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Higher Order Teodorescu Operators and
Cauchy–Pompeiu Type Formulas

Vu Thi Ngoc Ha

Abstract. Using the fundamental solution of the Helmholtz equation we construct
the explicit form of the fundamental solution for powers of the factors of the Helmholtz
operator in quaternionic analysis. These results lend assistance aid to investigate
some properties of higher order Teodorescu operators. A fundamental solution can
also be constructed for the product of Helmholtz operators. This is used to prove
Cauchy–Pompeiu type representation formulas in quaternionic analysis for the general
polynomial operator

∏j
ν=1(D + αν)kν , where αν 6= αµ if ν 6= µ.
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1. Introduction

The importance of complex analysis for mathematical physics is that the
Cauchy–Riemann differential operator and its complex conjugate provide a fac-
torization of the two-dimensional Laplace operator. The Cauchy–Riemann sys-
tem can be written in complex form as

∂W

∂z̄
= 0, (1.1)

where ∂
∂z̄

= 1
2
( ∂

∂x
+ i ∂

∂y
). Similarly ∂

∂z
= 1

2
( ∂

∂x
− i ∂

∂y
) is used. The Laplace

operator ∆ = 4 ∂
∂z̄

∂
∂z

arises from various applications in many partial differential
equations in mathematical physics e.g., from the Poinsson, the wave and the
heat equation. For equation (1.1), two over R linearly independent fundamental
solutions

W1 = 2
∂ ln |z|
∂z

=
1

z
, W2 = 2i

∂ ln |z|
∂z

=
i

z
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are connected with the kernel of Cauchy-type. In case of the inhomogeneous
Cauchy–Riemann equation

∂W

∂z̄
= f,

they lead to the Cauchy–Pompeiu integral representation formulas. The area
integral appearing in the complex Cauchy–Pompeiu representation defines a
weakly singular integral operator T . Its properties were studied by I. N. Vekua
[26]. We refer to Begehr [8, 9, 27] or Bojarski [12] for solving complex first order
partial differential equations based on properties as well of T as of the strongly
singular integral operator of Ahlfors-Beurling type Π (see, e.g., [1, 26]). Higher
order Cauchy–Pompeiu representations were developed in [4, 5, 6, 7]. Then, by
repeated applications of the T -operator, second order complex equations have
been investigated by Begehr [3], Dzhuraev [13, 14] and a complex fourth order
equation is studied by Wen and Kang [28]. In complex analysis, Begehr and
Hile have used the idea of generalizing the T -operator in order to handle with
the higher order differential equations. This generalization is realized in term
of the Tm,n-operators and their properties (see [10, 11]) . The Tm,n-operators,
in fact, are useful in the study of some boudary value problems for generalized
polyanalytic functions of order n in the Sobolev space W 1

p (Ω) (see [22, 23]), or
for complex elliptic partial differential equations of higher order (see [2]).

However, a lot of physical problems are not only particular circumstances
in two dimensions. For example, an overwhelming majority of physically mean-
ingful problems can not be reduced to two-dimensional models. But, the Dirac
operator D generalizing the Cauchy–Riemann operator in higher dimensional
spaces provides a factorization of the Laplace operator. Likewise the Helmholtz
operator, (∆ + α2), α ∈ C, can be factorized in quaternionic analysis by a
certain first order partial differential operator Dα := D + α and D−α := D − α
where D :=

∑3
k=1 ek

∂
∂xk

. Powers of these operators and of the Helmholtz oper-
ator lead to model equations of higher order. Inspired by the above-mentioned
results, we want to develop further these ideas for the Helmholtz operator and
its factors in quaternionic analysis.

From the quaternionic form of the Stokes theorem Cauchy–Pompeiu repre-
sentation formulas related to both factors of the Helmholtz operator are pro-
vided. By iteration they lead to a second order Cauchy–Pompeiu formula
related to the Helmholtz equation. Further iterations lead to higher order
Cauchy–Pompeiu representations related to powers of the factors of the
Helmholtz operator and of the Helmholtz operator itself. These results were
published in [19]. Following the above-mentioned techniques in complex analy-
sis, these iterations result as well in fundamental solutions to the higher order
operators as in defining higher order Pompeiu integral operators. These are de-
noted by integral operators Tα,n, Tr,α,n. In quaternionic analysis they are called
higher order Teodorescu operators. The aim of the present paper is to inves-
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tigate some properties of higher order Teodorescu operators. It demands to
provide the fundamental solutions for the operator Dn

α with n ∈ N explicitly.
We refer to [10, 18] for the Teodorescu transform in the case α = 0. They are
operators of Calderon–Zygmund type and do not cause problems. However,
in the general cases α 6= 0, the situation becomes more complicated. We can
not immediately apply the theory of Calderon and Zygmund. How to over-
come these difficulties in investigating the properties of Tα,1 are shown in [16].
Here a list of properties of Tα,n are outlined. As the operators T, Tm,n have
been widely used to study various boundary value problems for higher order
equations in complex analysis, the Tα,n should give useful tools in investigating
similar problems which can be reduced to such problems and systems to those
of the Helmholtz equation in quaternionic analysis.

We also generalize our results from [19] to representation formulas for solu-
tions to the general inhomogeneous polynomial equation

∏j
ν=1(D+αν)

kνf = g
in Ω with α1, α2, . . . , αj are mutually different complex constants. The main
idea for obtaining these results is an essential process for constructing fun-
damental solutions from Sommen and Xu [25, 29]. These integral represen-
tations of Cauchy–Pompeiu type for the general inhomogeneous polynomial∏j

ν=1(D + αν)
kν operator pave the way for investigating the boundary value

problem of classical Vekua type.

2. Preliminaries

We begin with the definition of the algebra of quaternion. Let {e0, e1, e2, e3} be
an orthonormal basis of R4 such that x ∈ R4 is represented as x =

∑3
k=0 xkek,

xk ∈ R, 0 ≤ k ≤ 3. The part x0e0 =: Sc(x) is called the scalar part of x and
~x =

∑3
k=1 xkek =: Vec(x) the vector part of x. A product is defined in R4 which

satisfies the conditions

(i) e21 = e22 = e23 = −1,

(ii) e1e2 = −e2e1 = e3; e2e3 = −e3e2 = e1; e3e1 = −e1e3 = e2.

The element e0 is regarded as the usual unit, that is, e0 = 1. For x, y ∈ R4 we
define

〈~x, ~y〉 = x1y1 + x2y2 + x3y3 and [~x× ~y] =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
Then, the algebraic rules (i), (ii) yield the quaternionic product

xy = x0y0 − 〈~x, ~y〉+ x0~y + ~xy0 + [~x× ~y].

We are now prepared to give the definition of the algebra of real quaternions.
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Definition 2.1. The tuple (R4, ·) is called the algebra of real quaternions. We
signify (R4, ·) by H(R).

The quaternion x̄ = x0 − ~x is called the conjugate to x. The number |x|
defined by |x|2 := xx̄ is named the absolute value of x. Note that ~x2 = −|~x|2.

Definition 2.2. A complex quaternion (biquaternions) x is an object of the form
x =

∑3
k=0 xkek, xk ∈ C, 0 ≤ k ≤ 3, with the commutation rule for the usual

complex imaginary unit i with the quaternionic imaginary unit ek, k = 1, 2, 3,
iek = eki. The algebra of complex quaternions will be denoted by H(C).

Note that any x ∈ H(C) can be represented as x = Rex+iImx, where Rex =∑3
k=0 Rexkek and Imx =

∑3
k=0 Imxkek belong to H(R). Then the conjugate to

x also belongs to H(C). It can be written as x̄ = Rex+ iImx. The norm |x|H(C),
where x ∈ H(C), is defined by

|x|H(C) :=
√
|x0|2 + |x1|2 + |x2|2 + |x3|2, (2.1)

where xk ∈ C, |xk|2 = xkx̄k, x̄k stands for the usual complex conjugation. It is
easily seen that (2.1) represents a natural Euclidean metric in R8 and can be
expressed as |x|2H(C) = |Rex|2 + |Imx|2.

