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Impulsive Control for Stability of
Volterra Functional Differential Equations

Jianhua Shen and Jianli Li

Abstract. Consider the system of Volterra functional differential equations with
nonlinear impulsive perturbations of the form

x′(t) = F (t, x(·)), t > t∗, t 6= tk, x ∈ Rn

∆x = Ik(t, x(t−)), t = tk, k ∈ N.

Criteria on asymptotic stability are established for the above system using Lyapunov
like functions with Razumikhin techniques or Lyapunov like functionals. It is shown
that impulses given in the second equation do contribute to yield stability properties
even when the underlying differential equation system does not enjoy any (or same)
stability behavior. Some examples are also discussed to illustrate the results.
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1. Introduction

There are numerous examples of evolutionary systems which at certain instants
in time are subjected to rapid changes. In the simulations of such processes it
is frequently convenient and valid to neglect the durations of the rapid changes
and to assume that the changes can be represented by state jumps. Appropri-
ate mathematical models for processes of the type described above are so-called
systems with impulsive effects [5, 19, 21 ]. Significant progress has been made
in the theory of systems of impulsive differential equations in recent years [1, 2,
4, 5–7, 10, 21, 23, 26, 27, 29]. However, the corresponding theory for impulsive
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functional differential equations has yet not been fully developed. There are
some difficulties one must face in developing the corresponding theory of im-
pulsive functional differential equations. For example, in the classical theory of
functional differential equations, the fact that the continuity of a function x(t)
in Rn implies the continuity of the functional xt or x(·) in space C plays a key
role in establishing the existence of solutions of functional differential equations
[3, 13, 15] (for the symbol xt, see [13], and for x(·), see the Section 2 or [9,
14]). However, if a function x(t) is piecewise continuous, which is typical for
solutions of impulsive differential equations, then the functional xt or x(·) need
not be piecewise continuous [2, 7]. In fact, it can be discontinuous everywhere.
The same case appears in the Lyapunov functional V (t, xt) or V (t, x(·)) for es-
tablishing stability results [5, 18, 26, 27]. Thus, even if F (t, φ) is continuous in
its two variables, one cannot, in general, say anything about the composition
function F (t, xt) or F (t, x(·)) when x(t) is piecewise continuous. The same case
also appears in V (t, xt) or V (t, x(·)). Therefore, the study of impulsive differen-
tial equations is more difficult than that of non-impulsive differential equations.
Recently, existence and uniqueness results for impulsive functional differential
equations have been presented in [7, 17, 18, 24, 25]. The study on stability
theory of impulsive functional differential equations has also tended to focus on
special classes of problems such as linear impulsive delay differential equations or
delay differential-difference equations such as x′(t) = f(t, x(t), x(t−τ)) together
with impulses [1, 4, 10, 20, 29, 30]. As a result, little attention is ever made
about stability theory of impulsive functional differential equations in more gen-
eral form [18, 27]. In particular, the study of the problems of impulsive control
for stability, which is an important investigation area for impulsive differential
equations, remain neglected even for impulsive ordinary differential equations.
Here, the impulsive control for stability or, say, impulsive stabilization is pre-
sented in the sense that stability properties are caused by impulsive effects
even when the corresponding systems without impulses does not enjoy any (or
the same) stability behavior [18, 26]. In this paper, we shall establish some
criteria on (uniform) asymptotic stability for impulsive Volterra functional dif-
ferential equations using Lyapunov like functions with Razumikhin techniques
or Lyapunov like functionals. The results obtained for such equations show that
impulses do contribute to yield stability properties even when the underlying
continuous system does not enjoy any (or the same) stability behavior.

Recall that during the past decades the stability theory of finite and infi-
nite delay functional differential equations based on Lyapunov’s direct method
has received much attention. The earliest results on Lyapunov’s direct method
for such equations tended to be patterned on those for ordinary differential
equations with the norm in Rn replaced by the supremum norm in the contin-
uous functions space C (cf. Krasovskii [16]). Stimulated by the applications of
Krasovskii’s results, two different directions have taken shape. One is to im-
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prove the conditions of Krasovskii’s theorems, which is mainly directed toward
finding a good formulation for a replacement of the boundedness of vector fields.
The other one is to consider Lyapunov functions on R×Rn taking the place of
Lyapunov functionals on R × C. Such a method was due to Razumikhin [15],
which does not need the boundedness of vector fields and is somewhat more con-
venient in applications. Razumikhin techniques including its various variation
has also been widely used in the treatment of stability for various functional
differential equations (cf. [8, 9, 11, 12, 14, 22, 28]). It should be noted that
when applying Lyapunov functional V (t, xt) or V (t, x(·)) in its general form to
the stability analysis of impulse functional differential equations, one must face
some new difficulties as described above. In addition, the question arises as to
one how to fix the properties of V (t, xt) or V (t, x(·)) along the solutions of such
systems at certain instants in time when state jumps occur. To overcome the
difficulties mentioned before which are created actually by the special features
possessed in impulsive functional differential equations, when using a Lyapunov
like function V (> 0) we will allow V ′ to be positive along solutions of the equa-
tions but we also impose a bounded on the growth rate of V along solutions. In
such case, V probably increases along solutions between moments of impulses.
However, these allowable increases are counter-balanced by sufficient decreases
in V at each subsequent moment of impulses. When using a Lyapunov like
function, we will introduce a class of functionals ν∗0(·) so that one may use the
functions in ν∗0(·) to describe the impulsive perturbations.

