq)(σ) · n(σ) =
d

dr
pq(rσ)|r=1 =

d

dr
rm+sp(σ)q(σ)

∣∣
r=1

,

therefore p(σ)q(σ) = 1
m+s

∇(pq)(σ) · n(σ). Then by the divergence theorem∫
S

pq dσ =
1

(m + s)nvol(B)

∫
S

∇(pq) · n dσ =
1

(m + s)nvol(B)

∫
B

∆(pq) dV.

Convert the last integral into polar coordinates, apply the product rule of Lapla-
cian (2.1), and use the homogeneity of ∇p and ∇q to get∫

S

pq dσ =
2

(m + s)

∫ 1

0

rn+m+s−3

∫
S

∇(p) · ∇q dσ dr

=
2

(m + s)(n + m + s− 2)

∫
S

∇(p) · ∇q dσ .
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Then we obtain∫
S

∇(p) · ∇q dσ =
(m + s)(n + m + s− 2)

2

∫
S

pq dσ ,

and we conclude applying the Proposition 2.1.

Let −1 < p. We define Dp(B) to be the class of harmonic functions u :
B → C for which

∫
B
|∇u|2(1 − |x|2)p dV < ∞. In particular for p = 0 we have

the classical Dirichlet space of harmonic functions
∫

B
|∇u|2 dV < ∞. We note

that if −1 < p < q then Dp ⊂ Dq.

We recall the following result.

Theorem 2.5. [3, Corollary 5.34] Let u : B → C be a harmonic function on
B. Then there exist pk ∈ Hk(Rn) such that

u(x) =
∞∑

k=0

pk(x) (2.3)

for all x ∈ B and the series is converging absolutely and uniformly on compact
subsets of B.

Because the series (2.3) converges absolutely and uniformly on compact
subsets of B we can differentiate it term by term to obtain ∇u =

∑∞
k=0∇pk =∑∞

k=1∇pk, and observe that this series also converges absolutely and uniformly
on compact subsets of B. Then

|∇u|2 = ∇u∇u =
∞∑

k=1

∞∑
l=1

∇pk · ∇pl (2.4)

with the same kind of convergence. Let 0 < R < 1. Then BR ⊂ B, by (2.2),
Lemma 2.4 and due to the uniform convergence of the series (2.4) we have∫

BR

|∇u|2
(
1− |x|2

)p
dV

= n vol(B)

∫ R

0

rn−1
(
1− r2

)p ∫
S

|∇u(rζ)|2 dσ(ζ) dr

= n vol(B)

∫ R

0

∞∑
k=1

∞∑
l=1

rn+k+l−3
(
1− r2

)p ∫
S

∇pk(ζ) · ∇pl(ζ)dσ(ζ) dr

= n vol(B)
∞∑

k=1

∫ R

0

rn+2k−3
(
1− r2

)p
dr

∫
S

|∇pk(ζ)|2 dσ(ζ) .
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Now by Abel’s theorem we have∫
B

|∇u|2
(
1− |x|2

)p
dV

= lim
R→1−

∫
BR

|∇u|2
(
1− |x|2

)p
dV

= n vol(B) lim
R→1−

∞∑
k=1

∫ R

0

rn+2k−3
(
1− r2

)p
dr

∫
S

|∇pk(ζ)|2 dσ(ζ)

= n vol(B)
∞∑

k=1

∫ 1

0

rn+2k−3
(
1− r2

)p
dr

∫
S

|∇pk(ζ)|2 dσ(ζ)

=
n vol(B)

2

∞∑
k=1

Γ(n
2

+ k − 1)Γ(p + 1)

Γ(n
2

+ k + p)
k(n + 2k − 2)‖pk‖2

2 ,

where ‖ · ‖ denotes the L2 norm on S. Now, we use the well known approxima-

tion for the function Γ, Γ(az + b) u
√

2πe−az(az)az+b− 1
2 for | arg z| < π, a > 0

and |z| → ∞. Therefore

Γ(n
2

+ k − 1)Γ(p + 1)

Γ(n
2

+ k + p)
u k−1−p

and then
∞∑

k=1

Γ(n
2

+ k − 1)Γ(p + 1)

Γ(n
2

+ k + p)
k(n + 2k − 2)‖pk‖2

2

is a convergent series if and only if
∑∞

k=1 k1−p‖pk‖2
2 is a convergent series. Finally

we have proved

Theorem 2.6. Let u : B → C be a harmonic function with series expansion
in harmonic polynomials given by u(x) =

∑∞
k=0 pk(x). Let −1 < p. Then u

belongs to the Dirichlet Dp(B) if and only if

∞∑
k=1

k1−p‖pk‖2
2 < ∞ . (2.5)

Now we can extend our definition of a Dirichlet space for arbitrary real
values of p. Let p ∈ R. We say that u : B → C belongs to the space Dp(B) if
the series (2.5) is convergent.

We observe that this theorem is equivalent to Theorem 1.1, were homoge-
neous harmonic expansions behaves like power series expansions in the classical
case, and as is usual we observe that homogeneous expansions are better be-
haved than multiple power series in higher dimensions.

In terms of coefficients the previous theorem can be written as
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Corollary 2.7. Let u : B → C be a harmonic function with series expansion
in harmonic polynomials given by u(x) =

∑∞
k=0

∑
|α|=k aαxα. Then u belongs to

the Dirichlet Dp(B), p ∈ R, if and only if

∞∑
k=1

k1−p

n(n + 2) · · · (n + 2k − 2)

∑
|α|=k

|aα|2α! < ∞ .

Example 2.8. Let ζ ∈ S. We consider the harmonic function u : Rn \{ζ} → R
given by u(x) = 1

|x−ζ|n−2 . Then

|∇u(x)|2 =
(2− n)2

|x− ζ|2n−2
.

Because n > 2 it is clear that u /∈ D, the classical Dirichlet space. However∫
B

|∇u(x)|2
(
1− |x|2

)p
dV = (2− n)2

∫
B

(
1− |x|2

)p
|x− ζ|2n−2

dV

≤ 2p(2− n)2

∫
B

(1− |x|)p

(1− |x|)2n−2
dV

= 2p(2− n)2n vol(B)

1∫
0

rn−1

∫
S

(1− |rζ|)p

(1− |rζ|)2n−2
dσ(ζ)dr

= 2p(2− n)2n vol(B)

1∫
0

rn−1 dr

(1− r)2n−2−p
,

and this last integral is finite if and only if 2n − 3 < p. Thus u ∈ Dp(B) if
2n− 3 < p. We will improve this result in the next section.