Lemma 2.3. [21, Chap. 1, Lemma 2] Let x and y be complex quaternions. Then
|xy|H(C) ≤

√
2 |x|H(C)|y|H(C).

We next recall some basic facts of spaces of complex quaternion-valued
functions. By the isomorphic embedding we can identify (x1, x2, x3) = ~x ∈ R3

with x =
∑3

k=1 xkek ∈ H(R) ⊂ H(C).

We now consider functions f defined in a domain Ω of R3 with values
in H(C). Those functions may be written as f(x) =

∑3
k=0 fk(x)ek, fk(x) ∈

C, x ∈ Ω. Properties such as continuity, differentiability, integralbility, and so
on, which are described to f have to be possessed by all components fk(x) which
are complex-valued functions defined on Ω. Let B(Ω) be a function space of
complex functions defined on Ω. For example, B may be Ck, C(k,ε), Lp, W

k
p

and so on. We then define a function space

B(Ω,H(C)) :=
{
f : Ω → H(C) : all components of f belong to B(Ω)

}
.

If B(Ω) is normed with norm ‖ · ‖B, then we can define a norm on B(Ω,H(C))
by

‖f‖B =

( 3∑
k=0

‖fk‖2
B

) 1
2

for f ∈ B(Ω,H(C)).

If B(Ω) is a Banach space, then the space B(Ω,H(C)) defined in this manner is
also a complex Banach space. In this way the usual Banach spaces of these func-
tions are denoted by Ck(Ω,H(C)), C(k,ε)(Ω,H(C)), Lp(Ω,H(C)),W k

p (Ω,H(C))
and so on.
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Next, we will introduce some basic notations of the Sobolev spaces [24,
Section VI]) used in our discussions. Let L̃p(Ω,H(C)) be the set of all continuous

functions f : Ω → H(C) for which ‖f‖Lp :=
( ∫

Ω
|f(x)|pH(C) dx

) 1
p is finite with

p ∈ (1,+∞). We will need the following Hölder’s inequality for functions with
value in H(C) : Let f ∈ L̃p(Ω,H(C)), g ∈ L̃q(Ω,H(C)), where 1 < p, q < +∞
with 1

p
+ 1

q
= 1. Then

fg ∈ L̃1(Ω,H(C)) and ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Remark 2.4. Let k be a non-negative integer and let 1 ≤ p ≤ +∞. From
Sobolev’s imbedding theorem ([24, Chapter 6, §6.4]) more general imbedding
theorems for Sobolev spaces W k

p can be established. It is shown that

W k
p (Ω,H(C)) ⊂ L 3p

3−kp
(Ω,H(C)) for kp < 3

W k
p (Ω,H(C)) ⊂ Cb(Ω,H(C)) for kp > 3,

(2.2)

where Cb(Ω,H(C)) is the set of all bounded continuous functions on Ω̄.

Let us review the concept of the Moisil–Teodorescu differential operator
and the quaternionic Stokes formula which will be used throughout this paper.
Let f ∈ C1(Ω,H(C)). The Moisil-Teodorescu differential operator is given by

Df :=
∑3

k=1 ek∂kf where ∂k := ∂
∂xk

. If we write f = f0 + ~f , then one gets by a
straightforward calculation

Df = −div~f + gradf0 + rot~f. (2.3)

Note that the Moisil-Teodorescu operator was introduced as acting from the
left-hand side. The correponding operator acting from the right-hand side will
be denoted byDr. That isDrf =

∑3
k=1 ∂kfek and in vector form the application

of Dr can be represented as

Drf = −div~f + gradf0 − rot~f. (2.4)

Let the operator Dα = D + αI be given, where α is an arbitrary complex
constant and I is the identity operator. As the Laplacian also the Helmholtz
operator can be factorized in quaternionic analysis as

∆ + α2 = −DαD−α = −D−αDα. (2.5)

The following quaternionic Stokes formula is taken from [21, Theorem 2],
(see also [18, Proposition 3.22]). Letf and g belong to C1(Ω,H(C))∩C(Ω̄,H(C)),
Ω ⊂ R3 a regular domain, Γ := ∂Ω. Then∫

Ω

[
(Drf(y))g(y) + f(y)Dg(y)

]
dy =

∫
Γ

f(y)~n(y)g(y) dΓy, (2.6)

where ~n :=
∑3

k=1 nkek denotes the outward unitary normal vector on Γ.
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Remark 2.5. From (2.6) with α ∈ C we have∫
Ω

[
(Dr,−αf(y))g(y) + f(y)(Dαg(y))

]
dy =

∫
Γ

f(y)~n(y)g(y) dΓy∫
Ω

[
(Dr,αf(y))g(y) + f(y)(D−αg(y))

]
dy =

∫
Γ

f(y)~n(y)g(y) dΓy.

(2.7)

The above equalities are powerful tools in the strategy of this work.

3. Higher order Teodorescu operators

In complex analysis, a special case of the Cauchy-Pompeiu formula is the Cauchy
representation of analytic functions which is deduced from the Gauss theorem.
Analogously to this, the Cauchy-Pompeiu integral representation in quater-
nionic analysis which is also a consequence of the quaternionic Stokes formula.

3.1. The quaternionic Cauchy–Pompeiu type formulas. Using the equal-
ity (2.5) and the fundamental solution of the Helmholtz equation, a fundamental
solution for the factors of the Helmholtz operator can be constructed. Indeed,
if we assume that ϑ is a fundamental solution of the Helmholtz operator, i.e.,
a function satisfying (∆ + α2)ϑ(x) = δ(x), where δ(x) is the Dirac delta dis-
tribution, then Kα(x) = −(D − α)ϑ(x) is a fundamental solution of Dα and
K−α(x) = −(D+α)ϑ(x) is a fundamental solution of D−α, i.e., DαKα(x) = δ(x)
and D−αK−α(x) = δ(x).

As discussed in [21, p. 27] a unique fundamental solution to the Helmholtz

operator related to its physical meaning is ϑ(x) = − eiα|x|

4π|x| . Since ϑ(x) is a scalar

function and using formulas (2.3), (2.4) we have Dαϑ(x) = Dr,αϑ(x). From
formula (2.3) by a straightforward computation we get

Kα(x) = − gradϑ(x) + αϑ(x) =

(
α+

x

|x|2
− iα

x

|x|

)(
− eiα|x|

4π|x|

)
K−α(x) = − gradϑ(x)− αϑ(x) =

(
− α+

x

|x|2
− iα

x

|x|

)(
− eiα|x|

4π|x|

)
We introduce here the quaternionic Cauchy–Pompeiu formulas which are related
to the factors of the Helmholtz operator:

f(x) = −
∫

Γ

Kα(x− y)~n(y)f(y) dΓy +

∫
Ω

Kα(x− y)Dαf(y) dy (3.1)

f(x) = −
∫

Γ

K−α(x− y)~n(y)f(y) dΓy +

∫
Ω

K−α(x− y)D−αf(y) dy (3.2)

for f ∈ C1(Ω,H(C))∩C(Ω̄,H(C)). The formulas (3.1), (3.2) express a differen-
tiable function through its boundary values and its first-order derivatives.
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3.2. Higher order Teodorescu operators. The fundamental solution for
the operator Dn

α with n ∈ N will be constructed by a method as given in [29,
Chap. 4], (see also [19, 25]). The advantage of our method, using induction,
is that it yields explicit kernel functions. For the reader’s convenience, we will
present this lemma and our result about the Cauchy–Pompeiu integral for the
higher order Dn

α operator (see [19]).

