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On the Asymptotic Growth of
Entire Monogenic Functions
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Abstract. In this paper we analyze the behavior of growth of entire monogenic
functions in higher dimensional Euclidean spaces. Generalizations of growth orders,
the maximum term and of the central index to Clifford analysis provide the basic
tools for our analysis. We obtain generalizations of some Valiron’s inequalities for
transcendental entire monogenic functions. Further to this an asymptotic relation
between the growth of a monogenic function and their iterated radial derivatives is
established.
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1. Introduction

In one variable complex analysis much effort has been done in the study of
the asymptotic growth of holomorphic and meromorphic functions during the
last century, starting for example with the famous works of A. Wiman [17],
G. Valiron [16], R. Nevanlinna [15] their students, and many others. Their
asymptotic analysis provided powerful tools to study complex partial differential
equations (see, e.g., [11, 10] among many others), so that this research domain
has emerged to be a field of central and vast interest within complex function
theory.
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Very quickly one observed that a number of the classical results carry over
relatively easily to the framework of several complex variables, in particular
many central parts of Wiman’s and Valiron’s theory, as illustrated for instance
in the textbook [10].

Another higher dimensional generalization of classical complex analysis is
Clifford analysis, which has been recognized to be a valuable counterpart to sev-
eral complex variables theory for tackling higher dimensional problems during
the last decades. Clifford analysis considers Clifford algebra valued functions
defined in open subsets of Rn+1 that satisfy higher dimensional generalizations
of the Cauchy-Riemann system. This approach opened the door to carry over
a number of classical and powerful theorems from one variable complex anal-
ysis to higher dimensions, such as for instance a Cauchy integral formula, an
argument principle and the whole residue and singularity theory. See for in-
stance [2, 5, 9, 12] among many other important contributions that point in
this direction.

However, as far as we know, relatively little effort has been done to estab-
lish analogies of the above indicated asymptotic results within the context of
Clifford analysis so far. In the very recent paper [1] some results concerning
the asymptotic growth of a particular subclass of Clifford holomorphic functions
that are built as series from a special family of particular polynomials have been
established. However, as the main intention in [1] was to describe certain special
Cannon sets of that special family of Clifford algebra valued functions, many of
the central questions concerning the asymptotic analysis remained untouched.

The aim of this paper is to fill in some of these gaps and to establish some
very first rudiments of a generalized Wiman-Valiron theory in the context of
Clifford analysis. Generalizations of growth orders, the maximum term and of
the central index to Clifford analysis provide the basic tools for our analysis.
We obtain generalizations of some Valiron’s inequalities for transcendental en-
tire monogenic functions. Further to this an asymptotic relation between the
maximum term of a Clifford holomorphic function and that of their iterated
radial derivatives will be established.

2. Preliminaries

We begin by introducing the basic notions and concepts. For detailed informa-
tion about Clifford algebras and their function theory we refer, for example, to
[2, 5] and [9].

2.1. Clifford algebras. By {e1, e2, . . . , en} we denote the canonical basis of the
Euclidean vector space Rn. The attached real Clifford algebra Cl0n is the free
algebra generated by Rn modulo the relation x2 = −‖x‖2e0, where x ∈ Rn and
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e0 is the neutral element with respect to multiplication of the Clifford algebra
Cl0n. In the Clifford algebra Cl0n the following multiplication rules hold:

eiej + ejei = −2δije0, i, j = 1, · · · , n,

where δij is the Kronecker symbol. A basis for the Clifford algebra Cl0n is given
by the set {eA : A ⊆ {1, · · · , n}} with eA = el1el2 · · · elr , where 1 ≤ l1 < . . .
< lr ≤ n, e∅ = e0 = 1. Each a ∈ Cl0n can be written in the form a =

∑
A aAeA

with aA ∈ R. Two examples of real Clifford algebras are the complex number
field C and the Hamiltonian skew field H.

The conjugation anti-automorphism in the Clifford algebra Cl0n is defined
by a =

∑
A aAeA, where eA = elrelr−1 · · · el1 and ej = −ej for j = 1, · · · , n, e0 =

e0 = 1. The linear subspace spanR{1, e1, . . . , en} = R ⊕ Rn ⊂ Cl0n is the so-
called space of paravectors z = x0 + x1e1 + x2e2 + · · · + xnen which we simply
identify with Rn+1. x0 =: Sc(z) is called the scalar part of the paravector z and
x := x1e1 + · · ·+ xnen =: Vec(z) its vector part.

A scalar product between two Clifford numbers a, b ∈ Cl0n is defined by
〈a, b〉 := Sc(ab) and the Clifford norm of an arbitrary a =

∑
A aAeA is ‖a‖ =

(
∑

A |aA|2)
1
2 . Any paravector z ∈ Rn+1\{0} has an inverse element in Rn+1

given by z−1 = z
‖z‖2 .

In order to present the calculations in a more compact form, the following
notations will be used, where m = (m1, . . . ,mn) ∈ Nn

0 is an n-dimensional
multi-index:

xm := xm1
1 · · ·xmn

n , m! := m1! · · ·mn!, |m| := m1 + · · ·+ mn.

By τ(i) we denote the multi-index (m1, . . . ,mn) with mj = δij for 1 ≤ j ≤ n.

2.2. Clifford analysis. One way to generalize complex function theory to
higher dimensional hypercomplex spaces is offered by the Riemann approach
which considers Clifford algebra valued functions defined in Rn+1 that are an-
nihilated by the generalized Cauchy-Riemann operator

D :=
∂

∂x0

+
n∑

i=1

ei
∂

∂xi

. (1)

If U ⊂ Rn+1 is an open set, then a real differentiable function f : U → Cl0n

is called left (right) monogenic or Clifford holomorphic at a point z ∈ U if
Df(z) = 0 (or fD(z) = 0). Functions that are left monogenic in the whole
space are also called left entire. The notion of left (right) monogenicity in Rn+1

provides indeed a powerful generalization of the concept of complex analyticity
to Clifford analysis. Many classical theorems from complex analysis could be
generalized to higher dimensions by this approach. We refer, e.g., to [2]. One
central tool is the generalized Cauchy integral formula.
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Let us denote by An+1 the n-dimensional surface “area” of the (n + 1)-
dimensional unit ball, and by q0(z) = z

‖z‖n+1 the Cauchy kernel function. Then

every function f that is left monogenic in a neighborhood of the closure D of a
domain D satisfies

f(z) =
1

An+1

∫
∂D

q0(z − w) dσ(w) f(w), (2)

where dσ(w) is the paravector-valued outer normal surface measure, i.e.,

dσ(w) =
n∑

j=0

(−1)jej d̂wj

with d̂wj = dw0 ∧ · · · ∧ dwi−1 ∧ dwi+1 ∧ · · · ∧ dwn.