It is well known that for analytic functions D1 = h2, where h2 is the Hardy
space. We prove now that it is true for harmonic functions on Rn, too. We need
some notation.

Given a function u on B, we denote by ur the function on S defined by
ur(ζ) = u(rζ) with 0 ≤ r < 1. We recall that the Hardy space h2(B) consists
of the class of harmonic functions on B for which |u‖h2 = sup0≤r<1 ‖ur‖2 < ∞,
where ‖ · ‖2 denotes the L2 norm on S. Let 0 < r < s < 1, then it is well known
that ‖ur‖2 ≤ ‖us‖2 and consequently

‖u‖h2 = lim
r→1−

‖ur‖2 ,

for each u ∈ h2(B). We have the following theorem.
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Theorem 2.9. The Dirichlet space D1(B) coincides with the Hilbert space
h2(B). Moreover if u ∈ h2(B) is given by u =

∑∞
k=0 pk where pk ∈ Hk(Rn),

then ‖u‖2
h2 =

∑∞
k=0 ‖pk‖2

2 .

Proof. It is known that h2(B) is a Hilbert space. Let 0 < r < 1 and u ∈ h2(B)
as in the statement. By the absolute and uniform convergence of the series (2.3)
and by Proposition 2.1

‖ur‖2
2 =

∫
S

|u(rζ)|2 dσ(ζ) =
∞∑

k=0

rk

∫
S

|pk(ζ)|2 dσ(ζ) .

By Abel’s theorem we have

‖u‖2
h2

= lim
r→1−

‖ur‖2
2 = lim

r→1−

∞∑
k=0

rk

∫
S

|pk(ζ)|2 dσ(ζ) =
∞∑

k=0

∫
S

|pk(ζ)|2 dσ(ζ).

By Theorem 2.6 we obtain the result.

Observation 2.10. If u : B → C is a harmonic function with the series ex-
pansion u =

∑∞
k=0 pk, where pk ∈ Hk(Rn), then u ∈ Dp(B) if and only if∑∞

k=1 k1−p‖pk‖2
h2

< ∞.

Theorem 2.11. The Dirichlet space D2(B) coincides with the Bergman space
(Hilbert space) b2(B). Moreover, if u ∈ b2(B) is given by u =

∑∞
k=0 pk, where

pk ∈ Hk(Rn), then

‖u‖2
b2 = n vol(B)

∞∑
k=0

1

n + 2k
‖pk‖2

2 .

Proof. Recall that u ∈ b2(B) means that
∫

B
|u(x)|2 dV < ∞. Let 0 < R < 1.

Then BR ⊂ B and by (2.2), Lemma 2.4, and the uniform convergence of the
series (2.4) we have∫

BR

|u(x)|2 dV = n vol(B)

∫ R

0

rn−1

∫
S

|u(rx)|2 dσ(ζ) dr

= n vol(B)

∫ R

0

rn−1

∫
S

∣∣∣ ∞∑
k=0

pA,k(rζ)
∣∣∣2 dσ(ζ) dr

= n vol(B)

∫ R

0

rn−1

∞∑
k=0

∞∑
l=0

rk+l

∫
S

pA,k(ζ)pA,l(ζ) dσ(ζ) dr

= n vol(B)
∞∑

k=0

∫ R

0

rn+2k−1‖pA,k(ζ)‖2
2 dr

= n vol(B)
∞∑

k=0

Rn+2k

n + 2k
‖pA,k(ζ)‖2

2 .
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If now u ∈ D2, then we can take the limit as R → 1− in the previous formula
to obtain by Abel’s theorem∫

B

|u(x)|2 dV = n vol(B)
∞∑

k=0

1

n + 2k
‖pA,k(ζ)‖2

2 .

Let α > 0. We define the Bloch space Bα as the set of harmonic funtions
u : B → C such that supx∈B(1− |x|)α|∇u(x)| < ∞.

Theorem 2.12. Let α > 0. Then Bα ⊂
⋂

2α−1<p Dp(B).

Proof. Let α > 0, p > 2α− 1 and M > 0 be such that |∇u(x)| < M
(1−|x|)α , then

by (2.2) ∫
B

|∇u(x)|2
(
1− |x|2

)p
dV ≤ 2pM2

∫
B

(1− |x|)p−2α dV

= 2pM2n vol(B)

∫ 1

0

(1− r)p−2α dr

= 2pM2n vol(B)

that completes the proof.

In a similar way we can prove that if p > −1, then
⋃

0<α< p+1
2

Bα ⊂ Dp(B).

3. Strict inclusions

The next proposition improves the result of Example 2.8

Lemma 3.1. Let u : Rn \ {ζ} → R, ζ ∈ S, given by u(x) = 1
|x−ζ|n−2 . Then

u ∈
(⋂

n−2<p Dp

)
\Dn−2.

Proof. Let −1 < p

1

(2− n)2

∫
B

|∇u(x)|2
(
1− |x|2

)p
dx =

∫
B

(
1− |x|2

)p
|x− ζ|2n−2

dx =

∫
B

(
1− |x|2

)p
|x− e1|2n−2

dx ,

where e1 = (1, 0 . . . , 0) ∈ S. Now we translate and change to spherical coordi-
nates∫

B

(
1− |x|2

)p
|x− e1|2n−2

dx =

∫
B(e1,1)

(
1− |x + e1|2

)p
|x|2n−2

dx

= Γ

∫ π

π
2

sinn−2 θ1 dθ1

∫ −2 cos θ1

0

(
− r2 − 2r cos θ1

)p
r2n−2

rn−1 dr ,
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where Γ =
∫ 2π

0
dθn−1

∫ π

0
sin θn−2dθn−2 · · ·

∫ π

0
sinn−3 θ2dθ2 < ∞. Now

∫ π

π
2

sinn−2 θ1 dθ1

∫ −2 cos θ1

0

(
− r2 − 2r cos θ1

)p
r2n−2

rn−1 dr

=

π∫
π
2

sinn−2 θ1 dθ1

∫ −2 cos θ1

0

(−r − 2 cos θ1)
p

rn−1−p
dr ,

and this last integral exists if and only if n− 1− p < 1, that is n− 2 < p.

Lemma 3.2. There exists a harmonic function u : B → C such that u ∈
D1(B) \

⋃
q<1 Dq(B).