2. Preliminaries

Let R = (−∞,∞),R+ = [0,∞). For x ∈ Rn, | · | denotes the Euclidean norm
of x, the ball S(H) of Rn is denoted by S(H) = {x ∈ Rn : |x| < H ≤ ∞}.
For t ≥ t∗ > α ≥ −∞, F (t, x(s)) : α ≤ s ≤ t or F (t, x(·)) is a Volterra type
functional (cf. [9, 14]), its values are in Rn and determined by t ≥ t∗ and
the values of x(s) on [α, t]. In the case when α = −∞, the interval [α, t] is
understood to be replaced by (−∞, t]. Then a system of impulsive Volterra
functional differential equations considered has the form

x′(t) = F (t, x(·)), t 6= tk, t > t∗, x ∈ Rn (2.1)

∆x = Ik(t, x(t
−)), t = tk, k ∈ N, (2.2)

where x′(t) denotes the right-hand derivative of x at t; N := {1, 2, . . . , },∆x :=
x(t) − x(t−), where x(t−) = lims→t−0 x(s). It is assumed that t∗ < tk < tk+1

with tk → ∞ as k → ∞, and Ik(t, x) : [t∗,∞) × Rn → Rn are some given
functions.

Let I ⊂ R be any interval. Define PC(I,Rn) = {x : I → Rn, x is continuous
everywhere except at the points t = tk ∈ I and x(t−k ), x(t+k ) = limt→tk+0 x(t)
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exist with x(t+k ) = x(tk)}. For any t ≥ t∗, PC([α, t],Rn) will be written as
PC(t). Define PCB(t) = {x ∈ PC(t) : x is bounded }. For any φ ∈ PCB(t),
the norm of φ is defined as

||φ|| = ||φ||[α,t] = sup
α≤s≤t

|φ(s)|.

For given σ ≥ t∗ and φ ∈ PCB(t), with eqs. (2.1) and (2.2), one associates an
initial condition of the form

x(t) = φ(t), α ≤ t ≤ σ. (2.3)

Definition 2.1. A function x(t) is called a solution corresponding to σ of the
initial value problem (2.1) – (2.3) if x : [α, β) → Rn (for some t∗ < β ≤ ∞) is
continuous for t ∈ [α, β)\{tk, k = 1, 2, . . .}, x(t+k ) and x(t−k ) exist and x(t+k ) =
x(tk), and if it satisfies (2.1) – (2.3). We denote by x(t, σ, φ) the solution of the
initial value problem (2.1) – (2.3).

We suppose that the following conditions (C1) – (C4) hold, so that the
initial value problem (2.1) – (2.3) has a unique solution (cf. [7, 25]). We also
assume that F (t, 0) ≡ 0, Ik(t, 0) ≡ 0 so that x(t) = 0 is a solution of (2.1) and
(2.2), which is called the zero solution.

(C1) F is continuous on [tk−1, tk) × PC(t), k = 1, 2, . . ., where t0 = t∗. For all
ϕ ∈ PC(t) and k ∈ N, the limit lim(t,φ)→(t−k ,ϕ) F (t, φ) = F (t−k , ϕ) exists.

(C2) F is locally Lipschitz in φ on each compact set in PCB(t). More precisely,
for every a ∈ [t∗, β) and every compact set G ⊂ PCB(t) there exists a
constant L = L(a,G) such that |F (t, ϕ(·)) − F (t, ψ(·))| ≤ L||ϕ − ψ||[α,t],
whenever t ∈ [t∗, a] and ϕ, ψ ∈ G.

(C3) Ik(t, x) ∈ C([t∗,∞) × Rn,Rn) for each k ∈ N, and there exists some
0 < H1 ≤ H such that x ∈ S(H1) implies that x + Ik(tk, x) ∈ S(H) for
all k ∈ N.