It is important to mention that the set of left (right) monogenic functions
forms only a Clifford right (left) module for n > 1. Another important dif-
ference to classical complex function theory is that the ordinary powers of the
hypercomplex variable z are not monogenic. In the Clifford analysis setting,
the complex positive powers are substituted by the so-called Fueter polynomi-
als defined by

Pm(z) =
1

|m|!
∑

π∈perm(m)

zπ(m1)zπ(m2) · · · zπ(mn), (3)

where perm(m) denotes the set of all permutations of the sequence (m1, m2, . . . ,
mn), and zi := xi − x0ei for i = 1, . . . , n and P0(z) := 1. In this underlying
paper we prefer to work with the slightly modified Fueter polynomials

Vm(z) := m!Pm(z) (4)

which turns out to be more convenient in our calculations.

The negative power functions are generalized by the Cauchy kernel function
q0(z) and their partial derivatives

qm(z) =
∂m0+m1+···+mn

∂xm0
0 ∂xm1

1 · · · ∂xmn
n

q0(z). (5)

In view of the monogenicity, one can restrict to consider only multi-indices with
m0 = 0 for many applications. In Taylor- and Laurent expansion theorems,
these basic functions then take the same role as the ordinary powers do in
complex function theory.
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3. Order of growth of monogenic functions in Rn+1

The starting point for the following investigation is that monogenic functions
f : Rn+1 → Cl0n satisfy a maximum principle (cf. [2]). Therefore, the function

M(r, f) := M(r) := max
‖z‖=r

{‖f(z)‖}, r ≥ 0 ,

is well-defined and strictly monotonic increasing whenever f is non-constant.
Furthermore, by a direct verification we observe that M is a continuous function.

It is extremely well-known that a complex-analytic polynomial p(z) =∑N
n=0 anz

n grows asymptotically like |aN ||z|N . In particular, they exhibit the
asymptotic |p(z)| ≤ (1 + ε)|aN |rN . The standard monogenic Clifford algebra
valued polynomial functions satisfy very similarly.

Theorem 3.1 (Asymptotic growth of the monogenic polynomials).
Let P (z) =

∑N
|m|=0 Vm(z)am be a left monogenic polynomial. Then one can find

to every ε > 0 an r0 > 0 such that for all r = ‖z‖ ≥ r0

‖P (z)‖ ≤

(
(n− 1 + N)!

(n− 1)!N !
+ ε

)
‖aN‖rN , (6)

where N is an index with length N such that ‖aN‖ ≥ ‖am‖ for all |m| = N .

Proof. According to, e.g., [6] and [13] we know that

‖Pm(z)‖ ≤ ‖z‖|m|

m!
,

hence ‖Vm(z)‖ ≤ ‖z‖|m|. This leads to

‖P (z)‖ ≤
N∑

|m|=0

‖z‖|m|‖am‖

≤ ‖aN‖‖z‖N

( ∑
|m|=N

1 +
N−1∑
|m|=0

‖z‖|m|−N ‖am‖
‖aN‖

)

= ‖aN‖rN

(
(n− 1 + N)!

(n− 1)!N !
+ rN(z)

)
,

where we set

rN(z) :=
N−1∑
|m|=0

‖z‖|m|−N ‖am‖
‖aN‖

.
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For a sufficiently large r0 > 0 we observe that |rN(z)| < ε for all ‖z‖ > r0, and
therefore we infer that for all ‖z‖ > r0

‖P (z)‖ ≤
(

(n− 1 + N)!

(n− 1)!N !
+ |rN(z)|

)
‖aN‖rN

≤
(

(n− 1 + N)!

(n− 1)!N !
+ ε

)
‖aN‖rN .

As it is well known, the maximum principle enables one to immediately
set up a generalization of Cauchy’s inequality, see e.g. [2]. Using the following
inequalities from [14]

‖ql(z)‖‖z‖=r ≤
n(n + 1) · · · (n + |l| − 1)

r|l|+n
, (7)

which are proved to be the optimal upper bound estimate (cf. [3]), Cauchy’s
inequality can be formulated in the following optimal way:

Theorem 3.2. Assume that R > 0. Let B(0, R) := {z ∈ Rn+1 | ‖z‖ ≤ R}.
Suppose that g : B(0, R) → Cl0n is left monogenic with the Taylor expansion
g(z) :=

∑+∞
|l|=0 Vl(z)al. Then for all 0 < r < R and all indices l ∈ Nn

0

‖al‖ ≤ M(r)
n(n + 1) · · · (n + |l| − 1)

l! r|l|
. (8)

This follows directly by applying the estimate (7) and the maximum prin-
ciple on the well-known representation formula for the Taylor coefficients

al =
1

l!An+1

∫
∂B(0,r)

ql(y)dσ(y)g(y). (9)

Applying these inequalities to (9), then one arrives immediately at the stated
result. ¿From Cauchy’s inequality the generalization of the classical Liouville
theorem (cf. [4], [7]), stating that every left entire monogenic function that is
bounded in Rn+1 is a constant, can be deduced directly.

Cauchy’s inequality permits to also deduce the following more general ver-
sion of Liouville’s theorem.