Proof. We know from Theorem 2.9 that D1(B) = h2(B) and therefore there
exists a linear isometry T from the classic Hilbert space l2 onto D1(B). It is
well known (see [13, p. 130]) that

A =

{
1√

k log k

}∞
k=2

∈ l2 \
⋃
q<2

lq .

Consider a sequence of harmonic polynomials {qk}∞k=2 with norm ‖qk‖h2 =

k−
1
2 log−2 k. Let ak = {ak

n}∞n=1 ∈ l2 such that T (ak) = qk. Define sl =
∑l

k=2 ak

then T (sl) =
∑l

k=2 qk and by Proposition 2.1 and Theorem 2.9 for m ≥ l

‖sm − sl‖2
l2 =

∥∥∥∥ m∑
k=l+1

qk

∥∥∥∥2

h2

=
m∑

k=l+1

‖qk‖2
h2 =

m∑
k=l+1

1

k log2 k
.

Then {sl}∞l=2 is a Cauchy sequence in l2. Let s ∈ l2, with s = limk→∞ sk. Let
T (s) = u ∈ h2(B). Observe that we only know that

lim
l→∞

‖T (sl)− u‖h2 = lim
l→∞

∥∥∥∥ l∑
k=2

qk − u

∥∥∥∥
h2

= lim
l→∞

‖sk − s‖l2 = 0 .

Our task is of course, to prove that u =
∑∞

k=2 qk. As u is a harmonic function on
B u can be represented as u =

∑∞
k=0 pk, where pk ∈ Hk(Rn) for k = 0, 1, 2, . . .

and
∞∑

k=0

‖pk‖2
h2 = ‖u‖2

h2 =
∞∑

k=2

1

k log2 k
.

We set q0 = q1 = 0. Let m be a fix index. We will prove that pm = qm. Let ε > 0.
There exists an N > 0 such that

∑∞
k=l ‖pk‖2

h2 < ε
2

and ‖
∑l

k=2 qk−u‖2
h2 < ε

2
for
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all l ≥ N . Then for all l ≥ N + m we have the estimation∥∥∥∥ l∑
k=2

qk −
l∑

k=0

pk

∥∥∥∥2

h2

=

∥∥∥∥ l∑
k=2

qk −
l∑

k=0

pk −
∞∑

k=l+1

pk +
∞∑

k=l+1

pk

∥∥∥∥2

h2

≤
∥∥∥∥ l∑

k=2

qk − u

∥∥∥∥2

h2

+
∞∑

k=l

‖pk‖2
h2 < ε .

Then∫
S

|qm(ζ)− pm(ζ)|2 dσ(ζ) ≤
l∑

k=0

∫
S

|qk(ζ)− pk(ζ)|2 dσ(ζ) =
l∑

k=2

‖qk − pk‖2
h2 < ε .

As ε > 0 is arbitrary we have by continuity of the harmonic polynomials
qm = pm, for all m = 0, 1, 2, . . . . In particular now we know that ‖pk‖h2 =

k−
1
2 log−2 k. In case of α > 0 we obtain

∞∑
k=0

kα‖pk‖2
h2 =

∞∑
k=2

kα

k log2 k
= ∞

and therefore u /∈ Dq for all q < 1.

We recall that if u : B → C is a harmonic function with series expansion
in harmonic polynomials given by (2.3), then in particular for each α ∈ R,
v(x) =

∑∞
k=0 kαpk(x) converges absolutely and uniformly on each compact set

of B and therefore defines a harmonic function on B.

Theorem 3.3. Let q ∈ R be fixed. Then
⋃

p<q Dp(B)  Dq(B)  
⋂

q<r Dr(B).

Proof. Let u : B → R given by u(x) = |x − ζ|2−n with series expansion in
harmonic homogeneous polynomials u(x) =

∑∞
k=0 pk(x). Define a harmonic

function v : B → C by

v(x) =
∞∑

k=1

pk(x)

k
n−q−2

2

.

By Lemma 3.1 and Theorem 2.6 it is easy to see that v ∈
(⋂

q<r Dr(B)
)
\Dq(B).

Let ũ : B → C be the harmonic function in Lemma 3.2 with the series expansion
ũ =

∑∞
k=2 qk. Define g : ∆ → C by

g(x) =
∞∑

k=2

qk(x)

k1− q
2

.

Then
∞∑

n=2

k1−q

∥∥∥∥qk(x)

k1− q
2

∥∥∥∥
h2

=
∞∑

k=2

1

k log2 k
< ∞ .
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Let p < q. Then

∞∑
k=2

k1−p

∥∥∥∥qk(x)

k1− q
2

∥∥∥∥
h2

=
∞∑

k=2

1

k1+p−q log2 k
= ∞ ,

therefore g ∈ Dq(B) \
⋃

p<q Dp(B).

4. The spaces Dp(S), 0 < p < 1

Let f ∈ L2(S). Then f is an element of Dp(S), 0 < p < 1, if

‖f‖2
Dp

= sup
I⊂S

1

|I|p

∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y) < ∞ ,

where I is a surface ball (i.e., I = S ∩ Br0(x0) where x0 ∈ S). For n = 2
the spaces Dp(S), 0 < p < 1, form a scale: Dp(S) ⊆ Dq(S), 0 < p < q < 1.
Unfortunately, we cannot prove such a property for n > 2 which is caused by
the fact that |I| ∼ Crn−1

I ∼ rI if and only if n = 2.

For f ∈ L1(S), let F be the harmonic extension of f to B, i.e.,

F (x) =

∫
B

f(ξ)
1− |x|2

|x− ξ|n
dσ(ξ).

The following theorem characterizes the spaces Dp(S) also in term of the har-
monic extensions.

Theorem 4.1. Let 0 < p < 1 and let F be a harmonic function in B with
boundary values f ∈ Dp(S). Then the quantities

M = ‖f‖2
Dp

= sup
I⊂S

1

|I|p

∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y)

N = sup
I⊂S

1

|I|p

∫
Qh(x0)

|∇F (x)|2(1− |x|2)p dx

are equivalent M ≈ N, where I = S ∩Bh(x0) and Qh(x0) = B ∩Bh(x0).

Remark 4.2. Here, ”M ≈ N” means that there exist constants C1, C2 > 0
such that C1 M ≤ N ≤ C2 M. The measure of a surface ball I with radius rI is
equivalent to rn−1

I .