(C4) F (t, x(·)) ∈ PC([t∗,∞),Rn) for x ∈ PC([α,∞),Rn).

For any t ≥ t∗ and ρ > 0, let PCBρ(t) = {φ ∈ PCB(t) : ||φ|| < ρ}.

Definition 2.2. The zero solution of (2.1) and (2.2) is said to be

(S1) stable, if for any σ ≥ t∗ and ε > 0, there is a δ = δ(ε, σ) > 0 such that
ϕ ∈ PCBδ(σ) implies that |x(t, σ, ϕ)| ≤ ε for t ≥ σ.

(S2) uniformly stable, if the δ in (S1) is independent of σ.

(S3) asymptotically stable, if it is stable and there exists a δ = δ(σ) > 0 such
that ϕ ∈ PCBδ(σ) implies that |x(t, σ, ϕ)| → 0 as t→∞.

(S4) uniformly asymptotically stable, if it is uniformly stable and there exists
a δ > 0 such that for any ε > 0 there is a T = T (ε) > 0 such that σ ≥ t∗

and φ ∈ PCBδ(σ) imply that |x(t, σ, ϕ)| ≤ ε for t ≥ σ + T .
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We define the following Lyapunov like function and functional.

Definition 2.3. A function V (t, x) : [t∗,∞)×S(H) → R+ belongs to the class
ν0 if

1. V is continuous on each of the sets [tk−1, tk) × S(H) and for all x ∈
S(H), k ∈ N, the limit lim(t,y)→(t−k ,x) V (t, y) = V (t−k , x) exists.

2. V is locally Lipschitz in x and V (t, 0) ≡ 0.

Definition 2.4. A functional V (t, φ) : [t∗,∞)× PCB(t) → R+ belongs to the
class ν0(·) if

1. V is continuous on each of the sets [tk−1, tk) × PCB(t) and for all ϕ ∈
PCB(t), k ∈ N, the limit lim(t,φ)→(t−k ,ϕ) V (t, φ) = V (t−k , ϕ) exists.

2. V is locally Lipschitz in φ and V (t, 0) ≡ 0.

Definition 2.5. A functional V (t, φ) belongs to the class ν∗0(·) if V ∈ ν0(·) and
for any x ∈ PC([α,∞),Rn), V (t, x(·)) is continuous for t ≥ t∗.

Remark 2.6. The class ν0 is an analogue of Lyapunov functions as introduced
in [5, 6]. The class ν0(·) is an analogue of Lyapunov functionals. We will use re-
spectively these Lyapunov functions with Razumikhin technique and Lyapunov
functionals to establish impulsive control stability results. It is to be noted that
the class ν∗0(·) will play an important role in the application of the Lyapunov
functional method to impulsive functional differential equations. Since it is dif-
ficult to describe the impulsive perturbations in eq. (2.2) by using the general
functionals in the class ν0(·), one has to introduce the class ν∗0(·) so that it is
possible to use the functions in the class ν0 to describe the impulsive pertur-
bations. A function class which is similar to ν∗0(·) was introduced in [26]. It
should be pointed out that such a class ν∗0(·) is common in applications.

Let V ∈ ν0, for any (t, x) ∈ [tk−1, tk) × S(H), the right hand derivative of
V along the solution x(t) of (2.1) and (2.2) is defined by

D+V (t, x(t)) = lim sup
h→0+

1

h
{V (t+ h, x(t+ h))− V (t, x(t))} .

Let V ∈ ν0(·), for any (t, φ) ∈ [tk−1, tk)× PCB(t), the right hand derivative of
V along the solution x(t) of (2.1) and (2.2) is defined by

D+V (t, x(·)) = lim sup
h→0+

1

h
{V (t+ h, x(·))− V (t, x(·))} .

Let us define the following class of functions for later use:

K1 =
{
u ∈ C(R+,R+) | u(0) = 0, u(s) is strictly increasing in s

}
K2 =

{
u ∈ C(R+,R+)

∣∣∣∣ u(0) = 0, u(s) > 0 for s > 0,

u(s) is nondecreasing in s

}
K3 =

{
u ∈ C(R+,R+)|u(0) = 0, u(s) > 0 for s > 0

}
.
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3. Main Results

We shall establish, in this section, two theorems which provide sufficient con-
ditions for uniform asymptotic stability and asymptotic stability of the zero
solution of (2.1) and (2.2) by using Lyapunov like functions and functionals,
respectively. It should be pointed out that, in general, it is very difficult to
obtain a stability result similar to the first theorem by employing Lyapunov
functionals. In what follows, we assume that hypotheses (C1) – (C4) are satis-
fied.

