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Nonlinear Boundary Value Problems
Involving the p-Laplacian
and p-Laplacian-Like Operators
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Abstract. We study nonlinear boundary value problems for systems driven by the
vector p-Laplacian or p-Laplacian-like operators and having a maximal monotone
term. We consider periodic problems and problems with nonlinear boundary condi-
tions formulated in terms of maximal monotone operators. This way we achieve a
unified treatment of the classical Dirichlet, Neumann and periodic problems. Our
hypotheses permit the presence of Hartman and Nagumo-Hartman nonlinearities,
partially extending this way some recent works of Mawhin and his coworkers.
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1. Introduction

In this paper we study the following two nonlinear boundary value problems
in RV:

{ (a(2'(£)) € A(x(t) + F(t, 2(t),2'(t)) ace. on T =[0,}] )

z(0) = x(b), 2'(0) = 2/(b),
and

{ (||x/(t)||p*2x/(t))l € A(z(t)) + F(t,z(t),2'(t)) a.e. onT = [0, @)

(0p(2'(0)), —p(2' (1)) € £(2(0),2(b)), 1 < p < co.

Here a : RN — RY is a suitable homeomorphism which is not in general homoge-
neous, A : D(A) C RN — 28" is a maximal monotone map, F : TxRN¥N xRN —
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oRY \ {@} is a multivalued in general nonlinearity satisfying Caratheodory type
conditions, ¢, : RN — R is the homeomorphism defined by

|7||P=2r if r #0
2l =1 g if 1 =0

and & : D(€) C RN x RV — 2R">RY i5 3 maximal monotone map.

Boundary value problems involving the ordinary p-Laplacian have been the
focus of attention of many researchers in the last decade. Most of the works
deal with the scalar problem. We refer to the works of Boccardo-Drabek-
Giachetti-Kucera [2], De Coster [4], Del Pino-Manasevich-Murua [5], Fabry-
Fayyad [8], Guo [11] and the references therein. We also mention the work
of Dang-Oppenheimer [3], where the ordinary scalar p-Laplacian is replaced by
a one-dimensional possibly nonhomogeneous nonlinear differential operator.

Recently in a series of interesting papers, Mawhin and coworkers studied
systems driven by the ordinary vector p-Laplacian or p-Laplacian like opera-
tors and having primarily periodic boundary conditions. We refer to the pa-
pers of Manasevich-Mawhin [16] Mawhin [18, 19] and Mawhin-Urena [20]. As
the Nagumo-Hartman condition used here is distinct from the one used by
Mawhin-Urena [20] we provide a partial extension of the works by Mawhin [18]
and Mawhin-Urena [20], where the authors employ nonlinearities of the Hart-
man and Nagumo-Hartman type. Also in these works the ordinary vector p-
Laplacian with periodic boundary conditions is used, A = 0 and the nonlinearity
is single-valued.

The problems that we study here are more general since they involve the
maximal monotone operator A, which in the case of Problem (1) is not nec-
essarily defined everywhere (see hypotheses H(A);). This way we incorporate
in our framework differential variational inequalities. Moreover, in the case of
Problem (2), the nonlinear multivalued boundary conditions used here achieve
a unified treatment of the Dirichlet, Neumann and periodic problems and go
beyond them (see Section 5). This way we extend the semilinear works (i.e.,
p = 2) of Erbe-Krawcewicz [7], Frigon [9], Kandilakis-Papageorgiou [14] and
Halidias-Papageorgiou [12] and the recent nonlinear works of Kyritsi-Matzakos-
Papageorgiou [15] and Papageorgiou-Papageorgiou [21]. Our approach is based
on nonlinear operator theory and fixed point arguments.

2. Mathematical background

Let (€2,%) be a measurable space and X a separable Banach space. We intro-
duce the notations
Pjy(X) = {A C X : Ais nonempty, closed (and convex)}

Puyie)(X) = {A C X : A is nonempty, (weakly) compact (and convex)}.
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A multifunction F' : Q — P¢(X) is said to be measurable, if for all x € X
w — d(z, F(w)) = inf[||lx — ul| : v € F(w)] is measurable. Also we say that
F:Q — 2X\{@} is graph measurable, if GrF = {(w,2) € Ax X :z € F(w)} €
¥ X B(X), with B(X) being the Borel o-field of X. For multifunctions with
values in Py(X) measurability implies graph measurability, while the converse
holds if ¥ is complete. Next let (£2, X, 1) be a finite measure space and F' : Q) —
2%\ {2} a multifunction. For 1 < p < oo we introduce the set

Sh={fel’(LX): f(w) € F(w) p—ae. onQ}.