Lemma 3.1. [19, Lemma 2.5] Let Kα(x) be a fundamental solution for the
operator Dα, i.e, a quaternionic function satisfying DαKα(x) = δ(x) (α 6= 0)
in distributional sense, and Kα(x) be infinitely often differentiable with respect

to α. Then the functions K
(n)
α (x), n ∈ N, determined by the recurrence fomulas

K(1)
α (x) = Kα(x), K(k)

α (x) =
−1

k − 1

∂

∂α
K(k−1)

α (x) (3.3)

for all k ∈ N∗, satisfy in distributional sense the equations

(D + α)nK(n)
α (x) = δ(x).

We will recall our main result in [19] for later use.

Theorem 3.2. [19, Theorem 3.2] Let f ∈ Cn(Ω,H(C))∩Cn−1(Ω̄,H(C)). Then

f(x) = −
n∑

k=1

∫
Γ

K(k)
α (x− y)~n(y)Dk−1

α,y f(y) dΓy

+

∫
Ω

K(n)
α (x− y)Dn

α,yf(y) dy.

(3.4)

Looking at the kernel functionK
(1)
α (x) we decompose it in the following way:

K(1)
α (x) =

(
α− iα

x

|x|

)(
− eiα|x|

4π|x|

)
+

x

|x|2

(
− eiα|x|

4π|x|

)
.

By a straightforward calculation in applying equalities (3.3) in the above lemma
and using induction the following corollary is proved.

Corollary 3.3. Let α be a complex constant with α 6= 0. Then the function

K(n)
α (x) =

(−1)n−1

(n− 1)!

[
(n−1)−(n−2)

ix

|x|
+ iα|x|+αx

]
(i|x|)n−2

(
− eiα|x|

4π|x|

)
(3.5)

is a fundamental solution of the operator Dn
α.

The last term in equality (3.4) suggests the following definition of higher
order Teodorescu operators.
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Definition 3.4. For a bounded domain Ω in R3 with piecewise sufficiently
smooth boundary Γ, we formally define operators Tα,n, Tr,α,n, where α ∈ C
acting on H(C)-valued functions f defined in Ω, according to

(Tα,nf)(x) :=

∫
Ω

K(n)
α (x− y)f(y) dy

(Tr,α,nf)(x) :=

∫
Ω

f(y)K(n)
α (x− y) dy,

where, the kernel functions K
(n)
α are defined by formula (3.5). The operators

Tα,n, Tr,α,n are called higher order Teodorescu operators.

We now begin with investigating mapping properties of Tα,n.

3.3. Existence and continuity of integrals. In this subsection, we will
prove the existence and continuity of Tα,n. The operator Tr,α,n has analogous
properties, where this operator is acting from the right on the function. We
also refer the readers to [15, 17] for more details in the discussion of some
properties of the integral operator Tα,1 with a real number α, where Tα,1 acts
on real quaternion-valued functions. The use of complex quaternions as well
as α a complex number does not cause changes of the mapping properties of
Tα,1, as was shown in [16]. Moreover, the kernel K

(n)
α (x) of the operator Tα,n

has a singularity of order 2 at most, and thus it will not affect essentially the
properties induced by K

(1)
α (x). Nevertheless, the following properties will be

provided more explicitly again for Tα,n, n ≥ 1.

Lemma 3.5. Under the same assumptions as in Definition 3.4, for f ∈
L1(Ω,H(C)), the integral F (x) =

∫
Ω

1
|x−y|3−γ f(y) dy is in L1(Ω,H(C)) for all

0 < γ ∈ R.

Proof. Notice that here we consider a bounded domain Ω and γ > 0. Firstly,
looking at the integral

∫
Ω

( ∫
Ω

1
|x−y|3−γ dx

)
|f(y)|H(C) dy, L. Hedberg has shown

that there exists a constant C such that
∫

Ω
1

|x−y|3−γ dy ≤ C(diamB)γ holds,

where B is the smallest cube containing Ω (see [20]). Hence,∫
Ω

( ∫
Ω

1

|x− y|3−γ

)
|f(y)|H(C) dy ≤M(Ω,γ)

∫
Ω

|f(y)|H(C) dy = M(Ω,γ)‖f‖L1 ,

where M(Ω,γ) is a constant depending on Ω and on γ. Using Fubini’s theorem,
it follows∫

Ω

( ∫
Ω

1

|x− y|3−γ
dx

)
|f(y)|H(C) dy =

∫
Ω

(∫
Ω

1

|x− y|3−γ
|f(y)|H(C) dy

)
dx

=

∫
Ω

F (x) dx ,

where the involved integrals are finite and hence F (x) is in L1(Ω,H(C)).
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We now come to our main result ensuring the well-definedness of the oper-
ator Tα,n from L1(Ω,H(C)) into Lq(Ω,H(C)) for some relevant q ≥ 1.

Theorem 3.6. For α ∈ C and f ∈ L1(Ω,H(C)), the integral Tα,nf(x) exists
for almost all x ∈ Ω.

Proof. For n = 1, f ∈ L1(Ω,H(C)), and viewing the formula for K
(1)
α (x − y)

we observe that

∣∣K(1)
α (x− y)f(y)

∣∣
H(C)

≤
√

2

4π

∣∣K(1)
α (x− y)

∣∣
H(C)

∣∣f(y)
∣∣
H(C)

≤
√

2

4π
e−Imα diamΩ|f(y)|H(C)

(
2|α| 1

|x− y|
+

1

|x− y|2

)
.

Using Lemma 3.5 leads to the existence of (Tα,1f)(x) for almost all x ∈ Ω̄.

In the case n = 2, let us consider the estimate∣∣K(2)
α (x− y)f(y)

∣∣
H(C)

≤
√

2 |K(2)
α (x− y)|H(C)|f(y)|H(C)

≤
√

2

4π
e−Imα diamΩ|f(y)|H(C)

(
2|α|+ 1

|x− y|

)
.

Using Lemma 3.5 again in the case γ ≥ 2, the existence of (Tα,2f)(x) for almost
all x ∈ Ω̄ is proved.

If n ≥ 3 is fixed, we have∣∣K(n)
α (x− y)f(y)

∣∣
H(C)

≤
√

2 |K(n)
α (x− y)|H(C)|f(y)|H(C)

≤
√

2

4π
e−Imα diamΩ|f(y)|H(C)

(
2|α‖x− y|n−2 + |x− y|n−3

)
.

Looking at the right-hand side of this inequality, we can easily see that
Tα,nf(x) for n ≥ 3 has no singularity. Hence, the existence of the integrals
Tα,nf follows.

Theorem 3.7. Let the assumptions of Definition 3.4 be satisfied. In addition,
let f be a complex quaternion-valued function in L1(Ω,H(C)). Then the integral
Tα,nf(x) converges absolutely for all x in Ω. Moreover, if

(i) 1 ≤ q < 3
2
, when n = 1

(ii) 1 ≤ q < 3, when n = 2

(iii) 1 ≤ q ≤ +∞, when n ≥ 3,

then Tα,nf ∈ Lq(Ω,H(C)) with ‖Tα,nf‖Lq ≤ M(Ω,α,n)‖f‖L1.
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Proof. Firstly, we will define Wγ(x) on Ω̄ according to Wγ(x) :=
∫

Ω
|ω(y)|
|x−y|γ dy,

and let ω be an arbitrary function in Lp(Ω,H(C)) where 1
p

+ 1
q

= 1. Again

the estimate of |K(n)
α (x − y)| in Theorem 3.6 shows that the integral Tα,nf(x)

converges absolutely. Now, using Hölder’s inequality we obtain

Wγ(x) :=

∫
Ω

|ω(y)|
|x− y|γ

dy ≤
( ∫

Ω

( 1

|x− y|γ
)q

dy

) 1
q

‖ω‖Lp

≤
( ∫

Ω

1

|x− y|γ
dy

)
‖ω‖Lp .