Remark 4.3. In the classic theory the following property is well known. Let
p ∈ (0, 1) and f ∈ H2. Then f ∈ Dp if and only if

sup
I⊆T

|I|−p

∫
I

∫
I

|f(ζ)− f(η)|2

|ζ − η|2−p
|dζ||dη| < ∞ ,

where T = ∂U and the supremum is taken over all arcs I ⊆ T (see [14, Lemma
6.1.1]). Then Theorem 4.1 is the corresponding counterpart.
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For the proof of this theorem we will need some additional lemmas and
Theorem 4.6 which is a generalization of a well-known lemma by Stegenga [11,
Lemma 3.2].

Lemma 4.4. Let 0 < α ≤ 1
2
, then∥∥(1− |x|) 1−2α

2 |∇F |
∥∥

L2(B)
+ ‖F‖L2(B) ≈ ‖f‖L2

α(S)

for any function F harmonic in B.

Proof. What we have to prove is the following:

‖f‖L2
α(S) ≤ C‖F‖W 2

α+1
2

≤ C
(∥∥(1− |x|2) 1−2α

2 |∇F |
∥∥

L2(B)
+ ‖F‖L2(B)

)
≤ C‖f‖L2

α(S) ,

where ‖f‖L2
α(S) = ‖tr F‖L2

α(S). The first estimation is valid due to the trace
theorem for Sobolev spaces [1]. One part of the last estimation can be proven
by using the representation of a harmonic function and the mapping properties
of the Poisson integral plus the trace theorem. The remaining estimation is a
special case of a general result from [10], which implies that for 0 < s < 1,

‖F‖W 2
s (B) ≈ ‖(1− |x|)1−s|∇F |+ |F | ‖L2(B)

We take s = 1
2

+ α.

An immediate consequence is that under the assumptions of the previous
lemma

‖f‖L2
α(S) ≈

∥∥(1− |x|) 1−2α
2 |∇F |

∥∥
L2(B)

.

We abbreviate a := ‖f‖L2
α(S), b :=

∥∥(1−|x|) 1−2α
2 |∇F |

∥∥
L2(B)

and c := ‖F ‖L2(B).

Then Lemma 4.4 immediately implies that there exist positive constants c1, c2

such that c1 a ≤ b + c ≤ c2 a and b ≤ c2a. To obtain the other inequality
we remark that b = 0 implies that F = const and the inequality is fulfilled.
If b > 0, there exists a natural number k such that c2a ≤ k b and we get
a ≤ c−1

1 c2a ≤ c−1
1 k b. The next implication is

Lemma 4.5. Let be f ∈ L2(S) the boundary values of a harmonic function F
and 0 < p < 1, then∫

B

|∇F (x)|2(1− |x|2)p dx ≈
∫

S

∫
S

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y).

Proof. We set p = 1− 2α, i.e., α ∈ (0, 1
2
).
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We are now able to prove the following theorem.

Theorem 4.6. Let I and J be surface balls with center x0 and radii rJ ≥ 3rI ,
where rJ is the radius of J and rI is the radius of I respectively, and F a
harmonic function in B with boundary values f ∈ L1

loc(S). For p ∈ (0, 1) there
exists a constant C > 0 (independent of I and J) such that∫

QrI
(x0)

|∇F (x)|2(1− |x|)1−2αdx ≤ C

[ ∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−1+2α
dσ(x) dσ(y)

+ rn+1−2α
I

(∫
S\ 2

3
J

|f(x)− fJ |
dσ(x)

|x− x0|n

)2 ]
.

Proof. Let ϕ be a continuous function such that 0 ≤ ϕ(x) ≤ 1, where ϕ(x) = 1
on 2

3
J, supp ϕ ⊂ 3

4
J, and |ϕ(x) − ϕ(y)| ≤ Cr−1

J |x − y|, x, y ∈ S. Let ϕ̃(x) =
1− ϕ(x), then

f = fJ + (f − fJ)ϕ + (f − fJ)ϕ̃ = f1 + f2 + f3.

In the same way we get for the Poisson integral Pf = Pf1 +Pf2 +Pf3. Because
of f1 = const = fJ we get |∇Pf1(x)| = 0 and this part contributes nothing.
Let us consider the next part: We estimate∫

QrI
(x0)

|∇Pf2(x)|2(1− |x|)1−2α dBx ≤
∫

B

|∇Pf2(x)|2(1− |x|)1−2α dBx

≤ C

∫
S

∫
S

|f2(x)− f2(y)|
|x− y|n−1+2α

dσ(x) dσ(y)

and due to Lemma 4.4,

≤
∫

x∈J

∫
y∈J

. . . +

∫
x 6∈J

∫
y∈ 3

4
J

. . . +

∫
x∈ 3

4
J

∫
y 6∈J

. . . = B1 + B2 + B3 .

Now, we estimate these three integrals. For B1 we have

|f2(x)− f2(y)| = |(f(x)− fJ)ϕ(x)− (f(y)− fJ)ϕ(y)|
= |(f(x)− f(y))ϕ(x) + (f(y)− fJ)(ϕ(x)− ϕ(y))|
≤ |f(x)− f(y)|+ C r−1

j |x− y| |f(y)− fJ | ,

the term B2 gives

|f2(x)− f2(y)| = |(f(y)− fJ)(ϕ(x)− ϕ(y))| ≤ C r−1
J |x− y| |f(y)− fJ | ,

and for the last term B3 we get

|f2(x)− f2(y)| =
∣∣[f(x)− f(y) + f(y)− fJ ]ϕ(x)

∣∣ ≤ |f(x)− fJ | .
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It remains to estimate

r−2
J

∫
J

∫
J

|f(y)− fJ |2

|x− y|n−2+2α
dσ(x) dσ(y)

= r−2
J

∫
J

|f(y)− fJ |2
[∫

J

|x− y|2−n−2α dσ(x)

]
dσ(y)

≤ r−2
J

∫
J

|f(y)− fJ |2
∫ rJ

0

rn−1

rn+2α−2
dr

≤ Cr−2α
J

∫
J

|f(y)− fJ |2 dσ(y)

≤ Cr−2α+1−n

∫
J

∫
J

|f(y)− f(x)|2 dσ(x) dσ(y)

≤ C

∫
J

∫
J

|f(y)− f(x)|2

|x− y|n−1+2α
dσ(x) dσ(y)∫

x6∈J

∫
y∈ 3

4
J

r−2
J

|f(x)− f(y)|2

|x− y|n−3+2α
dσ(x) dσ(y)

≤ r−2
J

∫
y∈ 3

4
J

|f(y)− fJ |2
∫

x 6∈J

1

|x− y|n−3+2α
dσ(x) dσ(y)

≤ r−2
J dist

(
S \ J,

3

4
J
)3−2α−n

∫
y∈ 3

4
J

|f(y)− fJ |2 dσ(y)

≤ C

∫
J

∫
J

|f(y)− f(x)|2

|x− y|n−1+2α
dσ(x) dσ(y) .