Theorem 3.1. Assume that there exist functions a, b ∈ K1, c ∈ K2, V ∈ ν0, q ∈
K3 and P ∈ C(R+,R+) such that P (s) is strictly increasing with P (0) = 0,
P (s) > s for s > 0, and the following conditions are satisfied:

(i) a(|x|) ≤ V (t, x) ≤ b(|x|) for all (t, x) ∈ [α,∞)× S(H);

(ii) for any solution x(t) of (2.1) and (2.2), V (s, x(s)) ≤ P (V (t, x(t))) for
max{α, t− q(V (t, x(t)))} ≤ s ≤ t, implies that

D+V (t, x(t)) ≤ g(t)c(V (t, x(t))), t 6= tk,

where g : [t∗,∞) → R+, locally integrable.

(iii) for all k ∈ N and x ∈ S(H1),

V (tk, x+ Ik(tk, x)) ≤ hk(V (t−k , x)),

where hk ∈ C(R+,R+) with hk(s) ≤ P−1(s) for s ≥ 0 and k ∈ N, where
P−1 is the inverse of the function P .

(iv) supk∈N{tk − tk−1} < ∞, and there exists a constant A ≥ 0 such that for
all µ ∈ (0,∞) and k ∈ N,∫ µ

P−1(µ)

du

c(u)
−

∫ tk

tk−1

g(s)ds > A.

Then the zero solution of (2.1) and (2.2) is uniformly stable; moreover, it is
uniformly asymptotically stable if A > 0.

Proof. We first show uniform stability. Let ε > 0 and assume without loss of
generality that ε ≤ H1. Choose δ = δ(ε) > 0 so that δ < b−1(P−1(a(ε))) and
note that δ < ε. For σ ≥ t∗, φ ∈ PCBδ(σ), let x(t) = x(t, σ, ϕ) be the solution
of (2.1) and (2.2), where σ ∈ [tm−1, tm) for some m ∈ N, t0 = t∗. Then we have
for α ≤ t ≤ σ,

a(|x(t)|) ≤ V (t, x(t)) ≤ b(|x(t)|) ≤ b(δ) < P (b(δ)) < a(ε). (3.1)

Let [α, σ + β) be the maximal interval of existence of x(t). If β < ∞, then
by (3.1) there exists some t ∈ (σ, σ + β) satisfying |x(t)| > ε. We will prove
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that |x(t)| ≤ ε for t ∈ [σ, σ+ β), which in turn will imply that β = ∞ and that
the zero solution of (2.1) and (2.2) is thereby uniformly stable.

Suppose for the sake of contradiction that |x(t)| > ε for some t ∈ (σ, σ+β).
Let τ1 = inf{t ∈ (σ, σ + β)| |x(t)| > ε}. Then |x(t)| ≤ ε ≤ H1 for t ∈ [α, τ1),
and either |x(τ1)| = ε or |x(τ1)| > ε and τ1 = tk for some k. In the latter
case, |x(τ1)| ≤ H since condition (C3) implies that |x(τ1)| = |x(tk)| = |x(t−k ) +
Ik(tk, x(t

−
k ))| = |x(τ−1 ) + Ik(tk, x(τ

−
1 ))| ≤ H. Thus, in either case V (t, x(t)) is

defined for t ∈ [α, τ1]. For t ∈ [α, τ1], define

V (t) = V (t, x(t)). (3.2)

Then, for t ∈ [α, τ1] by condition (i) we have a(|x(t)|) ≤ V (t) ≤ b(|x(t)|),
specially, V (t) ≤ b(δ) < P−1(a(ε)) for t ∈ [α, σ]. Since V is locally Lipschitz
in x, we have, by condition (ii),

D+V (t) = lim sup
h→0+

1

h
[v(t+ h)− V (t)] ≤ g(t)c(V (t)) (3.3)

for all t 6= tk in (σ, τ1], whenever V (s) ≤ P (V (t)) for max{α, t−q(V (t))} ≤ s ≤ t.
Also, by condition (iii), we have

V (tk) ≤ hk(V (t−k )) ≤ P−1(V (t−k )), (3.4)

for all tk ∈ (σ, τ1].