Theorem 3.3. Suppose that g : Rn+1 → Cl0n is left entire (i.e., left monogenic
in the whole space Rn+1). If there exists an index s ∈ Nn

0 with |s| > 0 satisfying

lim inf
r→∞

M(r)

r|s|
= L < ∞, (10)

then

g(z) =

|s|∑
|l|=0

Vl(z)al. (11)
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Proof. For a sequence (ri)i with ri →∞ we infer by (10) that

M(ri)

r
|s|
i

≤ L + 1. (12)

Applying Cauchy’s inequality on the Taylor coefficients al of the function g(z) =∑∞
|l|=0 Vl(z)al in combination with (12) leads to

‖al‖ ≤
1

l!
n(n + 1) · · · (n + |l| − 1)(L + 1)r

|s|−|l|
i ,

from which follows that al = 0 for all l with |l| > |s|.

Remark. We observe that the expression

log(M(r, f))

log(r)
(13)

remains bounded if and only if f is a monogenic polynomial, i.e. a function
that can be written in the form f(z) =

∑+s
|l|=0 Vl(z)al, where s is a finite non-

negative integer. By (13) we thus have characterized monogenic polynomials
by the property of asymptotic growth.

Next we proceed to introduce the notion of the order of growth of monogenic
functions. To this end we first introduce the plus logarithm (cf. e.g. [10]).

Definition 3.4. Let α ≥ 0. Then the plus logarithm is said to be

log+(α) := max{0, log(α)}. (14)

In the same way as in the planar case (see [10]) one also may introduce
order of growth for the hypercomplex case (see also [1]).

Definition 3.5. Let g : Rn+1 → Cl0n be a left entire function. Then

ρ(g) := lim sup
r→∞

log+(log+ M(r))

log(r)
, 0 ≤ ρ ≤ ∞ , (15)

is called the order of growth of the function g. We further introduce

λ(g) := lim inf
r→∞

log+(log+ M(r))

log(r)
, 0 ≤ λ ≤ ∞ , (16)

as the inferior order of growth of g. If ρ = λ, then we say that g is a function
of regular growth. If ρ > λ then g is said to be of irregular growth.
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Let us start with discussing some particular examples which play a funda-
mental role in Clifford analysis. We begin by looking at the simplest case where
P (z) is an arbitrary left monogenic polynomial, i.e., there exist Clifford numbers
an ∈ Cl0n and N ∈ N0 such that P (z) =

∑N
|n|=0 Vn(z)an. From Theorem 3.1

we know that

‖P (z)‖ ≤

(
(n− 1 + N)!

(n− 1)!N !
+ ε

)
‖aN‖rN ,

where N is the index of length N for which ‖aN‖ ≥ ‖am‖ for all |m| = N ,
with an arbitrarily small ε > 0 for r sufficiently large. Thus, it follows with
C(N) :=

(
(n−1+N)!
(n−1)!N !

+ ε
)
‖aN‖ that

lim
r→∞

log+(log+(M(r, P ))

log(r)
≤ lim

r→∞

log+(log+(C(N)rN)

log(r)
= 0 .

Thus, all monogenic polynomials satisfy ρ(P ) = λ(P ) = 0, like in the complex
case.

In the classical case, the exponential function has growth order equal to 1.
We shall now see that the different monogenic generalizations considered in
[2, 5, 8] turn out to have the same growth behavior.

The monogenic plane wave function from [5]

P (m, z) := (1 + im)e−x0ei〈m,x〉, (17)

where m is an arbitrary fixed vector from the (n − 1)-dimensional unit sphere
Sn := {x ∈ Rn | ‖x‖ = 1}, is left entire and satisfies max‖z‖=r ‖P (m, z)‖ =
‖1 + im‖er. Hence, for r > 1 we readily obtain

lim
r→∞

log+
(
log+(M(r, P (m, z))

)
log(r)

= lim
r→∞

log+
(
log+(‖1 + im‖) + r

)
log r

= 1,

i.e., ρ(P (m, z)) = λ(P (m, z)) = 1 for all m ∈ Sn.

Also the previously introduced monogenic generalization from [2, p. 117]

g(z) = exp(x0, x1, . . . , xn)

= ex1+···+xn

(
cos(x0

√
n)− 1√

n
(e1 + · · ·+ en) sin(x0

√
n)

)
satisfies ‖g(z)‖ = ex1+···+xn ≤ enr. On the other hand we know that there must
be a positive real number 0 < c ≤ n with max‖z‖=r ‖g(z)‖ ≥ ecr. The constant c
needs to be positive, otherwise we would have max‖z‖=r ex1+···+xn = 1 which
would be wrong. Hence,

lim
r→∞

log+
(
log+(M(r, g))

)
log(r)

= lim
r→∞

log+
(
log+(ecr)

)
log(r)

= 1,
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with 0 < c ≤ n, so that we get again ρ(g) = λ(g) = 1, analogously to the
classical case of dealing with the complex analytic exponential function.

Also the very recently introduced Rn+1-valued multiperiodic exponential
function from [8] fits within this scheme. To leave it simple, let us consider this
function in the four-dimensional quaternionic case, where it has the representa-
tion

EXP(x0, x1, x2, x3) = Exp0 +e1 Exp1 +e2 Exp2 +e3 Exp3 ,

where

Exp0(x0, x1, x2, x3)

= ex0

(
cos
( x1√

3

)
cos
( x2√

3

)
cos
( x3√

3

)
− sin

( x1√
3

)
sin
( x2√

3

)
sin
( x3√

3

))
Exp1(x0, x1, x2, x3)

= ex0

√
3

3

(
sin
( x1√

3

)
cos
( x2√

3

)
cos
( x3√

3

)
+ cos

( x1√
3

)
sin
( x2√

3

)
sin
( x3√

3

))
Exp2(x0, x1, x2, x3)

= ex0

√
3

3

(
cos
( x1√

3

)
sin
( x2√

3

)
cos
( x3√

3

)
+ sin

( x1√
3

)
cos
( x2√

3

)
sin
( x3√

3

))
Exp3(x0, x1, x2, x3)

= ex0

√
3

3

(
sin
( x1√

3

)
sin
( x2√

3

)
cos
( x3√

3

)
+ cos

( x1√
3

)
cos
( x2√

3

)
sin
( x3√

3

))
.