By Lemma 3.5, hence the middle integral of this inequality exists for qγ < 3.
Therefore, in the case of n = 1 the condition 1 ≤ q < 3

2
is sufficient for both

values γ = 1 or γ = 2 (see the estimates in Theorem 3.6). For n = 2, by

the estimate of K
(2)
α (x − y), we have to consider γ = 1. Thus the condition is

1 ≤ q < 3. It is easily seen that 1 ≤ q ≤ +∞ is possible for all n ≥ 3.

The assumtions for q together with Wγ(x) ≤
(∫

Ω
1

|x−y|γ dy
)
‖ω‖Lp yield

Wγ(x) ≤ M(Ω,γ)‖ω‖Lp , where M(Ω,γ) is a constant depending on Ω and γ but
not on x (see the proof of Lemma 3.5). Hence, Wγ(x) converges uniformly, i.e,
Wγ is continuous on Ω̄ and for all ω ∈ Lp(Ω,H(C)). Then Wγ(x) ∈ Lq(Ω,R)
for 1

p
+ 1

q
= 1. Again, by Fubini’s theorem we have∫

Ω

( ∫
Ω

|ω(y)|
|x− y|γ

dy

)
|v(x)|H(C) dx =

∫
Ω

( ∫
Ω

|v(x)|
|x− y|γ

dx

)
|ω(y)|H(C) dy ,

where ω ∈ Lp(Ω,H(C), v ∈ L1(Ω,H(C). This is due to the fact that the lat-

ter integral represents a linear functional on Lp(Ω,R) gives
(∫

Ω
v(x)
|x−y|γ dx

)
∈

Lq(Ω,R). Therefore, by the estimates in the above theorem this leads to Tα,nf ∈
Lq(Ω,H(C)) for every f ∈ L1(Ω,H(C).

Finally, using the same ideas gives explicit estimates of ‖Tα,n‖L1→Lq . Indeed,
firstly notice that as well the function

T̃α,nf(x) =

∫
Ω

∣∣K(n)
α (x− y)

∣∣
H(C)

|f(y)|H(C) dy

is defined already, where f ∈ L1(Ω,H(C)), as∫
Ω

( ∫
Ω

∣∣K(n)
α (x− y)

∣∣
H(C)

|f(y)|H(C) dy

)
|v(x)|H(C) dx

=

∫
Ω

( ∫
Ω

∣∣K(n)
α (x− y)

∣∣
H(C)

|v(x)|H(C) dx

)
|f(y)|H(C) dy,

where v ∈ Lp(Ω,H(C)).
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In the next step we consider
(∫

Ω
|K(n)

α (x−y)|H(C)|v(x)|H(C) dx
)
. In the cases

listed under conditions (i) – (iii), when q = +∞ we have p = 1. We then may
apply Lemma 3.5 to a bounded domain large enough to contain Ω̄, and deduce
that

∫
Ω

∣∣K(n)
α (x−y)

∣∣
H(C)

|v(x)|H(C) dx ≤ M(α,Ω,n)‖v‖Lp . In the cases 1 ≤ q < +∞
and 1 < p ≤ +∞, with the list of conditions (i) – (iii) by Lemma 3.5 together

with the estimates of K
(n)
α (x− y) in Theorem 3.6 we get∫

Ω

∣∣K(n)
α (x− y)

∣∣
H(C)

|v(x)|H(C) dx ≤ sup
x∈Ω̄

(∫
Ω

∣∣K(n)
α (x− y)

∣∣q dx) 1
q

‖v‖Lp .

This leads to∫
Ω

( ∫
Ω

∣∣K(n)
α (x− y)

∣∣
H(C)

|f(y)|H(C) dy

)
|v(x)|H(C) dx ≤M(Ω,α,n)‖f‖L1‖v‖Lp ,

which completes the proof of the theorem.

3.4. Differentiability of integrals. If we look for applications of the Tα,n-
operators, then we need their mapping properties within Sobolev spaces. To
this purpose, in this subsection we will investigate differentiability of higher
Teodorescu transforms. The Teodorescu transform in the case α = 0 do not
cause many problems (see [10, 15], [18, Chap. 4] and references therein) because
they are operators of Calderon–Zygmund type. However, in the cases α 6= 0, the
situation becomes more complicated. We can not immediately apply the theory
of Calderon and Zygmund. This means that we have to give the estimate of
the kernels of the higher Teodorescu operators in order to be able to use these
theories. How to overcome these diffculties in the case n = 1 was shown in [16].

The kernel K
(n)
α (x) of the operator Tα,n has a singularity of order 2 at most, and

thus it will not affect essentially the properties induced by K
(1)
α (x). Therefore,

the following properties are still true for Tα,n, n ≥ 1.

Theorem 3.8. Let f ∈ C1
c (Ω,H(C)), then

(i) for k = 1, 2, 3,

∂k(Tα,1f)(x) =

∫
Ω

[
∂k,xK

(1)
α (x− y)

]
f(y) dy + ēk

f(x)

3

∂k(Tr,α,1f)(x) =

∫
Ω

f(y)
[
∂k,xK

(1)
α (x− y)

]
dy +

f(x)

3
ēk,

(ii) for k = 1, 2, 3 and for all n ≥ 2

∂k(Tα,nf)(x) =

∫
Ω

[
∂k,xK

(n)
α (x− y)

]
f(y) dy

∂k(Tr,α,nf)(x) =

∫
Ω

f(y)
[
∂k,xK

(n)
α (x− y)

]
dy.
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Proof. (i) Its proof can be found in [16].

(ii) In the case n = 2, we have

Tα,2f(x) =

∫
Ω

(
1 + iα|x− y|+ α(x− y)

) eiα|x−y|

4π|x− y|
f(y) dy.

The kernel of this integral has a singularity of order 1, hence it can be allowed
to exchange the differentiation and the integration. Therefore, (ii) holds for
n = 2. For n ≥ 3, the kernels of these integrals have no singularities, thus (ii)
is easily seen.

The following theorem can be proved by using the ideas in [16, Theorem 3.3]
together with the above theorem and analogous estimations as in Theorem 3.6
for the kernel functions ∂kKα,n(x− y), n ≥ 1.

Theorem 3.9. The operators ∂kTα,n : Lp(Ω,H(C)) → Lp(Ω,H(C)) are well-
defined and continuous for all n ≥ 1 and 1 ≤ k ≤ 3.

In the following section, we now are able to come to our main result con-
tinuing the mapping properties of Tα,n between spaces of continuous functions.

3.5. Mapping properties of Tα,n. In this section we will give the most im-
portant properties of Tα,n in Theorem 3.12 and Remark 3.13.

Theorem 3.10. The operator Tα,n : Lp(Ω,H(C)) → W 1
p (Ω,H(C)) is well-

defined and continuous for all n ≥ 1.

Proof. From Theorem 3.9 we see that ∂kTα,n : Lp(Ω,H(C)) → Lp(Ω,H(C)) is
well-defined and continuous for n ≥ 1. In order to show Tα,nf ∈ W 1

p (Ω,H(C)) for
every f ∈ Lp(Ω,H(C)), we at first verify that the operator Tα,n acts invariantly
on Lp(Ω,H(C)).

For the case n = 1, its proof can be found in [16]. In the case n = 2, if 1 ≤
q ≤ 3 we have Tα,2 ∈ L(L1(Ω,H(C)),W 1

q (Ω,H(C))). Consequently, we can say
that Tα,2 ∈ L(Lq(Ω,H(C)),W 1

q (Ω,H(C))) for 1 ≤ q ≤ 3. Using Sobolev’s imbed-
ding theorems (see inclusions (2.2)) leads to Tα,2 ∈ L(Ls(Ω,H(C)), Ls(Ω,H(C)))
for 1 ≤ s ≤ +∞. The assertion of this theorem follows immediately from The-
orem 3.7 for every n ≥ 3.