Let τ2 = inf{t ∈ [σ, τ1]|V (t) ≥ a(ε)}. Since V (σ) < P−1(a(ε)) < a(ε) and
V (τ1) ≥ a(ε), it follows that τ2 ∈ (σ, τ1], and V (t) < a(ε) for t ∈ [α, τ2). We
claim that V (τ2) = a(ε) and that τ2 6= tk for any k. Clearly, we must have
V (τ2) ≥ a(ε) > 0. If τ2 = tk for some k, then 0 < a(ε) ≤ V (τ2) ≤ hk(V (τ−2 )) ≤
P−1(V (τ−2 )) < V (τ−2 ) ≤ a(ε) by (3.4), which is impossible. Thus, τ2 6= tk for
any k and that in turn implies V (τ2) = a(ε) since V (t) is continuous at τ2.

Now let us first consider the case where tm−1 ≤ σ < τ2 < tm. Let
τ3 = sup{t ∈ [σ, τ2]|V (t) ≤ P−1(a(ε))}. Since V (σ) < P−1(a(ε)), V (τ2) =
a(ε) > P−1(a(ε)), and V (t) is continuous on [σ, τ2], then τ3 ∈ (σ, τ2), V (τ3) =
P−1(a(ε)), and V (t) ≥ P−1(a(ε)) for t ∈ [τ3, τ2]. Therefore, for t ∈ [τ3, τ2]
and max{α, t − q(V (t))} ≤ s ≤ t, we have P−1(V (s)) ≤ P−1(a(ε)) ≤ V (t).
Then, by condition (ii), inequality (3.3) holds for all t ∈ (τ3, τ2]. Integrating
this differential inequality yields∫ V (τ2)

V (τ3)

ds

c(s)
≤

∫ τ2

τ3

g(s)ds ≤
∫ tm

tm−1

g(s)ds.

On the other hand, by condition (iv), we have∫ V (τ2)

V (τ3)

ds

c(s)
=

∫ a(ε)

P−1(a(ε))

ds

c(s)
>

∫ tm

tm−1

g(s)ds+ A ≥
∫ V (τ2)

V (τ3)

ds

c(s)
,
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which is our desired contradiction.

Alternatively, suppose that tk < τ2 < tk+1 for some k ≥ m. Then V (tk) ≤
hk(V (t−k )) ≤ P−1(V (t−k )) ≤ P−1(a(ε)) by (3.4). Similar to before, define τ3 =
sup{t ∈ [tk, τ2]|V (t) ≤ P−1(a(ε))}. Then τ3 ∈ [tk, τ2), V (τ3) = P−1(a(ε)), and
V (t) ≥ P−1(a(ε)) for t ∈ [τ3, τ2]. Applying exactly the same argument as before
yields a contradiction.

So in either case, we get a contradiction, which proves that the zero solution
of (2.1) and (2.2) is uniformly stable. Now we shall show that it is uniformly
asymptotically stable provided A > 0.

For ε = H1 find a δ of uniform stability such that if φ ∈ PCBδ(σ), then
|x(t, σ, φ)| ≤ H1 for all t ≥ α, where x(t) = x(t, σ, ϕ) is any solution of (2.1)
and (2.2) and σ ≥ t∗. Moreover, V (t, x(t)) ≤ b(|x(t)|) ≤ b(H1) for t ≥ α.

Let r > 0 be given and assume without loss of generality that r < H1. Set
M = M(r) = sup{c−1(s) |P−1(a(r)) ≤ s ≤ b(H1)}, and note that 0 < M <∞.
For a(r) ≤ l ≤ b(H1), we have P−1(a(r)) ≤ P−1(l) < l ≤ b(H1) and so

A <

∫ l

P−1(l)

ds

c(s)
≤M [l − P−1(l)],

for which we get P−1(l) < l − d, where d = A
M

. Let N = N(r) be the positive
integer such that a(r) + (N − 1)d < b(H1) ≤ a(r) +Nd. Let σ ∈ [tm−1, tm) for
some m ∈ N and set

mi = min{k ∈ N | tk − tmi−1
≥ q(a(r))}, i = 1, 2, . . . , N,

where we let m0 = m. Set τ = supk∈N{tk − tk−1}, then 0 < τ < ∞. Let
ni = ni(r), i = 1, 2, . . . , N , be the numbers of impulsive points tk in the intervals
(tmi−1

, tmi
). Since tk − tk−1 ≤ τ , then it is easy to see that tmi

− tmi−1
≤

(ni + 1)τ, i = 1, 2, . . . , N . Thus,

tmN
− tm0 ≤ Nτ + (n1 + . . .+ nN)τ. (3.5)

We now define T = T (r) = (N + n1 + . . . + nN)τ and will prove that
φ ∈ PCBδ(σ) implies that |x(t)| ≤ r for all t ≥ σ + T . Set V (t) as in (3.2) for
t ≥ α. Then V (t) ≤ b(H1) for t ≥ α. Given 0 < B ≤ a(r) and mj ≥ m we will
prove that if V (t) ≤ B for t ∈ [tmj−1

, tmj
), then V (t) ≤ B for t ≥ tmj

and if in
addition a(r) ≤ B ≤ b(H1), then V (t) ≤ B − d for t ≥ tmj

.