By a direct computation one arrives at
√

3

3
er ≤ max

‖z‖=r
‖EXP(x0, x1, x2, x3)‖ ≤ er,

hence, once more we obtain,

1 = lim
r→∞

log
(
log
(√

3
3

er
))

log(r)
≤ lim

r→∞

log+
(
log+ M(r, EXP)

)
log(r)

≤ lim
r→∞

log
(
log(er)

)
log(r)

= 1 .

After the discussion of these particular examples, let us now return to the
more general framework. As a consequence of Cauchy’s integral formula we can
establish

Theorem 3.6. Let g be a left entire function in Rn+1. By gi we denote the
function gi := ∂

∂xi
g and Mi(r) := max‖z‖=r{‖gi(z)‖}, where r > 0 and i ∈

{0, . . . , n}. Then
ρ(g) = ρ′(g) and λ(g) = λ′(g), (18)
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where

ρ′(g) := lim sup
r→∞

log+
(
log+(M ′(r))

)
log(r)

, λ′(g) := lim inf
r→∞

log+
(
log+(M ′(r))

)
log(r)

,

for M ′(r) := maxi=0,1,...,n{Mi(r)}.

Proof. Let us consider an arbitrary rectifiable curve from the origin to z. Then
g(z) = g(0) +

∫ 1

0

∑n
i=0 xi gi(tz) dt. For z ∈ Rn+1 with ‖z‖ = r we get

‖g(z)‖ ≤ ‖g(0)‖+ r
n∑

i=0

Mi(r) ≤ ‖g(0)‖+ r(n + 1)M ′(r).

Therefore we have M(r) ≤ ‖g(0)‖ + r(n + 1)M ′(r). Applying some properties
of log+ we obtain

log+(M(r)) ≤ log+(‖g(0)‖) + log+(r(n + 1)) + log+(M ′(r)) + log(2),

which leads to ρ(g) ≤ ρ′(g) and λ(g) ≤ λ′(g). To show the inequality in the
other direction, we apply on gi Cauchy’s integral formula:

gi(z) =
1

An+1

∫
‖ζ−z‖=R−r

qτ(i)(ζ − z)dσ(ζ)g(ζ). (19)

Applying the estimate (7) on (19) we hence obtain

‖gi(z)‖ ≤ 1

An+1

∫
‖ζ−z‖=R−r

n

(R− r)n+1
M(R)dS

from which we then may infer Mi(r) ≤ n
(R−r)

M(R), in particular for M ′(r) :=

maxi=0,1,...,n{Mi(r)} we have

M ′(r) ≤ n

(R− r)
M(R). (20)

Setting R = 2r in (20) we get M ′(r) ≤ n
r
M(2r). Thus,

log+ M ′(r) ≤ log+ M(2r) + log+
(n

r

)
.

For what follows we may assume without loss of generality that r > n. Thus,
log+ M ′(r) ≤ log+ M(2r). Hence,

log+
(
log+ M ′(r)

)
log(r)

≤
log+

(
log+ M(2r)

)
log(r)

=
log+

(
log+ M(2r)

)
log(2r)

log(2r)

log(r)
.

Thus, we have

log+
(
log+ M ′(r)

)
log(r)

≤
log+

(
log+ M(2r)

)
log(2r)

(
log 2

log(r)
+ 1

)
from which we can infer directly that ρ(g) ≥ ρ′(g) and λ(g) ≥ λ′(g).
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Remark. Computing the growth order ρ(f) resp. λ(f) of a monogenic func-
tion f , then we automatically know the growth order of the maximum of all its
partial derivatives which is the same.

Notice that Cauchy’s integral formula was the fundamental ingredient to es-
tablish this result. It is thus indeed indispensable to work in classes of functions
that are in the kernel of a differential operator that satisfy a Cauchy type inte-
gral formula. The class of monogenic functions provides us with the canonical
and easiest example being endowed with this property.

4. Central indices of an entire monogenic function in Rn+1

Take a left entire function g(z) =
∑+∞

|l|=0 Vl(z)al. If g is transcendental, i.e.,

infinitely many al 6= 0, then lim|l|→∞ ‖al‖r|l| = 0 if one assumes r to be fixed.
Thus, the following expression is well-defined.

Definition 4.1. Let g : Rn+1 → Cl0n be a left entire function and let r > 0 be
a fixed real. Then the associated maximum term is said to be

µ(r) := µ(r, g) := max
|l|≥0

{
‖al‖r|l|

}
. (21)

We further define central indices.

Definition 4.2. Let g(z) =
∑+∞

|l|=p Vl(z)al be a left entire function. For r > 0

the index (or the indices) m with maximal length |m| with µ(r) = ‖am‖r|m| is
(are) called central index (indices) which shall be denoted by ν(r) = ν(r, g) =
m. By ν(0) we denote the indices l which satisfy |l| = p.

In a similar way we also can introduce these notions for monogenic poly-
nomials. For a monogenic polynomial p(z) =

∑|N|
|l|=0 Vl(z)al, we observe that

µ(r) = ‖aN‖r|N| (where N is (are) the index (indices) of length N satisfying
‖aN‖ ≥ ‖am‖ for all |m| = N) and ν(r) = N, provided r is sufficiently large.

The case dealing with transcendental functions is more complicated. We
show

Theorem 4.3. Assume that g : Rn+1 → Cl0n is a left entire transcendental
function. Then

1. µ(r) increases for r ≤ r0 strictly monotonic and limr→∞ µ(r) = ∞;

2. |ν(r)| increases monotonic and limr→∞ |ν(r)| = ∞. Furthermore, |ν(r)|
is stepwise constant.
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Proof. Ad 1. Since g is not a constant function, we can infer that there exists
an r0 > 0 such that |ν(r)| ≥ 1 for r ≥ r0. From the definition we can further
conclude that for R > r ≥ r0

µ(r) = ‖aν(r)‖r|ν(r)| < ‖aν(r)‖R|ν(r)| ≤ ‖aν(R)‖R|ν(R)| = µ(R),

thus, µ(r) is strictly monotonic increasing.