Theorem 3.11. When Ω is a bounded domain in R3, then Tα,n : C(Ω̄,H(C)) →
C(Ω̄,H(C)) is bounded and

(i) ‖Tα,1‖L(C(Ω̄),C(Ω̄)) ≤
√

2
4π
e−Imα diamΩ max

x∈Ω

{∫
Ω

(
2|α| 1

|x−y| +
1

|x−y|2
)
dy

}
(ii) ‖Tα,2‖L(C(Ω̄),C(Ω̄)) ≤

√
2

4π
e−Imα diamΩ max

x∈Ω

{∫
Ω

(
2|α|+ 1

|x−y|

)
dy

}
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(iii) ‖Tα,n‖L(C(Ω̄),C(Ω̄)) ≤
√

2
4π
e−Imα diamΩ max

x∈Ω

{∫
Ω

(
2|α‖x−y|n−2+|x−y|n−3

)
dy

}
for every n ≥ 3.

Proof. Let f ∈ C(Ω̄,H(C)), and note that C(Ω̄,H(C)) is dense in L1(Ω̄,H(C)).
For p > 3, by the remarks preceding the theorem, together with Theorem 3.9
we have f ∈ Lp(Ω̄,H(C)) and Tαf ∈ Cb(Ω̄,H(C)). With an arbitrarily fixed
x ∈ Ω̄ we get the estimates

‖Tα,1f(x)‖H(C) ≤
√

2

∫
Ω

|K(1)
α (x− y)‖f(y)| dy

≤
√

2

4π
‖f‖C(Ω̄)e

−Imα maxy{|x−y|}
∫

Ω

(
2|α| 1

|x− y|
+

1

|x− y|2

)
dy

‖Tα,2f(x)‖H(C) ≤
√

2

∫
Ω

|K(2)
α (x− y)‖f(y)| dy

≤
√

2

4π
‖f‖C(Ω̄)e

−Imα maxy{|x−y|}
∫

Ω

(
2|α|+ 1

|x− y|

)
dy,

and for n ≥ 3,

‖Tα,nf(x)‖H(C) ≤
√

2

∫
Ω

|K(2)
α (x− y)‖f(y)|dy

≤
√

2

4π
‖f‖C(Ω̄)e

−Imα maxy{|x−y|}
∫

Ω

(
2|α||x− y|n−2 + |x− y|n−3

)
dy.

Taking the maximum with respect to x ∈ Ω, the norm inequalities (i) – (iii)
hold.

Theorem 3.12. The following assertions hold:

(i) The operator Tα,1 is the algebraic right-inverse to the operator Dα, i.e.,
for any f ∈ C1(Ω,H(C)) ∩ C(Ω̄,H(C)), we have DαTα,1f(x) = f(x) for
every x ∈ Ω.

(ii) DαTα,nf(x) = Tα,n−1f(x) for every x ∈ Ω, n ≥ 2.

(iii) Dn
αTα,nf(x) = f(x) for every x ∈ Ω, n ≥ 1.

Proof. (i) In Theorem 3.8 it has been shown that ∂Tα,1 is a strongly singular
integral operator which has a singularity of order 3. Thus, (i) is proved by two
techniques which can be found in [30, Theorem 2.6].

(ii) By Theorem 3.8, the operator Dα,x acting on Tα,nf(x) can be inter-
changed with integration for any n ≥ 2 as in these cases the singularity at
y = x of the kernels Dα,xK

(n)
α (x− y), n ≥ 2, is not worse than O

(
1

|x−y|2
)

allow-
ing differentiation under the integral of Tα,nf. By using Lemma 3.1 the identity
(ii) holds.

(iii) By induction, together with (i), (ii) we obtain (iii).
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Remark 3.13. For each n ≥ 1 the operator Tα,n : Lp(Ω,H(C)) → W n
p (Ω,H(C))

is well-defined and continuous. Consequently, we obtain Tα,n : W k
p (Ω,H(C)) →

W k+n
p (Ω,H(C)).

4. Integral representation of solutions to the
general inhomogeneous polynomial equation

In this section, we will investigate Cauchy–Pompeiu type representation formu-
las in quaternionic analysis for the general polynomial operator

∏j
ν=1(D+αν)

kν ,
where αν 6= αµ if ν 6= µ.

4.1. A fundamental solution for a general polynomial operator. Using
the fundamental solution of the Helmholtz equation, a fundamental solution
can be constructed for the product of Helmholtz operators. In a similar way as
in [25, 29], starting with the fundamental solution K

(1)
α (x) for the Dα operator,

a fundamental solution for the operator
∏j

ν=1(D + αν)
kν in Ω is constructed.

Lemma 4.1. Let α1, α2, . . . , αj be mutually different complex constants.Then

(i) the function K
(1,1)
α1,α2(x) := 1

α2−α1

(
K

(1)
α1 (x) −K

(1)
α2 (x)

)
is a fundamental so-

lution for the operator Dα1Dα2 .

(ii) if K
(k1,k2,...,kj−1,kj−1)
α1,α2,...,αj−1,αj (x) and K

(k1,k2,...,kj−1−1,kj)
α1,α2,...,αj−1,αj (x) are fundamental solu-

tions for the operators Dk1
α1
Dk2

α2
. . . D

kj−1
αj−1D

kj−1
αj and Dk1

α1
Dk2

α2
. . . D

kj−1−1
αj−1 D

kj
αj ,

respectively, then the function

K(k1,k2,...,kj−1,kj)
α1,α2,...,αj−1,αj

(x)

=
1

αj−1 − αj

(
K(k1,k2,...,kj−1−1,kj)

α1,α2,...,αj−1,αj
(x)−K(k1,k2,...,kj−1,kj−1

α1,α2,...,αj−1,αj
(x)

)
is a fundamental solution for the operator Dk1

α1
Dk2

α2
. . . D

kj−1
αj−1D

kj
αj .

(iii) it holds

Dhν
αν
K(k`,k`+1,...,kν ,...,km−1,km)

α`,α`+1,...,αν ,...,αm−1,αm
(x) = K(k`,k`+1,...,(kν−hν),...,km−1,km)

α`,α`+1,...,αν ,...,αm−1,αm
(x)

in the distributional sense, where ` ≤ ν ≤ m, 0 ≤ hν ≤ kν , kı ∈ N,
ı = `, . . . ,m.

Proof. For the proofs of (i) and (ii) we refer the readers to [29]. In order to

prove (iii) we also need the following notions. Since DrK
(k)
α (x) = DK

(k)
α (x) for

all k ∈ N, it is easy to see that

Dhν
r,x,αν

K(k`,k`+1,...,kν ,...,km−1,km)
α`,α`+1,...,αν ,...,αm−1,αm

(x) = Dhν
x,αν

K(k`,k`+1,...,kν ,...,km−1,km)
α`,α`+1,...,αν ,...,αm−1,αm

(x),
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and for all φ ∈ C∞
c (Ω,H(C)) with the right H(C)-distributions, we have〈

Dhν
r,x,αν

K(k`,k`+1,...,kν ,...,km−1,km)
α`,α`+1,...,αν ,...,αm−1,αm

(x), φ(x)
〉

= −
〈
Dhν−1

r,x,αν
K(k`,k`+1,...,kν−1,...,km−1,km)

α`,α`+1,...,αν ,...,αm−1,αm
(x), D−ανφ(x)

〉
.

Using (ii) step by step then (iii) is seen.

Remark 4.2. From (i) and (ii) in the above lemma by a straightforward com-
putation we obtain

K(1,1,...,1,1)
α1, α2,...,αk−1,αk

(x) =
k∑

i=1

k∏
ν=1
ν 6=i

1

(αν − αi)
K(1)

αi
(x).

These results are used to prove Cauchy–Pompeiu type representation formu-
las in quaternionic analysis for the general polynomial operator

∏j
ν=1(D+αν)

kν ,
where αν 6= αµ if ν 6= µ.

4.2. Representation for the general polynomial operator. In this sub-
section, the representation formulas of solutions to the general inhomogeneous
polynomial equation

∏j
ν=1(D + αν)

kνf = g in Ω is proved.