To prove the first part, suppose for the sake of contradiction that there
exists some t ≥ tmj

for which V (t) > B. Then let τ2 = inf{t ≥ tmj
|V (t) >

B}. Thus, τ2 ∈ [tk, tk+1) for some k ≥ mj, and V (t) ≤ B for t ∈ [tmj−1
, τ2).

Since V (tk) ≤ hk(V (t−k )) ≤ P−1(V (t−k )) ≤ P−1(B) < B, then τ2 ∈ (tk, tk+1).
Moreover, V (τ2) = B and V (t) ≤ B for t ∈ [tmj−1

, τ2].
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Let τ3 = sup{t ∈ [tk, τ2]|V (t) ≤ P−1(B)}. Since V (τ2) = B > P−1(B) ≥
V (tk), then τ3 ∈ [tk, τ2), V (τ3) = P−1(B), and V (t) ≥ P−1(B) for t ∈ [τ3, τ2].
Thus, for t ∈ [τ3, τ2] and max{α, t − q(V (t))} ≤ s ≤ t, we have P−1(V (s)) ≤
P−1(B) ≤ V (t) which implies that inequality (3.3) holds for all t ∈ (τ3, τ2], and
so ∫ V (τ2)

V (τ3)

ds

c(s)
≤

∫ τ2

τ3

g(s)ds ≤
∫ tk+1

tk

g(s)ds. (3.6)

On the other hand, by condition (iv), we have∫ V (τ2)

V (τ3)

ds

c(s)
=

∫ B

P−1(B)

ds

c(s)
>

∫ tk+1

tk

g(s)ds+ A >

∫ V (τ2)

V (τ3)

ds

c(s)
.

Then we get a contradiction proving the first.

Below we give the proof of the second part. Assume for the sake of con-
tradiction that there exists some t ≥ tmj

for which V (t) > B − d. Then
define τ2 = inf{t ≥ tmj

|V (t) > B − d} and let k ≥ mj be chosen so that
τ2 ∈ [tk, tk+1). Since a(r) ≤ B ≤ b(H1), then P−1(B) < B − d and so
V (tk) ≤ P−1(V (t−k )) ≤ P−1(B) < B − d. Thus, τ2 ∈ (tk, tk+1). Moreover,
V (τ2) = B − d and V (t) ≤ B for t ∈ [tk, τ2]. Define τ3 as before. Since
V (τ2) = B − d > P−1(B) ≥ V (tk), then τ3 ∈ [tk, τ2), V (τ3) = P−1(B) and
V (t) ≥ P−1(B) for t ∈ [τ3, τ2]. Thus, we obtain inequality (3.6) as before.
However, ∫ V (τ2)

V (τ3)

ds

c(s)
=

∫ B−d

P−1(B)

ds

c(s)
=

∫ B

P−1(B)

ds

c(s)
−

∫ B

B−d

ds

c(s)
. (3.7)

Since a(r) ≤ B ≤ b(H1), then P−1(a(r)) ≤ P−1(B) < B − d ≤ b(H1) and so
1

c(s)
≤M for B − d ≤ s ≤ B. Thus, from (3.7), we have∫ V (τ2)

V (τ3)

≥
∫ B

P−1(B)

ds

c(s)
−Md >

∫ tk+1

tk

g(s)ds+ A−Md ≥
∫ V (τ2)

V (τ3)

ds

c(s)
.

This is a contradiction, establishing the second part.

We now claim that for each i = 0, 1, 2, . . . , N, V (t) ≤ b(H1)− id for t ≥ tmi
.

Since V (t) ≤ b(H1) for t ∈ [α, tm0), then by setting B = b(H1) in our earlier
argument, we get V (t) ≤ b(H1)− d for t ≥ tm0 , which establishes the base case.
We now proceed by induction and assume V (t) ≤ b(H1) − jd for t ≥ tmj

for
some 1 ≤ j ≤ N − 1. Let B = b(H1)− jd, then B ≥ b(H1)− (N − 1)d ≥ a(r).
Since tmj

≤ tmj+1
− q(a(r)), then V (t) ≤ B for t ∈ [tmj+1

− q(a(r)), tmj+1
) and

so V (t) ≤ B − d = b(H1) − (j + 1)d for t ≥ tmj+1
. Thus, we have proved our

claim by induction.