Now we consider

lim inf
r→∞

log+(µ(r))

log(r)
≥ lim inf

r→∞

log(‖al‖r|l|)
log(r)

= lim inf
r→∞

log ‖al‖+ |l| log(r)

log(r)

= lim inf
r→∞

(
log ‖al‖
log(r)

+ |l|

)
= |l| ∀ l ∈ Nn

0 .

Since g is a transcendental function, i.e., infinitely many al 6= 0, it follows that

lim inf
r→∞

log+(µ(r))

log(r)
= ∞,

i.e., µ(r) →∞ for r →∞.

Ad 2. For r < R we have the two estimates

‖aν(R)‖R|ν(R)| ≥ ‖aν(r)‖R|ν(r)|

‖aν(r)‖ r|ν(r)| ≥ ‖aν(R)‖r|ν(R)|

from which we infer that (
R

r

)|ν(R)|

≥
(

R

r

)|ν(r)|

.

Thus, |ν(r)| is monotonic increasing.

From lim|l|→∞ al = 0 we infer that there is a positive constant C such that
µ(r) = ‖aν(r)‖r|ν(r)| ≤ Cr|ν(r)| from which

log+(µ(r))

log(r)
≤ log(C)

log(r)
+ |ν(r)|

follows. From

lim
r→∞

log+(µ(r))

log(r)
= ∞

we conclude further that limr→∞ |ν(r)| = ∞. Since ν(r) ∈ Nn
0 and since |ν(r)|

tends monotonic to infinity, |ν(r)| has to be stepwise constant having at most
a countable number of discontinuities.
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5. Generalizations of some theorems from Valiron
to Clifford analysis

In this section we generalize some classical theorems from Valiron to Clifford
analysis.

Theorem 5.1. Suppose that g : Rn+1 → Cl0n is a left entire transcendental
function with the property that its first Taylor coefficient a0 6= 0. Then

log+(µ(r))− log ‖a0‖ =

∫ r

0

|ν(t)|
t

dt. (22)

Proof. From the hypothesis we know that g(z) =
∑+∞

|l|=0 Vl(z)al where infinitely

many al 6= 0, among them the first coefficient a0 = g(0).

First we assume without loss of generality that g(0) = 1. If 0 = t0 < t1 <
t2 < . . . are the discontinuities of |ν(r)|, then we can infer for tj < t < tj+1

that µ(t) = ‖al‖t|l| with a fixed l ≡ ν(t). Furthermore, µ′(t) = |l|‖al‖t|l|−1 =
|ν(t)|

t
µ(t). Thus, in an interval [0, r] it holds excepted at a finite number of points

d

dt

{
log(µ(t))

}
=

µ′(t)

µ(t)
=
|ν(t)|

t
.

Since µ(t) is a continuous function, which can be proved in analogy as [10,
Satz 4.2(b)], relying on Theorem 4.3, we can apply the main theorem of differ-
ential and integral calculus:

log(µ(r)) = log(µ(r))− log(µ(0)) =

∫ r

0

d

dt

{
log(µ(t))

}
dt =

∫ r

0

|ν(t)|
t

dt .

From Cauchy’s inequality for monogenic functions (Theorem 3.2) we obtain
immediately the estimate

µ(r) ≤ M(r)
n(n + 1) · · · (n + |ν(r)| − 1)

ν(r)!
, (23)

where ν(r) is one central index.

Now we want to prove an estimate in the opposite direction. The following
theorem provides a generalization of one of the classical Valiron theorems to
Clifford analysis:

Theorem 5.2. If g : Rn+1 → Cl0n is a left entire function, then for all
0 < r < R

M(r) ≤ µ(r)

[
|ν(R)|(1 + |ν(R)|)n−1 +

R

R− r

]
. (24)
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Proof. The function g is left entire, thus it can be represented by g(z) =∑+∞
|l|=0 Vl(z)al where infinitely many al 6= 0, since g is transcendental. From the

maximum modulus theorem for monogenic functions we infer that for 0 < r < R

M(r) ≤
+∞∑
|l|=0

‖al‖r|l|

=

|ν(R)|−1∑
|l|=0

‖al‖r|l| +
+∞∑

|l|=|ν(R)|

‖al‖r|l|

≤
|ν(R)|−1∑
|l|=0

µ(r) +
+∞∑

|l|=|ν(R)|

‖al‖r|l|.

(25)

In view of

|ν(R)|−1∑
|l|=0

1 =
∑
|l|=0

1 +
∑
|l|=1

1 + · · ·+
∑

|l|=|ν(R)|−1

1

= 1 +
((n− 1) + 1)!

(n− 1)! 1!
+ · · ·+ [(n− 1) + (|ν(R)− 1)]!

(n− 1)!(|ν(R)| − 1)!

≤ |ν(R)|
[
[(n− 1) + |ν(R)| − 1]!

(n− 1)!(|ν(R)| − 1)!

]
where we use that for all n ≥ 1 the inequality

(n− 1 + k)!

(n− 1)! k!
≤ (n− 1 + (k + 1))!

(n− 1)!(k + 1)!

holds, which itself can be verified by a straightforward induction over k. Further,

|ν(R)|
[
[(n− 1) + |ν(R)| − 1]!

(n− 1)!(|ν(R)| − 1)!

]
= |ν(R)|

[
(|ν(R)|+ n− 2)(|ν(R)|+ n− 3) · · · (|ν(R)|+ 1)|ν(R)|

(n− 1)!