Theorem 4.3. Let Ω be a bounded domain in R3 with a smooth boundary
∂Ω =: Γ and f ∈ C2(Ω,H(C)) ∩ C1(Ω̄,H(C)). Then

f(x) = −
∫

Γ

K(1)
α1

(x− y)~n(y)f(y) dΓy

−
∫

Γ

K(1,1)
α1,α2

(x− y)~n(y)Dα1,yf(y) dΓy

+

∫
Ω

K(1,1)
α1,α2

(x− y)Dα1,yDα2,yf(y) dy,

(4.1)

where K
(1,1)
α1,α2(x) are given in Lemma 4.1 and α1, α2 are different complex con-

stants.

Proof. Note that

Dα2,xDα1,x = Dα1,xDα2,x

Dr,−α,yK
(1)
α (x− y) = −Dr,α,xK

(1)
α (x− y).

(4.2)

Applying the quaternionic Cauchy–Pompeiu formula (3.1) for Dα1,yf(y) we ob-
tain

Dα1,yf(y)

= −
∫

Γ

K(1)
α2

(y − ỹ)~n(ỹ)Dα1,ỹf(ỹ) dΓỹ +

∫
Ω

K(1)
α2

(y − ỹ)Dα2,ỹDα1,ỹf(ỹ)dỹ .
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This leads to

f(x) = −
∫

Γ

K(1)
α1

(x− y)~n(y)f(y) dΓy

−
∫

Γ

ψ
(1), (1)
(α1),(α2)(x, ỹ)~n(ỹ)Dα1,ỹf(ỹ) dΓy

+

∫
Ω

ψ
(1), (1)
(α1),(α2)(x, ỹ)Dα1,ỹDα2,ỹf(ỹ) dỹ,

(4.3)

where ψ
(1), (1)
(α1),(α2)(x, ỹ) =

∫
Ω
K

(1)
α1 (x − y)K

(1)
α2 (y − ỹ) dy. On the other hand, we

have in the distributional sense that

Dα1K
(1)
α1

(x) = δ(x), Dα2K
(1)
α2

(x) = δ(x), (4.4)

so that for any φ ∈ C∞
c (Ω,H(C))〈

(D + α1)K
(1,1)
α1,α2

(x), φ(x)
〉

=
1

α2 − α1

〈
(D + α1)[K

(1)
α1

(x)−K(1)
α2

(x)], φ(x)
〉

=
1

α2 − α1

{〈
(D + α1)K

(1)
α1

(x), φ(x)
〉
−

〈
(D + α2 − α2 + α1)K

(1)
α2

(x), φ(x)
〉}

=
〈
K(1)

α2
(x), φ(x)

〉
.

Therefore, Dα1K
(1,1)
α1,α2(x) = K

(1)
α2 (x) in the sense of distributions. For x, ỹ ∈ Ω

with x 6= ỹ the quaternionic Cauchy–Pompeiu formula yields

K(1,1)
α1,α2

(x− ỹ) = ψ
(1), (1)
(α1),(α2)(x, ỹ)− ψ̃

(1), (1,1)
(α1),(α1,α2)(x, ỹ),

where

ψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ) =

∫
Γ

K(1)
α1

(x− y)~n(y)K(1,1)
α1,α2

(y − ỹ) dΓy.

Substituting this equality into equality (4.3), we obtain

f(x) = −
∫

Γ

K(1)
α1

(x− y)~n(y)f(y) dΓy −
∫

Γ

K(1,1)
α1,α2

(x− y)~n(y)Dα1,yf(y) dΓy

+

∫
Ω

K(1,1)
α1,α2

(x− y)Dα1,yDα2,yf(y) dy

−
∫

Γ

ψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ)~n(ỹ)Dα1,ỹf(ỹ) dΓỹ

+

∫
Ω

ψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ)Dα1,ỹDα2,ỹf(ỹ)dỹ.
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Applying Stokes’ formula (2.7) again gives∫
Γ

ψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ)~n(ỹ)Dα1,ỹf(ỹ)dΓỹ −

∫
Ω

ψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ)Dα2,ỹDα1,ỹf(ỹ) dỹ

=

∫
Ω

Dr,−α2,ỹψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ)Dα1,ỹf(ỹ)dỹ.

Using the definition of K
(1,1)
α1,α2(x) and the equalities (4.2), (4.4), and noting that

Γ 3 y 6= x ∈ Ω, Γ 3 y 6= ỹ ∈ Ω, we obtain

Dr,−α2,ỹψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ) = −

∫
Γ

K(1)
α1

(x− y)~n(y)K(1)
α1

(y − ỹ) dΓy.

Since
∫

Γ
K

(1)
α1 (x−y)~n(y)K

(1)
α1 (y− ỹ) dΓy = 0 (see the proof of [19, Theorem 3.1])

we have Dr,−α2,ỹψ̃
(1), (1,1)
(α1),(α1,α2)(x, ỹ) = 0. This leads to (4.1).

Remark 4.4. If α2 = −α1 we have the representation formula in terms of the
Helmholtz operator as in [19, Theorem 4.1].

In order to obtain a generalization of the above theorem, we need the fol-
lowing lemma.

Lemma 4.5. Let α1, α2, . . . , αn be mutually different complex constants. Then∑n
i=1

∏n
ν=1,ν 6=i

1
(αν−αi)

= 0 for all 2 ≤ n ∈ N.

Proof. For n = 2, we have
∑2

i=1

∏2
ν=1,ν 6=i

1
(αν−αi)

= 1
α2−α1

+ 1
α1−α2

= 0. By

direct caculation we also get
∑3

i=1

∏3
ν=1,ν 6=i

1
(αν−αi)

= 0.

In the case n > 3, we suppose that this lemma holds for some n. We now
consider the function f(x) =

∑n+1
i=1 (x− αi)

∏n+1
ν=1,ν 6=i

1
(αν−αi)

. Note that

f(αn+1) =
n+1∑
i=1

(αn+1 − αi)
n+1∏
ν=1
ν 6=i

1

(αν − αi)
=

n∑
i=1

n∏
ν=1
ν 6=i

1

(αν − αi)
= 0

by inductive hypothesis. Similarly, f(αj) = 0 for all 1 ≤ j ≤ n. Therefore,
f(x) has (n + 1) zeroes αj, 1 ≤ j ≤ n + 1. However, it is a polynomial
of degree one. Thus, f(x) ≡ 0. Then, we have f ′(x) ≡ 0. In other words,
f ′(x) =

∑n+1
i=1

∏n+1
ν=1,ν 6=i

1
(αν−αi)

= 0, i.e., the lemma holds.

Theorem 4.6. Let f ∈ Cn(Ω,H(C)) ∩ Cn+1(Ω̄,H(C)). Then

f(x) = −
∫

Γ

K(1)
α1

(x− y)~n(y)f(y) dΓy

−
n∑

j=2

∫
Γ

K(1,1,...,1,1)
α1,α2,...,αj−1,αj

(x− y)~n(y)

j−1∏
k=1

Dαk,yf(y) dΓy

+

∫
Ω

K(1,1,...,1,1)
α1,α2,...,αn−1,αn

(x− y)
n∏

k=1

Dαk,yf(y) dy,

(4.5)
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where K
(1,1,...,1,1)
α1,α2,...,αk−1,αk(x) is given in Remark 4.2 and α1, α2, . . . , αn are mutually

different complex constants.

Proof. For n = 1, formula (4.5) coincides with the Cauchy–Pompeiu represen-
tation. For the case n = 2, we have already shown (4.5) in Theorem 4.3. In
order to prove this formula for any n > 2 assume it holds for n−1. By inductive
hypothesis we have

f(x) = −
∫

Γ

K(1)
α1

(x− y)~n(y)f(y) dΓy

−
n−1∑
j=2

∫
Γ

K(1,1,...,1,1)
α1,α2,...,αj−1,αj

(x− y)~n(y)

j−1∏
k=1

Dαk,yf(y) dΓy

+

∫
Ω

K(1,1,...,1,1)
α1,α2,...,αn−1

(x− y)
n−1∏
k=1

Dαk,yf(y) dy .