In particular, we have V (t) ≤ b(H1) − Nd ≤ a(r) for t ≥ tmN
. Finally,

by (3.5) we see that V (t) ≤ a(r) for all t ≥ σ + T . The proof thereby is
complete.
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In Theorem 3.1, condition (iii) ensures that along solutions of (2.1) and
(2.2), the Lyapunov function must decrease at each impulse time. Condition (ii)
effectively imposes a bound on the growth rate of V along solutions through a
Razumikhin-type argument. Condition (iv) ensures that any possible growth
in V between impulses is more than offset by a reduction in V at impulses.
Stability results along this line for impulsive differential equations without delay
and impulsive functional differential equations with finite delay can be found in
[6, 18, 27].

The importance of Theorem 3.1 is mainly in its applicability to Volterra
functional differential equations that are not already stable but that can be
stabilized through the incorporation of impulses. The following is an illustrative
example.

Example. Consider the impulsive functional differential equation with infinite
delay

x′(t) = a(t)x(t) + b(t)x(t− r) +

∫ t

−∞
f(t, u− t, x(u))du, t ≥ 0 (3.8)

∆x = Ik(t, x(t
−)), t = tk, k ∈ N, (3.9)

where r > 0, a(t), b(t) ∈ C(R+) such that a(t) ≤ a, |b(t)| ≤ b, f(t, u, v) is
continuous on R+ × (−∞, 0]×R, Ik(t, x) ∈ C(R+ ×R,R), and |x+ Ik(tk, x)| ≤
γ|x| for all k ∈ N, where a, b, γ are some constants. Let the following conditions
hold:

(i) |f(t, u, v)| ≤ m(u)|v|, t ≥ 0, and
∫ 0

−∞m(u)du ≤M.

(ii) 0 < γ < 1, and there exist constant τ > 0 such that

tk+1 − tk ≤ τ < − ln γ

a+ bγ−1 +Mγ−1
, k ∈ N.

Then the zero solution of (3.8) and (3.9) is uniformly asymptotically stable.

In fact, we let V (t, x) = V (x) = x2

2
, hk(s) = h(s) = γ2s, c(s) = s. Then

V (x+ Ik(tk, x)) =
1

2
[x+ Ik(tk, x)]

2 ≤ 1

2
γ2x2 = h(V (x)).

From condition (ii) we may choose a constant A > 0 such that

tk+1 − tk ≤ − 2 ln γ + A

2(a+ bγ−1 +Mγ−1 + A)
, k ∈ N. (3.10)

From (i) we see that there exists a continuous function q : (0,∞) → (0,∞),

q(s) ≥ r for s > 0, q is non-increasing, such that
∫ −q(s)

−∞ m(u)du ≤ A
√

2s.
By Theorem 3.1, one can easily see that the zero solution is uniformly stable.
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Thus, without loss of generality, we may assume that ||x(t)||(−∞,t] ≤ 1. Let
P (s) = h−1(s). Then P (s) > s for s > 0. If V (s, x(s)) ≤ P (V (t, x(t))) and
max{−∞, t− q(V (t, x(t)))} ≤ s ≤ t, then we have |x(s)| ≤ γ−1|x(t)|, and so

V ′(t, x(t)) ≤ ax2(t) + |b(t)||x(t)||x(t− r)|+ |x(t)|
∫ t

−∞
m(v − t)|x(v)| dv

≤ ax2(t) + bγ−1x2(t) + |x(t)|
∫ t−q(V (t,x(t)))

−∞
m(v − t)|x(v)| dv

+ |x(t)|
∫ t

t−q(V (t,x(t)))

m(v − t)|x(v)| dv

≤ (a+ bγ−1)x2(t) + |x(t)|
∫ −q(V (t,x(t)))

−∞
m(u) du

+ γ−1x2(t)

∫ 0

−∞
m(u) du

≤ (a+ bγ−1 +Mγ−1)x2(t) + A|x(t)|
√

2V (t, x(t))

= (a+ bγ−1 +Mγ−1 + A)x2(t)

= g(t)c(V (t, x(t))),

where g(t) = 2(a + bγ−1 + Mγ−1 + A). From (3.10) we see that for all µ > 0
and k ∈ N,∫ µ

P−1(µ)

du

c(u)
−

∫ tk+1

tk

g(s) ds =

∫ µ

γ2µ

du

u
− 2

∫ tk+1

tk

(a+ bγ−1 +Mγ−1 + A) ds

= −2 ln γ − 2
(
a+ bγ−1 +Mcγ−1 + A

)
(tk+1 − tk)

≥ A.