Let Y, Z be Hausdorff topological spaces. A multifunction G : Y — 272\ {@} is
said to be upper semicontinuous (usc for short) (respectively lower semicontin-
uous (Isc for short)), if for every closed set C' C Z, the set G~ (C) = {y € Y :
G(y) N C # @} (respectively the set GT(C) = {y € Y : G(y) C C}) is closed
in Y. If Z is regular and F is Py(Z)-valued and usc, then it has a closed graph,
ie., GrtG ={(y,2) € Y xZ:2z€ G(y)} is closed in Y x Z. The converse is true
if G is locally compact.

Now let X be a reflexive Banach space and X* its topological dual. Recall
that a monotone, demicontinuous operator A : X — X* is maximal mono-
tone. Also a maximal monotone coercive operator, is surjective. When X = H
(Hilbert space) and A : D(A) C H — 2 is a maximal monotone operator,
then for every A > 0 we introduce the well-known operators

Jy=(I+ A" (resolvent of A)
1

A p—
AT

(I —Jy) (Yosida approximation of A).

Both operators are single-valued and defined on all of H. Moreover, J is
nonexpansive, while A, is Lipschitz continuous with constant % (hence A, is
maximal monotone).

We return to the general case of X being a reflexive Banach space. An
operator A : X — 2% is said to be pseudomonotone, if

(a) for all z € X, A(x) € Pyre(X™);

(b) A is usc from every finite dimensional subspace Z of X into X} ;

(c) if z, = z in X, o% € A(x,) and limsup,_ . (2%, 2, —z) < 0, then
for every y € X, there exists 2*(y) € A(z) such that (z*(y),z —y) <
liminf, o (xf, 2, — y).

We say that A : D(A) C X — 2X" is generalized pseudomonotone, if for all z7 €
A(x,) such that z,, = x in X, ¥ = z* in X* and limsup,,__ (2%, z, — ) <0,
we have z* € A(z) and (x},x,) — (z*,z). A maximal monotone operator
is generalized pseudomonotone and a pseudomonotone operator is generalized
pseudomonotone. A generalized pseudomonotone operator is pseudomonotone,
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if it is everywhere defined and bounded. A pseudomonotone coercive operator is
surjective and the sum of pseudomonotone operators is again a pseudomonotone
operator. For details on multifunctions and nonlinear operators of monotone
type, we refer to the books of Hu-Papageorgiou [13] and Zeidler [22].

Recall that if V,Z are Banach spaces and K : V — Z, we say that K
is completely continuous, if v, — v in V implies that K(v,) — K(v) in Z.
In our analysis of problems (1) and (2) we shall use the following multival-
ued nonlinear alternative theorem due to Bader [1] which improves a result of
Dugundji-Granas [6, p. 98].

Proposition 2.1. If X, Y are Banach spaces with Y reflexive, W is a bounded
open subset of X with 0 € W, G : W — Pu.(Y) is usc from W into Yy,
bounded, and K :'Y — X 1is completely continuous, then one of the following
alternatives holds:

(a) there exist xy € OW and s € (0,1) such that xy € s(K o G)(x);or
(b) ® = G o K has a fized point (i.e., there exist T € W such that T € ®(T)).

3. Problems with p-Laplacian—like operators

In this section we deal with Problem (1) and we do not require that D(A) = R¥.
Our analysis of Problem (1) starts with the study of the auxiliary periodic
problem

—(a(@'(1)))" + Ax(z(t) + e®|P*x(t) = g(t) ae. on T =[0,0] (3)
2(0) = x(b), #'(0) = 2'(b),

where 1 < p < 00,9 € LY(T,R"), ]13—1— =1 and A > 0. We introduce the
following hypotheses on the maps a and A

H(a);: a : RY — RY is continuous, strictly monotone and there exists a
function v : [0, +00) — [0, +00) such that v(r) — +oo as r — +00
and for all z € RY we have v(||z||)||z| < (a(z),2)g~.

H(A);: A : D(A) € RY — 28" is a maximal monotone map such that
0 € A(0).

Remark 3.1. We emphasize that we do not require that D(A) = RY.

In what follows we shall use the two spaces C (T, RY) = {z € C'(T,R") :
xz(0)=xz(b),2'(0)=2'(b)} and Wpleff(T RY) = {2 € WIP(T,RY) : 2(0)=x(b)}.
Proposition 3.2. If hypotheses H(a); and H(A); hold, then Problem (3) has a
unique solution x € CL, (T, RYN) such that a(z') € WLY(T,R").

per per
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Proof. Let f: T x RY — RY be defined by f(t,z) = Ax(z) + ||z|P2x — g(t).
Evidently f is a Caratheodory function. Also let n : RN — R¥ be defined
by n(x) = x. Then if h(t) = hi(t) where hi(t) = supr>0[ P+ Pl 4 2 4
lg(®)|lr + [lg(t)]l], and Ry > max{1,||g||} where g = 5 fo t)dt, with all the
above data we can apply Corollary 3.1 of Manasevich- Mawhln [16] and obtain
a solution for (3). The uniqueness follows at once from hypotheses H(a); and
the monotonicity of Ay and strict monotonicity of ,,. |

Let D = {z € Coor(T,RY) = a(z') € WLA(T,RN)}. For A > 0, let Sy :
D C LT, RY) — LY(T,RY) be the nonlinear operator defined by Sy(z) =
—(a(z")) + A,\( ), where for every x € D, A,\( )(-) = Ax(z(:)). Note that if

x € D, then Ay(z(+)) € C(T,RY).