Applying the Cauchy–Pompeiu formula (3.1) to
∏n−1

k=1 Dαk,yf(y) gives

n−1∏
k=1

Dαk,yf(y) = −
∫

Γ

K(1)
αn

(y − ỹ)~n(ỹ)
n−1∏
k=1

Dαk,ỹf(ỹ) dΓỹ

+

∫
Ω

K(1)
αn

(y − ỹ)
n∏

k=1

Dαk,ỹf(ỹ)dỹ.

It follows

f(x) = −
∫

Γ

K(1)
α1

(x− y)~n(y)f(y) dΓy

−
n−1∑
j=2

∫
Γ

K(1,1,...,1,1)
α1,α2,...,αj−1,αj

(x− y)~n(y)

j−1∏
k=1

Dαk,yf(y) dΓy

−
∫

Γ

ψ
(1,1,...,1,1), (1)
(α1,α2,...,αn−1),(αn)(x, ỹ)~n(ỹ)

n−1∏
k=1

Dαk,ỹf(ỹ) dΓỹ

+

∫
Ω

ψ
(1,1,...,1,1), (1)
(α1,α2,...,αn−1), (αn)(x, ỹ)

n∏
k=1

Dαk,ỹf(ỹ)dỹ,

where ψ
(1,1,...,1,1), (1)
(α1,α2,...,αn−1), (αn)(x, ỹ) =

∫
Ω
K

(1,1,...,1)
α1,α2,...,αn−1(x − y)K

(1)
αn (y − ỹ) dy. By in-

ductive hypothesis, applying it for K
(1,1,...,1,1)
α1,α2,...,αn−1,αn(x − ỹ) as well as using the

assertion (iii) of Theorem 4.1 step by step, we obtain

ψ
(1,1,...,1,1), (1)
(α1,α2,...,αn−1),(αn)(x, ỹ)

= K(1,1,...,1,1)
α1,α2,...,αn−1,αn

(x− ỹ) +
n−1∑
k=1

ψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ),
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where

ψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ) =

∫
Γ

K(1,1,...,1)
α1,α2,...,αk

(x−y)~n(y)K(1,1,...,1)
αk,αk+1,...,αn

(y−ỹ)dΓy.

Hence,

f(x) = −
∫

Γ

K(1)
α1

(x− y)~n(y)f(y) dΓy

−
n−1∑
j=2

∫
Γ

K(1,1,...,1,1)
α1,α2,...,αj−1,αj

(x− y)~n(y)

j−1∏
k=1

Dαk,yf(y) dΓy

−
∫

Γ

K(1,1,...,1,1)
α1,α2,...,αn−1,αn

(x− y)~n(y)
n−1∏
k=1

Dαk,yf(y) dΓy

+

∫
Ω

K(1,1,...,1,1)
α1,α2,...,αn−1,αn

(x− y)
n∏

k=1

Dαk,yf(y) dy

−
∫

Γ

[ n−1∑
k=1

ψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ)

]
~n(ỹ)

n−1∏
j=1

Dαj ,ỹf(ỹ) dΓỹ

+

∫
Ω

[ n−1∑
k=1

ψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ)

] n∏
j=1

Dαj ,ỹf(ỹ)dỹ.

(4.6)

Applying the quaternionic Stokes’ formula (2.7) yields

∫
Γ

[ n−1∑
k=1

ψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ)

]
~n(ỹ)

n−1∏
j=1

Dαj ,ỹf(ỹ) dΓỹ

−
∫

Ω

[ n−1∑
k=1

ψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ)

] n∏
j=1

Dαj ,ỹf(ỹ)dỹ

=

∫
Ω

[ n−1∑
k=1

D−αn,ỹψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ)

] n−1∏
j=1

Dαj ,ỹf(ỹ)dỹ.

Using the assertion (iii) of Lemma 4.1 and Remark 4.2 we get by Lemma 4.5

n−1∑
k=1

D−αn,ỹψ̃
(1,1,...,1), (1,1,...,1)
(α1,α2,...,αk),(αk,αk+1,...,αn)(x, ỹ)

= −
n−1∑
k=1

∫
Γ

K(1,1,...,1)
α1,α2,...,αk

(x− y)~n(y)K(1,1,...,1)
αk,αk+1,...,αn−1

(y − ỹ) dΓy
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= −
n−1∑
k=1

[( k∑
i=1

k∏
ν=1
ν 6=i

1

(αν − αi)

)( n−1∑
j=k

n−1∏
µ=k

µ 6=j

1

(αµ − αj)

)

×
∫

Γ

K(1)
αi

(x− y)~n(y)K(1)
αj

(y − ỹ) dΓy

]
= 0 .

Substituting this into equality (4.6) we obtain equality (4.5), i.e., Theorem 4.6
is proved.

In order to obtain the generalized representation of solution for
∏j

ν=1(D +
αν)

kνf = g, we now as an example construct the representation of solutions for
the inhomogeneous equation D3

α1
Dα2f(x) = g(x) in a bounded domain Ω, where

α1 6= α2. The integral representation formulas for higher order Dα equations
in [19], Theorem 4.6 and Lemma 4.1 are used.

Theorem 4.7. Let f ∈ C4(Ω,H(C))∩C3(Ω̄,H(C)), α1 6= α2, α1, α2 ∈ C. Then

f(x) = −
3∑

k=1

∫
Γ

K(k)
α1

(x− y)~n(y)Dk−1
α1,yf(y) dΓy

−
∫

Γ

K(3,1)
α1,α2

(x− y)~n(y)D3
α1,yf(y) dΓy

+

∫
Ω

K(3,1)
α1,α2

(x− y)D3
α1,yDα2,yf(y) dy.

Proof. Applying the quaternionic Cauchy–Pompeiu formula for D3
α1,yf(y) we

get

D3
y,α1

f(y) = −
∫

Γ

K(1)
α2

(y − ỹ)~n(ỹ)D3
α1,ỹf(ỹ) dΓỹ

+

∫
Ω

K(1)
α2

(y − ỹ)Dα2,ỹD
3
α1,ỹf(ỹ)dỹ.

It follows

f(x) = −
3∑

k=1

∫
Γ

K(k)
α1

(x− y)~n(y)Dk−1
α1,yf(y) dΓy

−
∫

Γ

ψ
(3),(0,1)
(α1),(α1,α2)(x, ỹ)~n(ỹ)D3

α1,ỹf(ỹ) dΓỹ

+

∫
Ω

ψ
(3),(0,1)
(α1),(α1,α2)(x, ỹ)Dα2,ỹD

3
α1,ỹf(ỹ)dỹ,

(4.7)
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where ψ
(3),(0,1)
(α1),(α1,α2)(x, ỹ) =

∫
Ω
K

(3)
α1 (x−y)K(1)

α2 (y− ỹ) dy, and it is easy to see that

K(1,1)
α1,α2

(x) =
1

α2 − α1

(
K(1)

α1
(x)−K(1)

α2
(x)

)
K(2,1)

α1,α2
(x) =

1

α2 − α1

(
K(2)

α1
(x)−K(1,1)

α1,α2
(x)

)
K(3,1)

α1,α2
(x) =

1

α2 − α1

(
K(3)

α1
(x)−K(2,1)

α1,α2
(x)

)
Dν

α1
K(3,1)

α1,α2
(x) = K(3−ν,1)

α1,α2
(x) (ν = 1, 2, 3)

in the sense of distribution, because of Lemma 3.1 and Lemma 4.1. Applying
the representaion for higher order powers of Dα in Theorem 3.2 to K

(3,1)
α1,α2(x− ỹ)

gives

ψ
(3),(0,1)
(α1),(α1,α2)(x, ỹ) = K(3,1)

α1,α2
(x− ỹ) +

3∑
ν=1

ψ̃
(ν),(4−ν,1)
(α1),(α1,α2)(x, ỹ),

where ψ̃
(ν),(4−ν,1)
(α1),(α1,α2)(x, ỹ) =

∫
Γ
K

(ν)
α1 (x − y)~n(y)K

(4−ν,1)
α1,α2 (y − ỹ) dΓy. Substituting

this into (4.7), then applying the Stokes’ formula again with x 6= y, shows that

f(x) = −
3∑

k=1

∫
Γ

K(k)
α1

(x− y)~n(y)Dk−1
α1,yf(y) dΓy

−
∫

Γ

K(3,1)
α1,α2

(x− y)~n(y)D3
α1,yf(y) dΓy

+

∫
Ω

K(3,1)
α1,α2

(x− y)D3
α1,yDα2,yf(y) dy

−
∫

Ω

3∑
ν=1

D−α2,ỹψ̃
(ν),(4−ν,1)
(α1),(α1,α2)(x, ỹ)D

3
r,α1,ỹDα2,ỹf(ỹ)dỹ.