We now consider the third part. We consider the Poisson kernel Pa(x) where
a ∈ QrI(x0) and x ∈ S \ 2

3
J, then

|∇aPa(x)| =
∣∣∣∣∇a

(
1− |a|2

|x− a|n

)∣∣∣∣ ≤ C1

|x− a|n
≤ C

|x− x0|n

because of |x − a| = |x − x0 + x0 − a| ≥
∥∥x− x| − |x0 − a|

∣∣ ≥ c|x − x0| if
a ∈ QrI(x0) and x ∈ S \ 2

3
J and thus

|∇Pf3(x)| ≤
∫

S

|∇Pa(x− y)| f3(y) dσ(y) ≤ C

∫
S\ 2

3
J

|f(y)− fJ |
|y − x0|n

dσ(y).

Hence,∫
QrI (x0)

|∇Pf3(x)|2
(
1− |x|2

)1−2α
dx

≤
(∫

QrI (x0)

(
1− |x|2

)1−2α
dx

)(∫
S\ 2

3
J

|f(x)− fJ |
|x− x0|n

dσ(x)

)2

≤ C rn+1−2α
I

(∫
S\ 2

3
J

|f(x)− fJ |
|x− x0|n

dσ(x)

)2

.
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This completes the proof.

Remark 4.7. For n = 2 the space D1 coincides with the space of analytic (i.e.
holomorphic) functions of bounded mean oscillation BMOA and hence BMOA
is contained in all Dp spaces with 0 < p < 1. We are not able to prove this
property in higher dimensions but we will use the norm of functions of bounded
mean oscillation (BMO) for estimations. A function f ∈ L2(S) is of bounded
mean oscillation, i.e. f ∈ BMO(S) if

sup
I∈S

1

|I|

∫
I

|f − fI | dσ with fI =
1

|I|

∫
I

f(x) dσ(x) < ∞. (4.1)

We define an equivalent norm to the standard BMO-norm.

Lemma 4.8. The standard BMO-norm (4.1) is equivalent to

sup
I∈S

(
1

|I|2

∫
I

∫
I

|f(x)− f(y)|2 dσ(x) dσ(y)

) 1
2

.

Proof. From the well-known John-Nirenberg theorem we get that the BMO-

norm (4.1) is equivalent to
(
supI∈S

1
|I|

∫
I
|f − fI |2 dσ

) 1
2 . It is easily seen that

1

|I|2

∫
I

∫
I

|f(x)− f(y)|2 dσ(x) dσ(y)

≤ 2

|I|2

(∫
I

∫
I

|f(x)− fI |2 dσ(x) dσ(y) +

∫
I

∫
I

|f(y)− fI |2 dσ(x) dσ(y)

)
≤ 4

|I|

∫
I

|f(x)− fI |2 dσ(x)

≤ 4 ‖f‖2
BMO .

On the other hand we have

1

|I|

∫
I

|f(x)− fI | dσ(x)

≤ 1

|I|2

∫
I

∫
I

|f(x)− f(y)| dσ(x) dσ(y)

≤ 1

|I|2

(∫
I

∫
I

1 dσ(x) dσ(y)

) 1
2
(∫

I

∫
I

|f(x)− f(y)|2 dσ(x) dσ(y)

) 1
2

≤
(

1

|I|2

∫
I

∫
I

|f(x)− f(y)|2 dσ(x) dσ(y)

) 1
2

.

We will also need the following result which shows why we are not able to
include the Dp(S) spaces in BMO but is a useful tool for norm estimations we
will do later on.
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Lemma 4.9. Let f ∈ Dp(S), then(
1

|I|

∫
I

|f(x)− fI | dσ(x)

)2

≤ C r
(n−2)(p−1)
I ‖f‖2

Dp
.

Proof. We estimate the equivalent BMO-norm:(
1

|I|

∫
I

|f(x)− fI | dσ(x)

)2

≤ 1

|I|2

∫
I

∫
I

|f(x)− f(y)|2 dσ(x) dσ(y)

=
|I|p−2

|I|p

∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−p
|x− y|n−p dσ(x) dσ(y)

≤ C r
(p−2)(n−1)+n−p
I

1

|I|p

∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y)

≤ C r
(n−2)(p−1)
I ‖f‖2

Dp
.

Now, we are able to prove Theorem 4.1.

Proof of Theorem 4.1. First, we assume

N = sup
I⊂S

1

|I|p

∫
Qh(x0)

|∇F (x)|2
(
1− |x|2

)p
dx

to be finite. We restrict F to Qh(x0) = B ∩Bh(x0). Now, F is also a harmonic
function in Qh(x0) with boundary values on ∂Qh(x0) = I ∪ T, where I is the
surface ball with center x0 and radius h and T = (∂Bh(x0) ∩ B). Moreover,
tr F |Qh(x0) (x) = tr F (x) for x ∈ I and thus∫

I

∫
I

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y) ≤

∫
I∪T

∫
I∪T

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y)

≤ C1

∫
Qh(x0)

|∇F (x)|2(1− |x|2)p dx

≤ C1 N h(n−1)p ≤ C N |I|p .

and thus

M = ‖f‖2
Dp

= sup
I⊂S

1

|I|p

∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y) ≤ C N. (4.2)

Now, let M = ‖f‖2
Dp

be finite. We estimate with Lemma 4.6∫
QrI

(x0)

|∇F |2(1− |x|)p dσ(x) ≤ C

(∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−p
dσ(x)dσ(y)

+ rn+p
I

(∫
S\ 2

3
J

|f(x)− fJ |
dx

|x− x0|n

)2
)

.
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For the first expression we immediately get∫
I

∫
I

|f(x)− f(y)|2

|x− y|n−p
dσ(x) dσ(y) ≤ C ‖f‖2

Dp
.