]
= |ν(R)|

[
|ν(R)|+ n− 2

n− 1
· |ν(R)|+ n− 3

n− 2
· · · |ν(R)|+ 1

2
· |ν(R)|

1

]
≤ |ν(R)|

[(
1 +

|ν(R)|
n− 1︸ ︷︷ ︸

≤1+|ν(R)|

)(
1 +

|ν(R)|
n− 2︸ ︷︷ ︸

≤1+|ν(R)|

)
· · ·
(

1 +
|ν(R)|

1︸ ︷︷ ︸
=1+|ν(R)|

)]

≤ |ν(R)|
[
(1 + |ν(R)|)n−1

]
.
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Inserting these results into (25) leads to

M(r) ≤ µ(r)|ν(R)|
[
(1 + |ν(R)|)n−1

]
+

+∞∑
|l|=|ν(R)|

‖al‖r|l|
‖aν(r)‖r|ν(r)|R|l+ν(R)|

‖aν(R)‖r|ν(R)|R|l+ν(R)|

= µ(r)|ν(R)|
[
(1 + |ν(R)|)n−1

]
+ µ(r)

+∞∑
|l|=|ν(R)|

‖al‖R|l|R|ν(R)|r|l|

‖aν(R)‖R|ν(R)|R|l|r|ν(R)|

≤ µ(r)|ν(R)|
[
(1 + |ν(R)|)n−1

]
+ µ(r)

+∞∑
|l|=|ν(R)|

( r

R

)|l|−|ν(R)|

= µ(r)

[
|ν(R)|

[
(1 + |ν(R)|)n−1

]
+

R

R− r

]
.

In complex analysis G. Valiron has proved that an entire complex-analytic
function g of finite order shows the asymptotic behavior log(M(r))∼ log(M ′(r)),
where M ′ is the maximum modulus of the derivative. The classical proof is
based on the fact that one has the relation µ(r) ≤ M(r) for complex-analytic
function. In the framework of working with Clifford algebra valued monogenic
Taylor series built with the Fueter polynomials, we have been so far only able to
establish an estimate of the form µ(r) ≤ n(n+1)···(n+|ν(r)|−1)

ν(r)!
M(r) for a central in-

dex ν(r) as a consequence of Cauchy’s inequalities. Notice that the estimate (7)
has been proven to be sharp. Adapting the classical methods based on Cauchy’s
inequality to the higher dimensional case provides us only with a slightly weaker
result in the Clifford analysis setting. First we show

Proposition 5.3. For a left entire function g : Rn+1 → Cl0n of order ρ and
inferior order λ set

ρ1 := lim sup
r→∞

log+ log+ µ(r)

log(r)
, ρ2 := lim sup

r→∞

log+ |ν(r)|
log(r)

(26)

λ1 := lim inf
r→∞

log+ log+ µ(r)

log(r)
, λ2 := lim inf

r→∞

log+ |ν(r)|
log(r)

. (27)

Then ρ ≤ ρ1 = ρ2 and λ ≤ λ1 = λ2.

Proof. The proof that ρ1 = ρ2 and λ1 = λ2 can be done in complete analogy
to the complex case presented in [10, Satz 4.5]. Hence we omit this part.

Let us now show that ρ ≤ ρ1. Without loss of generality we may restrict to
consider the case where ρ1 < ∞, since the assertion is trivial in the remaining
case where ρ1 = ∞. Inserting in particular r = R

2
into Theorem 5.2, leads to

M(r) ≤ µ(r)
[
|ν(2r)|[1 + |ν(2r)|]n−1 + 2

]
. (28)
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In view of
log |ν(r)|
log(r)

≤ ρ2 + ε, ε > 0 ,

which equivalently reads |ν(r)| ≤ e(ρ2+ε) log(r) = rρ2+ε, we thus may conclude
that for a sufficiently large r there is an ε1 > 0 and a δ > 0 such that

M(r) ≤ µ(r)
(
|ν(2r)|n(1 + ε1)

)
≤ µ(r)

(
(2r)n(ρ2+ε)(1 + ε1)

)
≤ µ(r)(2r)nρ2+nε(2r)δ.

Hence with ε2 := nε + δ we thus have

M(r) ≤ µ(r)(2r)nρ2+ε2 . (29)

We thus obtain

log+
(
log+ M(r)

)
log(r)

≤
log+ log+

[
µ(r)(2r)nρ2+ε2

]
log(r)

=
log+

[
log+ µ(r) + log+(2r)nρ2+ε2

]
log(r)

≤
log+

(
log+(µ(r))

)
+ log+

(
log+((2r)nρ2+ε2)

)
+ log(2)

log(r)

≤
log+

(
log+ µ(r)

)
+ log+

(
(nρ2 + ε2) log+(2r)

)
+ log(2)

log(r)
.

We thus obtain that

lim sup
r→∞

log+
(
log+ M(r)

)
log(r)

≤ lim sup
r→∞

log+
(
log+ µ(r)

)
log(r)

= ρ1 .

Let us now show that λ ≤ λ2(= λ1). If λ2 = ∞, then the assertion is trivial.
Let us thus assume without loss of generality that λ2 < ∞. Then there exists

a sufficiently large R such that log+ |ν(R)|
log R

≤ λ2 + ε , which equivalently reads

|ν(R)| ≤ Rλ2+ε. (30)

Since the Taylor series converges we hence may conclude that we have for suf-
ficiently large R

µ(R) = ‖aν(R)‖R|ν(R)| ≤ R|ν(R)| ≤ RRλ2+ε

. (31)

Inserting r = R
2

into Theorem 5.2 and applying (30) and (31) thus leads to

M(r) ≤ RRλ2+ε

[Rnλ2+nε(1 + ε′)] ≤ RRλ2+ε+δ

Rnλ2+nε+δ ≤ RRλ2+ε+δ′ ≤ rrλ2+ε1



Entire Monogenic Functions 807

with some appropriate ε′, ε∗, ε1, δ, δ
′ > 0. We finally obtain

lim inf
r→∞

log+
(
log+ M(r)

)
log(r)

≤ lim inf
r→∞

log+
(
rλ2+ε1 log r

)
log(r)

= λ2 = λ1.

Remark. In the two-dimensional complex case where we have µ(r) ≤ M(r)
these methods allow one to establish the stronger result ρ = ρ1 = ρ2 and
λ = λ1 = λ2, as shown for instance in [10, Satz 4.5].