Namely, for arbitrary fixed x and ỹ, the functions K
(k)
α1 (x− y), K(k)

α1 (y− ỹ), k =
1, 2, are C1-functions in the whole domain Ω except for the two points x and ỹ.
Therefore, for Ωx,ε = Ω− {y ∈ Ω, |y − x| ≤ ε}, Ωỹ,ε = Ω− {y ∈ Ω, |y − ỹ| ≤ ε}
and Ωε = Ω− {y ∈ Ω | |y − x| ≤ ε and |y − ỹ| ≤ ε} with ε > 0 small enough,∫

Γ

K(1)
α1

(x− y)~n(y)K(3)
α1

(y − ỹ) dΓy =

∫
∂Ωx,ε

K(1)
α1

(x− y)~n(y)K(3)
α1

(y − ỹ) dΓy

+

∫
|y−x|=ε

K(1)
α1

(x− y)~n(y)K(3)
α1

(y − ỹ) dΓy∫
Γ

K(3)
α1

(x− y)~n(y)K(1)
α1

(y − ỹ) dΓy =

∫
∂Ωỹ,ε

K(3)
α1

(x− y)~n(y)K(1)
α1

(y − ỹ) dΓy

+

∫
|y−ỹ|=ε

K(3)
α1

(x− y)~n(y)K(1)
α1

(y − ỹ) dΓy
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and∫
Γ

K(2)
α1

(x− y)~n(y)K(2)
α1

(y − ỹ) dΓy =

∫
∂Ωε

K(2)
α1

(x− y)~n(y)K(2)
α1

(y − ỹ) dΓy

+

∫
|y−x|=ε

K(2)
α1

(x− y)~n(y)K(2)
α1

(y − ỹ) dΓy

+

∫
|y−ỹ|=ε

K(2)
α1

(x− y)~n(y)K(2)
α1

(y − ỹ) dΓy.

Applying Stokes’ formula for Ωx,ε and Ωỹ,ε, respectively, gives

lim
ε→0

∫
∂Ωx,ε

K(1)
α1

(x− y)~n(y)K(3)
α1

(y − ỹ) dΓy

= K(3)
α1

(x− ỹ) + lim
ε→0

∫
Ωx,ε

K(1)
α1

(x− y)K(2)
α1

(y − ỹ) dy

lim
ε→0

∫
∂Ωỹ,ε

K(3)
α1

(x− y)~n(y)K(1)
α1

(y − ỹ) dΓy

= K(3)
α1

(x− ỹ)− lim
ε→0

∫
Ωỹ,ε

K(2)
α1

(x− y)K(1)
α1

(y − ỹ) dy .

Applying now Stokes’ formula for Ωε and observing Dr,−α1,yK
(2)
α1 (x − y) =

−Dα1,xK
(2)
α1 (x− y) = K

(1)
α1 (x− y) shows

∫
∂Ωε

K(2)
α1

(x− y)~n(y)K(2)
α1

(y − ỹ) dΓy = −
∫

Ωε

K(1)
α1

(x− y)K(2)
α1

(y − ỹ) dy

+

∫
Ωε

K(2)
α1

(x− y)K(1)
α1

(y − ỹ) dy.

On the orther hand∫
Ωx,ε

K(1)
α1

(x− y)K(2)
α1

(y − ỹ) dy =

∫
Ωε

K(1)
α1

(x− y)K(2)
α1

(y − ỹ) dy

+

∫
|y−ỹ|<ε

K(1)
α1

(x− y)K(2)
α1

(y − ỹ) dy∫
Ωỹ,ε

K(2)
α1

(x− y)K(1)
α1

(y − ỹ) dy =

∫
Ωε

K(2)
α1

(x− y)K(1)
α1

(y − ỹ) dy

+

∫
|y−x|<ε

K(2)
α1

(x− y)K(1)
α1

(y − ỹ) dy.
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From equality (3.5) it follows that

lim
ε→0

∫
|y−ỹ|=ε

K(1)
α1

(x− y)~n(y)K(3)
α1

(y − ỹ) dΓy = 0

lim
ε→0

∫
|y−x|=ε

K(2)
α1

(x− y)~n(y)K(2)
α1

(y − ỹ) dΓy = 0

lim
ε→0

∫
|y−ỹ|=ε

K(2)
α1

(x− y)~n(y)K(2)
α1

(y − ỹ) dΓy = 0

lim
ε→0

∫
|y−x|=ε

K(1)
α1

(x− y)~n(y)K(3)
α1

(y − ỹ) dΓy = −K(3)
α1

(x− ỹ)

lim
ε→0

∫
|y−ỹ|=ε

K(3)
α1

(x− y)~n(y)K(1)
α1

(y − ỹ) dΓy = K(3)
α1

(x− ỹ).

Using the above equalities and the Cauchy–Pompeiu representation formulas
(3.1) and (3.2) for Dn

α (n = 1, 2) and K
(3)
α1 (x− ỹ) we obtain

lim
ε→0

∫
|y−ỹ|<ε

K(1)
α1

(x− y)K(2)
α1

(y − ỹ) dy = 0

lim
ε→0

∫
|y−x|<ε

K(2)
α1

(x− y)K(1)
α1

(y − ỹ) dy = 0.

This leads to
3∑

ν=1

Dỹ,−α2ψ̃
(ν), (4−ν,1)
(α1),(α1,α2)(x, ỹ) = −

3∑
ν=1

∫
Γ

K(ν)
α1

(x− y)~n(y)K(4−ν)
α1

(y − ỹ) dΓy = 0.

Hence Theorem 4.7 is proved.

In a similar way as in the proof of Theorem 4.7 and using the represen-
tation formulas for higher order Dα operators in [19, Theorem 3.2] as well as
Theorem 4.6, by induction we can also prove the next result.

Theorem 4.8. Let f ∈ Cn(Ω,H(C)) ∩Cn−1(Ω̄,H(C)) and
∑j

ν=1 kν = n. Then

f(x) = −
k1∑

ν1=1

∫
Γ

K(ν1)
α1

(x− y)~n(y)Dν1−1
α1,y f(y) dΓy

−
k2∑

ν2=1

∫
Γ

K(k1, ν2)
α1, α2

(x− y)~n(y)Dν2−1
α2,y D

k1
α1,yf(y) dΓy − . . .

−
kj∑

νj=1

∫
Γ

K(k1,k2, ..., kj−1,νj)
α1,α2,...,αj−1, αj

(x− y)~n(y)Dνj−1
αkj

,y

j−1∏
µ=1

Dkµ
αµ,yf(y) dΓy

+

∫
Ω

K(k1,k2, ..., kj−1,kj)
α1,α2,...,αj−1, αj

(x− y)

j∏
ν=1

Dkν
αν ,yf(y) dy,

where α1, α2, . . . , αj−1, αj are mutually different complex constants.
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