To estimate the second expression we consider a nested sequence of surface
balls Jk, where all surface balls have the same center x0 but differ by their radii:
J0 := J, i.e., rJ0 = rJ , and rJk

= 3k rJ . Obviously there exists a smallest number
nJ such that JnJ−1 & S but JnJ

k S and hence S j
⋃nJ

k=0

(
Jk \ Jk−1

)
, where

J−1 := ∅. We have∫
S\ 2

3
J

|f(x)− fJ |
dσ(x)

|x− x0|n

≤
nJ∑
k=0

∫
Jk \ Jk−1|f(x)− fJ |

dσ(x)

|x− x0|n

≤ C

nJ∑
k=0

[3krJ ]−n

∫
Jk

|f(x)− fJk
| dσ(x) + [3krJ ]−1|fJk

− fJ |

≤ C

rI

nJ∑
k=0

(
3−k[3krJ ]−(n−1)

∫
Jk

|f(x)− fJk
| dσ(x) + 3−k|fJk

− fJ |
)

≤ C

rI

nJ∑
k=0

(
3−k 1

|Jk|

∫
Jk

|f(x)− fJk
| dσ(x) + C

k∑
l=1

3−k|fJl
− fJl−1

|
)

≤ C

rI

nJ∑
k=0

(
3−k

|Jk|

∫
Jk

|f(x)− fJk
|dσ(x) + C

k∑
l=1

3−k

|Jl−1|

∫
Jl−1

|f(x)− fJl
| dσ(x)

)

≤ C

rI

nJ∑
k=0

(
3−k

|Jk|

∫
Jk

|f(x)− fJk
| dσ(x) + C

k∑
l=1

3−k|Jl|
|Jl−1‖Jl|

∫
Jl

|f(x)− fJl
| dσ(x)

)

≤ C

rI

nJ∑
k=0

(
3−k

|Jk|

∫
Jk

|f(x)− fJk
|dSx + C

k∑
l=1

3−k+n−1

|Jl|

∫
Jl

|f(x)− fJl
| dσ(x)

)

≤ C

rI

nJ∑
k=0

(
3−k 1

|Jk|

(∫
Jk

∫
Jk

|f(x)− f(y)|2 dσ(x) dσ(y)

) 1
2

+ C
k∑

l=1

3−k3n−1 1

|Jl|

(∫
Jl

∫
Jl

|f(x)− f(y)|2 dσ(x)dσ(y)

) 1
2

)
,

and by Lemma 4.9 we estimate

≤ C

rI

∞∑
k=0

(
3−k(3k+1rJ)(n−2)(p−1)/2‖f‖Dp+ C

k∑
l=1

3−k+n−1(3lrJ)(n−2)(p−1)/2 ‖f‖Dp

)
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hence∫
S\ 2

3
J

|f(x)− fJ |
dσ(x)

|x− x0|n
≤ r

((n−2)(p−1)−2)/2
I ‖f‖Dp

∞∑
k=0

1

3k
(1 + k 3n−1) ,

thus

rn+p
I

(∫
S\ 2

3
J

|f(x)− fJ |
dσ(x)

|x− x0|n

)2

≤ C r
(n−2)(p−1)−2+n+p
I ‖f‖2

Dp

≤ Cr
(n−1)p
I ‖f‖2

Dp
≤ C̃ |I|p ‖f‖2

Dp
.

and

N = sup
I⊂S

1

|I|p

∫
Qh(x0)

|∇F (x)|2
(
1− |x|2

)p
dx ≤ C̃‖f‖2

Dp
≤ C̃ M. (4.3)

Now, equations (4.2) and (4.3) show that M ≈ N and hence Theorem 4.1 is
proven.

5. Harmonic space H(Ω,Cl0,n)

Let Ω ⊂ Rm+1 be an open set. In this section we introduce the space of harmonic
Clifford valued functions H(Ω,Cl0,n) defined by

H(Ω,Cl0,n) =
{
u : Ω → Cl0,n : DDu = DDu = 0

}
.

If u =
∑

A uAeA, then it is clear that u ∈ H(Ω,Cl0,n) if and only if uA : Ω → R
is a harmonic function for all A ⊂ {1, . . . , n}. Then the space of left monogenic
functions on Ω is a subset of H(Ω,Cl0,n), that is M(Cl0,n) ⊂ H(Cl0,n). Now
we present some classical results in the context of harmonic Clifford valued
functions.

We recall the Poisson kernel

P (x, ζ) =
1− |x|2

|x− ζ|m+1
, (5.1)

then if u=
∑

A uAeA ∈ H(Cl0,n, B), we have u(x)=
∑

A

∫
B

uA(ζ)P (x, ζ)dσ(ζ)eA.
The following results are immediate and give us some idea on how to translate
results of the classic harmonic theory. The proof for scalar-valued functions
is given in [3]. The generalization to Clifford valued functions is easily seen
from the definition of the norm and the estimation (1.1). The first two are two
distortion theorems.
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Theorem 5.1 (Harnacks Inequality for the ball). Let u : B → Cl0,n be a
harmonic function on B, with uA positive, then

1− |x|
(1 + |x|)m

|u(0)|0 ≤ |u(x)|0 ≤
1 + |x|

(1− |x|)m
|u(0)|0

for all x ∈ B.

Theorem 5.2 (Harnacks Inequality). Suppose that Ω ⊂ Rm+1 is an open
and connected set and that K is a compact subset of Ω. Then there is a constant
C ∈ (1,∞) such that

1

C
≤ |u(y)|0
|u(x)|0

≤ C

for all points x and y in K and all harmonic function u ∈ H(Cl0,n, Ω) with uA

positive.

We denote S+ = {ζ ∈ S : ζm > 0}, S− = {ζ ∈ S : ζm < 0} and N =
(0, . . . , 0, 1) ∈ S the north pole of S.

Theorem 5.3 (Harmonic Schwarz Lemma). Let u : B → Cl0,n be a har-
monic function on B, |u| < 1 on B, and u(0) = 0. Then

|u(x)|0 ≤ 2
n
2 U(|x|N)

for every x ∈ B, where U = P [χS+−χS− ] is the Poisson integral of the function
χS+ − χS−. Equality holds for some 0 6= x ∈ B if and only if uA = U ◦ TA, TA

an orthogonal transformation of S, for each A ⊂ {1, . . . , n}.

Observation 5.4. Observe that 2
n
2 U(|x|N) =

∣∣∑
A U(|x|N)eA

∣∣
0
.