With this proposition we may now establish the following theorem which
provides us with a weaker analogy of Valiron’s asymptotic result on the growth
of the logarithm of the derivative of a given analytic function.

Theorem 5.4. If g : Rn+1 → Cl0n is left entire with ρ2(g) < ∞, then

lim sup
r→∞

log Mi(r)

log µ(r)
≤ 1 , (32)

where Mi(r) := max‖z‖=r

{∥∥ ∂
∂xi

g(z)
∥∥} for i = 1, . . . , n.

Proof. Since g is left entire, we have g(z) =
∑+∞

|m|=0 Vm(z)am in the whole

space Rn+1, hence so is

gi(z) :=
∂

∂xi

g(z) =
+∞∑
|m|=0

∂

∂xi

Vm(z)am

=
+∞∑
|m|=1

m!

(m− τ(i))!
Vm−τ(i)(z)am .

Therefore, we obtain for ‖z‖ = r

‖gi(z)‖ ≤
+∞∑
|m|=1

m!

(m− τ(i))!
‖am‖ r|m−τ(i)| . (33)

In what follows let us denote by µi the maximum term of gi and similarly by νi

the central indices of gi. If µ(r) = ‖am‖r|m|, then m = ν(r) and hence we can
conclude that

µi(r) ≤ ‖aν(r)‖r|ν(r)|−1|ν(r)| = µ(r)
1

r
|ν(r)| . (34)

In view of |ν(r)| = |νi(r)|+ 1 we thus may infer that

lim sup
r→∞

log+(|νi(r)|+ 1)

log(r)
= lim sup

r→∞

log+ |ν(r)|
log(r)

=: ρ2.
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Further to this we have for ε > 0 that |νi(r)| ≤ |νi(r)| + 1 ≤ rρ2+ε. Applying
Theorem 5.2 and the same arguments as in the proof of Proposition 5.3, for
ε1 > 0 we finally arrive at

Mi(r) ≤ µi(r)r
nρ2+ε1

(34)

≤ µ(r)|ν(r)|rnρ2+ε1−1 ≤ µ(r)r(n+1)ρ2+ε1+ε−1,

since |ν(r)| < rρ2+ε. Finally, putting δ1 := ε1 + ε this then leads to

log Mi(r) ≤ log µ(r) + log r(n+1)ρ2+δ1−1

= log µ(r) + [(n + 1)ρ2 + δ1 − 1] log r,

which permits us to conclude that

lim sup
r→∞

log Mi(r)

log µ(r)
≤ lim sup

r→∞

(
1 +

(
(n + 1)ρ2 + δ1 − 1

) log r

log µ(r)

)
= 1 .

6. Action of iterated Euler operators

In this section we want to establish a relation between the asymptotic behavior
of the maximum term of a monogenic function and that of their iterated radial
derivatives. To proceed in this direction we first establish some preparatory
propositions.

In what follows in this section we will sometimes write for convenience
ν := ν(r) = ν(r, g) for a left entire function g : Rn+1 → Cl0n in cases when no
ambiguity can occur.

Proposition 6.1. Let g be a transcendental left entire monogenic function.
Then

M(r, g) ≤ µ(r)L(r), (35)

where

L(r) :=
((n− 1) + |ν|)!

(n− 1)!|ν|!
+

|ν|−1∑
|l|=0

‖al‖
‖aν‖

r|l|−|ν| +
+∞∑

|l|=|ν|+1

‖al‖
‖aν‖

r|l|−|ν| .

Proof. Since g is a transcendental left entire monogenic function it has a Tay-
lor expansion (with infinitely many non-vanishing terms) of the form g(z) =∑+∞

|l|=0 Vl(z)al. We have ‖g(z)‖ ≤
∑+∞

|l|=0 ‖Vl(z)‖‖al‖ ≤
∑+∞

|l|=0 r|l|‖al‖ for

‖z‖ = r. Since g is transcendental, there exists k ∈ Nn
0 such that ak 6= 0.

Then

‖g(z)‖ ≤ r|k|‖ak‖

[ ∑
|l|=|k|

‖al‖
‖ak‖

+

|k|−1∑
|l|=0

‖al‖
‖ak‖

r|l|−|k| +
+∞∑

|l|=|k|+1

‖al‖
‖ak‖

r|l|−|k|

]
.

Taking in particular k = ν(r) and involve µ(r) = ‖ak‖r|k|, then one arrives at
the stated result.
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In order to proceed we need the following

Proposition 6.2. Let (Pk)k∈N be a sequence of real positives satisfying 1 <
P1 < P2 < . . . and lim

k→∞
Pk = P < ∞. Then there exists a real r > 0 such that

‖aν−j‖r|ν|−|j|

‖aν‖r|ν|
≤

|ν|∏
i=|ν|−|j|+1

Pi

P
|j|
|ν|

, |j| = 1, . . . , |ν| (36)

‖aν+j‖r|ν+j|

‖aν‖r|ν|
<

P
|j|
|ν|

|ν+j|∏
i=|ν|+1

Pi

, |j| = 1, 2, 3, . . . . (37)

The proof can be done in complete analogy to the classical proof of from [10,
Hilfsatz 21.], p. 189, simply by replacing the auxiliary function H(z) defined on
p. 190, equation (21.9), by

H(z) =
+∞∑
|n|=0

Vn(z)an

( |n|∏
i=1

Pi

)
.

The rest of the proof can then be carried over directly.

Further to this we require

Proposition 6.3. For a given ε > 0 we have

L∗(r) < |ν(r)|
1
2
+ε, r 6∈ F (38)

|ν(r)| < (log µ(r))1+ε , r 6∈ F , (39)

where L∗(r) := L(r)−
(

((n−1)+|ν|)!
(n−1)!|ν|! − 1

)
and F denotes a set of finite logarithmic

measure.

and also

Proposition 6.4. For ε > 0, k′, l ∈ N, k ∈ N0 and m ∈ Nn
0 one has

+∞∑
[j]=−|ν|

(
|j|
|ν|

)k′

‖aν+j‖r[ν+j] < µ(r)|ν(r)|
1−k′

2
+ε, r 6∈ F (40)

+∞∑
[j]=[m−ν]

|[j]|k

|ν|k+l
‖aν+j‖r[j+ν] < µ(r)|ν(r)|−

1
2
+ε, r 6∈ F . (41)
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Here, the notation [j] means [j] =
∑n

i=1 ji. Notice that the first indices j
appearing in this sum are elements from −Nn

0 . The expression [j] coincides with
the previously introduced length of an index for all j ∈ Nn

0 .