Therefore, we may conclude from Theorem 3.1 that the zero solution of (3.8)
and (3.9) is uniformly asymptotically stable.

The following theorem shows that certain impulses may make a stable sys-
tem asymptotically stable.

Theorem 3.2. Let the function Φ ∈ C(R+,R+) be bounded and satisfy Φ ∈
L1(R+). Suppose that there exist functions Wi ∈ K1(i = 1 − 4), V1(t, x) ∈
v0, V2(t, φ) ∈ v∗0(·), and h ∈ K2 such that

(i) W1(|φ(t)|) ≤ V (t, φ(·)) ≤ W2(|φ(t)|) + W3

( ∫ t

α
Φ(t − s)W4(|φ(s)|) ds

)
,

where V (t, φ(·)) = V1(t, φ(t)) + V2(t, φ(·)) ∈ v0(·).
(ii) For any x ∈ S(H1), V1(tk, x + Ik(tk, x)) − V1(t

−
k , x) ≤ −µkh(V1(t

−
k , x)),

k ∈ N, where µk ≥ 0 with
∑∞

k=1 µk = ∞.
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(iii) For any solution x(t) of (2.1) and (2.2), the right hand derivative of
V (t, x(·)) along the solution satisfies D+V (t, x(·)) ≤ 0 and for any σ ≥ t∗

and r1 > 0, there exists r2 > 0 such that V (t, x(·)) ≥ r1 for t ≥ σ implies
that V1(t, x(t)) ≥ r2 for t ≥ σ.

Then the zero solution of (2.1) and (2.2) is uniformly stable and asymptotically
stable.

Proof. We first prove the uniform stability. For given ε > 0 (ε ≤ H1), we may
choose a δ = δ(ε) > 0 such that W2(δ) < W1(ε)/2 and W3(JW4(δ)) ≤ W1(ε)/2,
where J =

∫∞
0

Φ(u)du. For any σ ≥ t∗ and φ ∈ PCBδ(σ), let x(t) = x(t, σ, φ)
be the solution of (2.1) and (2.2). We will prove that

|x(t, σ, φ)| ≤ ε, t ≥ σ.

Let V1(t) = V1(t, x(t)), V2(t) = V2(t, x(·)) and V (t) = V (t, x(·))(= V1(t)+V2(t)).
Let σ ∈ [tm−1, tm) for some m ∈ N. Then by condition (iii), D+V (t) ≤ 0,
σ ≤ t < tm, tm+k−1 ≤ t < tm+k, k ∈ N. Thus, V (t) is non-increasing on the
intervals of the form [σ, tm), [tm+k−1, tm+k), k ∈ N. From condition (ii) we have
for all ti > σ,

V (ti) − V (t−i ) = V1(ti, x(t
−
i ) + Ii(ti, x(t

−
i ))) − V1(t

−
i , x(t

−
i )) ≤ 0. Therefore

V (t) is non-increasing on [σ,∞). Then we have for t ≥ σ

W1(|x(t)|) ≤ V (t) ≤ V (σ) ≤ W2(δ) +W3

(
W4(δ)

∫ t

α

Φ(t− s) ds
)

= W2(δ) +W3

(
W4(δ)

∫ t−α

0

Φ(u) du
)

≤ W2(δ) +W3

(
W4(δ)

∫ ∞

0

Φ(u) du
)

= W2(δ) +W3(JW4(δ))

≤ W1(ε).

This implies that |x(t)| ≤ ε for t ≥ σ, and so the zero solution of (2.1) and (2.2)
is uniformly stable.

To prove the asymptotic stability, it suffices to prove that limt→∞ x(t) = 0.
Let limt→∞ V (t) = r1. If r1 > 0, then condition (iii) implies that there is a
number r2 > 0 such that V1(t) ≥ r2 for t ≥ σ. Set r = infr2≤s≤W1(ε) h(s). Then
r > 0. From condition (ii) we have V1(ti) − V1(t

−
i ) ≤ −µih(V1(t

−
i )) ≤ −rµi ,

i = m,m+ 1, . . .. Since V (t) is non-increasing, it follows that

V (ti)−V (ti−1) ≤ V (ti)−V (t−i ) = V1(ti)−V1(t
−
i ) ≤ −rµi, i = m+1,m+2, . . . ,

and so

V (ti) ≤ V (tm)− r

i∑
j=m+1

µj → −∞, as i→∞.
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This is a contradiction. Thus, we have r1 = 0 which in turn implies that
limt→∞ x(t) = 0. The proof is complete.
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