The following result is for the operator D.

Theorem 5.5. Let u : B → Cl0,n be a harmonic function on B, |u| < 1 on B.
Then

|Du(0)|0 ≤ (m + 1)
1
2 2

n+2
2

vol(Bm)

vol(Bm+1)
,

where vol(Bi) denotes the volume of the i-dimensional unit ball. Equality holds
if and only if uA = U ◦ TA, where TA is an orthogonal transformation of S, for
each A ⊂ {1, . . . , n}.

6. The spaces Dp(Cl0,n, B) and h2(Cl0,n, B)

We consider in this section the unit ball B ⊂ Rm, with m ≤ n. Now we give in
the next theorem a characterization of Dirichlet spaces Dp(Cl0,n, B), −1 < p,
defined by

Dp(Cl0,n, B) =

{
u ∈ H(Cl0,n, B) :

∫
B

|∇u|20
(
1− |x|2

)p
dV < ∞

}
,
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where∇u means now the vector gradient. Generalizing the results on Dp spaces
of scalar valued harmonic functions we get immediately the next theorem.

Theorem 6.1. Let u : B → Cl0,n be a harmonic function given by u =∑
A uAeA =

∑
A

(∑∞
k=0 pk,A

)
eA, where pk,A ∈ Hk(Rn). Let −1 < p. Then

the following statements are equivalent:

i) u belongs to the Dirichlet space Dp(Cl0,n, B);

ii) each uA : B → R belongs to the Dirichlet space Dp(B);

iii)
∑

A

∑∞
k=0 k1−p‖pk,A‖2

h2 < ∞.

Let 0 < p. We say that u ∈ H(Cl0,n) belongs to the Bergman space
bp(Cl0,n, B) if ‖u‖p

bp,Cl =
∫

B
|u|p0 dV < ∞ . Let α > 0. We define the Bloch

space Bα(Cl0,n, B) as the set of harmonic functions u : B → Cl0,n such that
supx∈B(1 − |x|)α|∇u(x)|0 < ∞. The following corollaries are an immediate
consequence of Theorem 2.11 and Theorem 6.1.

Corollary 6.2. The Dirichlet space D2(Cl0,n, B) coincides with the Bergman
space b2(Cl0,n, B). Moreover, if u∈b2(Cl0,n, B) is given by u=

∑
A

∑∞
k=0 pA,keA

where pA,k ∈ Hk(Rn), then

‖u‖2
b2,Cl = n vol(B)

∑
A

∞∑
k=0

1

n + 2k
‖pA,k‖2

2

for each A ⊂ {1, . . . , n}.

Corollary 6.3. Let α > 0. Then Bα(Cl0,n, B) ⊂
⋂

2α−1<p Dp(Cl0,n, B).

In a similar way we can prove that if p > −1 then
⋃

0<α< p+1
2

Bα(Cl0,n, B) ⊂
Dp(Cl0,n, B). Let f, g : S → Cl0,n be Clifford valued functions. We define an
inner product by (f, g) =

∫
S

fg dσ =
∑

A,B

∫
S

fAgB dσeAeB. This inner product

defines the right linear Hilbert space L2(Cl0,n, S). We say that f belongs to the

class L2(Cl0,n, S) if ‖f‖2,Cl =
√

(f, f) =
(∫

S
|f |20 dσ

) 1
2 < ∞. Observe that

‖fA‖L2 ≤ ‖f‖2,Cl ≤
∑

A

‖fA‖L2 . (6.1)

We define the Hardy space h2(Cl0,n, B) of harmonic Clifford valued functions
to be the class of harmonic functions u : B → Cl0,n for which ‖u‖h

2,Cl =

sup0≤r<1 ‖ur‖2,Cl < ∞.

Proposition 6.4. Let u : B → Cl0,n be a harmonic function given by u =∑
a uAeA. Then ‖ur‖2,Cl ≤ ‖us‖2,Cl for all 0 ≤ r < s < 1. Therefore if

u ∈ h2(Cl0,n, B), then

‖u‖h
2,Cl = lim

r→1−
‖ur‖2,Cl .
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Proof. Let 0 < r < s < 1. Then it is known from the classic real harmonic
case that ‖uA,r‖2 ≤ ‖uA,s‖2. By definition we have

‖ur‖2,Cl =
(∑

A

‖uA,r‖2
2

) 1
2 ≤

(∑
A

‖uA,s‖2
2

) 1
2

= ‖us‖2,Cl .

Proposition 6.5. Let f ∈ L2(Cl0,n), u = P [f ] that is

u(x) =
∑

A

∫
B

fA(ζ)P (x, ζ)dσ(ζ)eA ,

where P is the Poisson kernel given by (5.1). Then ‖ur‖2,Cl ≤ ‖f‖2,Cl for all
0 ≤ r < 1.

Proof. Let 0 < r < 1. It follows immediately from the real classical estimation
‖uA,r‖2 ≤ ‖fA‖2 in the harmonic case.

Theorem 6.6. The map f → P [f ] = u is a linear isometry of L2(Cl0,n, S)
onto h2(Cl0,n, B).

Proof. It is clear that the map is linear. By Proposition 6.5 we have

0 ≤ ‖f‖2,Cl − ‖ur‖2,Cl ≤ ‖f − ur‖2,Cl → 0 as r → 1−1

since for each A, ‖fA − uA,r‖ → 0 as r → 1−. Therefore by Proposition 6.4
‖f‖2,Cl = limr→1− ‖ur‖2,Cl = ‖u‖h

2,Cl . It is clear from (6.1) that u∈ h2(Cl0,n, B)

if and only if uA ∈ h2(B), then there exists fA ∈ L2 such that uA = P [fA]. We
define f =

∑
A fAeA. Then f ∈ L2(Cl0,n) and u = P [f ].

7. Primitives in Dp(Cl0,n, B)

Let u ∈ H(Cl0,n, B). We say that U ∈ H(Cl0,n, B) is a primitive of u if DU = u.
Then 0 = ∆U = DDU = Du, that is if u ∈ H(Cl0,n, B) admits a primitive, then
necessarily u is left monogenic. Each function U ∈ H(Cl0,n, B) is a primitive
of at least u = DU . Moreover if U is a primitive of u, then {U + f : f ∈
H(Cl0,n, B) and Df = 0 } is the set of primitives of u. Let S(Cl0,n) ⊂ H(Cl0,n)
define the space of primitives of S, that is

P (S) =
{
U ∈ H(Cl0,n) : DU = u ∈ S

}
.