Using Proposition 6.2 one can prove these propositions in an analogous way
as their counterparts from the complex analysis setting presented in Satz 21.1,
Satz 21.2, and in Hilfssatz 21.2 and Hilfssatz 21.3 from [10], respectively. These
propositions enable us to establish the main theorem of this section.

Theorem 6.5. Let g : Rn+1 → Cl0n be a left entire function. Then for all
k ∈ N holds asymptotically∥∥ 1

|ν(r)|k
[Ek]g(z)− g(z)

∥∥ ≤ Cµ(r)|ν(r)|−
1
2
+ε, r 6∈ F, (42)

where E :=
∑n

i=0 xi
∂

∂xi
is the Euler operator on Rn+1, C is a real positive

constant and F is a set of finite logarithmic measure.

Proof. To show this result, we start to consider

1

|ν|k

[ n∑
i=0

xi
∂

∂xi

]k

g(z)− g(z)

=
1

|ν|k
+∞∑
|m|=1

|m|kVm(z)am −
+∞∑
|m|=0

Vm(z)am

= −a0 +
1

|ν|k

[ +∞∑
|m|=1

(|m|k − |ν|k)Vm(z)am

]
|m|=[j]+|ν|

= −a0 +
1

|ν|k

[ +∞∑
[j]=1−|ν|

(
[j] + |ν|

)k

− |ν|k
]
Vj+ν(z)aj+ν

= −a0 +
1

|ν|k
+∞∑

[j]=1−|ν|

(
k∑

s=0

[j]s|ν|k−s

(
k

s

)
− |ν|k

)
Vj+ν(z)aj+ν

= −a0 +
+∞∑

[j]=1−|ν|

k∑
s=1

[j]s|ν|−s

(
k

s

)
Vj+ν(z)aj+ν

= −a0 +
+∞∑

[j]=1−|ν|

k∑
s=1

|ν|−s Ps([j])︸ ︷︷ ︸
:=[j]s(k

s)

Vj+ν(z)aj+ν .

Let us now estimate the expression

Ss(z) =
+∞∑

[j]=1−|ν|

|ν|−sPs([j])Vj+ν(z)aj+ν . (43)
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Taking ‖z‖ = r > 0, we have

‖Ss(z)‖ ≤
+∞∑

[j]=1−|ν|

|ν|−sPs(|j|)‖aj+ν‖‖Vj+ν(z)‖

≤
+∞∑

[j]=1−|ν|

|ν|−sPs(|j|)‖aj+ν‖r[j+ν]

=
+∞∑

[j]=1−|ν|

(
|j|
|ν|

)s
k!

(k − s)!s!
‖aj+ν‖r[j+ν] .

We thus have

‖Ss(z)‖ ≤ k!

(k − s)!s!

+∞∑
[j]=1−|ν|

(
|j|
|ν|

)s

‖aj+ν‖r[j+ν]. (44)

Applying Proposition 6.4 for the particular case l = 0 and |m| = 1 to the
previous line, we thus obtain

‖Ss(z)‖ ≤ k!

(k − s)!s!
µ(r)|ν(r)|−

1
2
+ε, r 6∈ F. (45)

Summarizing, we thus obtain∥∥∥∥∥ 1

|ν|k

[ n∑
i=0

xi
∂

∂xi

]k

g(z)− g(z)

∥∥∥∥∥
≤ ‖a0‖+

k∑
s=1

‖Ss(z)‖

≤ ‖a0‖+
k∑

s=1

k!

(k − s)!s!
µ(r)|ν(r)|−

1
2
+ε

= ‖a0‖+ (2k − 1)µ(r)|ν(r)|−
1
2
+ε

r suff. large

≤ Cµ(r)|ν(r)|−
1
2
+ε

for r 6∈ F , where C is a positive real constant.

As an application we may set up the following

Proposition 6.6. Let 0 < δ < 1
2

and ‖z‖ be sufficiently large such that for
‖z‖ = r, the relation

‖g(z)‖ > µ(r)|ν(r)|−
1
2
+δ (46)
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is satisfied, where g is assumed to be left entire. Then for all k ∈ N holds
asymptotically

1

|ν(r)|k
[
Ek
]
g(z)− g(z) = o(1)g(z), r 6∈ F, (47)

where F is again a set of finite logarithmic measure.

Proof. Let us now suppose that ‖z‖ = r 6∈ F . In view of condition (46) we
have

1

‖g(z)‖

∥∥∥∥∥ 1

|ν(r)|k

[ n∑
i=0

xi
∂

∂xi

]k

g(z)− g(z)

∥∥∥∥∥ ≤ C

µ(r)
|ν(r)|

1
2
−δµ(r)|ν(r)|−

1
2
+ε

= C|ν(r)|ε−δ −→ 0 ,

if we choose ε sufficiently small (i.e., ε < δ). In other words, we indeed have
1
|ν|k
[
Ek
]
g(z)− g(z) = o(1)g(z) under the given condition.

Remark. This statement provides us with a nice analogy in the context of
Clifford analysis of the classical Satz 21.3 from [10] which states that entire

complex-analytic functions that satisfy ‖g(z)‖ > M(r, g)[ν(r)]−
1
4
+δ have the

asymptotic behavior

g(m)(z) =

(
ν(r)

z

)m(
1 + o(1)

)
g(z).

In the Clifford analysis setting one thus obtains a similar asymptotic result
when substituting the complex operator z d

dz
by the higher dimensional Euler

operator E.
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