Then P (S) = P (S ∩M(Cl0,n, B)) ⊂ P (M(Cl0,n, B)). In [9], Gürlebeck and
Malonek proved that P (M(Cl0,n, B)) 6= ∅, even more if u ∈ kerD∩L2(Ω), then
u admits a primitive U ∈ kerD ∩ W 1

2 (Ω), where W 1
2 stands for the functions

where all coordinates functions belong to the corresponding Sobolev space, that
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is we can choose as primitive a monogenic function. We want to characterize
the space of primitives of Dp(Cl0,n, B), that is

P
(
Dp(Cl0,n, B)

)
= P

(
Dp(Cl0,n, B) ∩M(Cl0,n, B)

)
.

We have a partial answer.

Theorem 7.1. Let 1 < p be fixed. Then

P (Dp(Cl0,n, B)) = P (Dp(Cl0,n, B) ∩M(Cl0,n, B)) = Dp−2(Cl0,n, B).

Proof. Let U, u ∈ H(Cl0,n, B) be with DU = u and given by U =
∑

A UAea,
u=
∑

A uaeA =
∑

A(
∑∞

k=0 pA,k)eA, where pA,k ∈ Hk(Rn) for each A ⊂ {1, . . . , n}.
Because of |DU |0 = |u|0 we get

|DU |20 = |u|20 =
∑

A

|uA|2 =
∑

A

∣∣∣ ∞∑
k=0

pA,k

∣∣∣2. (7.1)

Observe that we do not assure in (7.1) that |∇UA|2 = |
∑∞

k=0 pA,k|2. Let 0 <
R < 1 and −1 < p. Then BR ⊂ B, by (2.2), Lemma 2.4 and due to the uniform
convergence of the series (2.4) we have

∫
BR

|DU(x)|20
(
1− |x|2

)p−2
dV

=

∫
BR

∑
A

∣∣∣ ∞∑
k=0

pA,k(x)
∣∣∣2(1− |x|2)p−2

dV

= n vol(B)
∑

A

∫ R

0

rn−1
(
1− r2

)p−2
∫

S

∣∣∣ ∞∑
k=0

pA,k(rζ)
∣∣∣2 dσ(ζ) dr

= n vol(B)
∑

A

∫ R

0

rn−1
(
1− r2

)p−2
∫

S

∞∑
k=0

pA,k(rζ)
∞∑
l=0

pA,l(rζ) dσ(ζ) dr

= n vol(B)
∑

A

∫ R

0

rn−1
(
1− r2

)p−2
∞∑

k=0

∞∑
l=0

rk+l

∫
S

pA,k(ζ)pA,l(ζ) dσ(ζ) dr

= n vol(B)
∑

A

∞∑
k=0

∫ R

0

rn+2k−1(1− r2)p−2‖pA,k(ζ)‖2
2 dr .

We observe that if U ∈ Dp−2(Cl0,n, B) or if u ∈ Dp(Cl0,n, B) the limit R → 1−
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exists in the previous formula and we obtain by Abel’s Theorem∫
B

|DU(x)|20
(
1− |x|2

)p−2
dV

= n vol(B)
∑

A

∞∑
k=0

∫ 1

0

rn+2k−1
(
1− r2

)p−2‖pA,k(ζ)‖2
2 dr

= n vol(B)
∑

A

∞∑
k=0

Γ(n
2

+ k)Γ(p− 1)

Γ(n
2

+ k + p− 1)
‖pA,k(ζ)‖2

2 ,

and this last series converges if and only if
∑∞

k=0 k1−p‖pA,k(ζ)‖2
2 is a convergent

series for all A ∈ {1, . . . , n}.

We have the following relation between Dirichlet space and Bergman space.

Corollary 7.2. It holds:

P
(
b2(Cl0,n, B)

)
=P

(
b2(Cl0,n, B)∩M(Cl0,n, B)

)
= D0(Cl0,n, B)= D(Cl0,n, B).

Example 7.3. It is well known that the Cauchy kernel

E(x) =
1

vol(B)

x

|x|m+1
where x =

∑m
i=0 xiei

is left monogenic. We consider its modified translation Eζ(x) = vol(B)E(x− ζ)
with ζ ∈ S. Then

DEζ(x) = 2
∂Eζ(x)

∂x0

=
1

|x− ζ|2m+2
+

(m + 1)2(x0 − ζ0)
2

|x− ζ|2m+4
− (m + 1)2(x0 − ζ0)

4

|x− ζ|2m+6
.

We claim that Eζ belongs to Dp(Cl0,n, B) for each p > 3m + 3. For example,
we calculate∫

B

∣∣∣∣ (x0 − ζ0)
4

|x− ζ|2m+6

∣∣∣∣2 (1− |x|2)pdx =

∫
B

|x0 − ζ0|8

|x− ζ|4m+12

(
1− |x|2

)p
dx

=

∫
B

|x0 − 1|8

|x− e|4m+12

(
1− |x|2

)p
dx

where e = (1, 0 . . . , 0) ∈ S. Now we translate and change to spherical coordi-
nates∫

B

|x0 − 1|8

|x− e|4m+12

(
1− |x|2

)p
dx

=

∫
B(e1,1)

x8
0

(
1− |x + e|2

)p
|x|4m+12

dx

= Γ

∫ π

π
2

sinm−1 θ1 dθ1

∫ −2 cos θ1

0

r8 cos8 θ
(
− r2 − 2r cos θ1

)p
r4m+12

rmdr,
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where Γ =
∫ 2π

0
dθm

∫ π

0
sin θm−1dθm−1 · · ·

∫ π

0
sinm−2 θ2 dθ2 < ∞. Now∫ π

π
2

sinm−1 θ1dθ1

∫ −2 cos θ1

0

r8 cos8 θ(−r2 − 2r cos θ1)
p

r4m+12
rm dr

=

∫ π

π
2

sinm−1 θ1dθ1

∫ −2 cos θ1

0

cos8 θ(−r − 2 cos θ1)
p

r3m+4−p
dr ,

and this last integral exists if and only if 3m + 4 − p < 1, that is 3m + 3 < p.
A similar result is obtained with the other terms of DEζ(x). Then its primitive
set is a subset of Dp(Cl0,n, B) for each 3m + 1 < p.
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