Proposition 3.3. If the hypothesis H(a); holds and A > 0, then S) : D C
LP(T,RN) — LYT,RY) is maximal monotone.

Proof. Let J : LP(T,RY) — L(T,RY) be the continuous, strictly monotone
(thus maximal monotone) operator defined by J(z)(-) = [|z(-)||P"2x(-). From
Proposition 3.2 we know that R(S\ + J) = LY(T,RY). We will show that Sy
is maximal monotone. Indeed first note that .S is monotone. Suppose that for
some y € LP(T,RY) and some v € LY(T,RY), we have

(Sa(z) — v, —y)gp >0 forall z € D. (4)

Hereafter by (-,-),, we denote the duality brackets for the pair (LY(T,RY),
LP(T,RY)). Since S + J is surjective, we can find Ty € D such that Sx(z1) +
J(z1) = v + J(y). Using this in (4) with = z; € D, we obtain y = z; € D
since J is strictly monotone and v = S)(x1). |

Next we study of the following regular approximation of Problem (1):

{ (a(2'(1))) € Ax(z(t)) + F(t,2(t),2'()) ae onT = [0,0] 5
2(0) = z(b), 2'(0) = z'(b),

where A > 0. Our hypotheses on the data of (5) are the following:

H(a)s: a : RY — RY is a monotone map such that a(y) = c(y)y or a(y) =
(cr(yp)yr)_, for all y = (y)i, € RY, with ¢ : RY — R, and ¢, :
R — R, k € {1,..., N}, continuous maps and for all y € R" we have
(a(y), y)rv > col|ly||? for some ¢y > 0.

H(F);: F: T xRY x RY — P.(RY) is a multifunction such that

(i) for all z,y € RN, t — F(t,z,y) is graph measurable;
(ii) for almost all t € T, (z,y) — F(t,x,y) has closed graph;
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(iii) for almost all t € T', all x,y € RN and all v € F(t,z,y) we have
(v, 2)py 2 —crflz|l? = collz]"[lyl"™" — es(E)]|=]°

with ¢1,¢0 >0, c3 € LY (T4, 1 <1, s <p;
(iv) there exists M > 0 such that if ||zo|| = M and (g, yo)ry = 0, we
can find a 6 > 0 such that for almost all t € T', we have

inf [(v,2)py +colly||” : |z — 2ol + |y —vol| < &,v € F(t,z,y)] > 0;

(v) foralmost allt € T, all ||z|| < M, ally € RY and allv € F(t,x,y),
we have
loll < ea(t) + esllyl”

with ¢4(t) € L(T) 4, n = max{2,q}, ¢5 > 0.

Remark 3.4. Hypothesis H(F);(iv) is a suitable extension to the present setting
of the so-called “Hartman condition” (see Mawhin [19]).

Proposition 3.5. If hypotheses H(a)s, H(A); and H(F); hold, then Problem (5)
has a solution x € C, (T, RN) with a(z') € WLI(T,RY).

per per

Proof. First we do the proof by assuming the following stronger version of
hypothesis H(F) (iv):
“(iv)” there exists an M > 0 such that if ||zo|| = M and (z¢, yo)ry = 0, we
can find § > 0 and cg > 0 such that for almost all ¢t € T we have

inf [(v,2)ax + collyll < o — aoll + ly — woll < 6.0 € F(t,2,9)] = 6> 0. (6)

Let Sy : D C LP(T,RY) — LYT,RY) be the maximal monotone operator
introduced earlier in this section (see Proposition 3.3). Also as before let J :
LP(T,RY) — L9(T,RY) be defined by J(z)(+) = ||z(-)||P"2x(-). This operator is
maximal monotone. Set V) = Sy + J. Then V) is maximal monotone. Also let
U:D C LP(T,RY) — LT, R") be the nonlinecar differential operator defined
by U(z) = —(a(2)), z € D. From Proposition 3.3 we have that U is maximal
monotone. Clearly Vj is coercive. So R(Vy) = L4(T,RY). Moreover, V) is also
injective. So we can define the map
Ky=V,": LY(T,RY) — D C WLe(T,RY).

per

Claim 1: K, : LY(T,RY) — WLr(T,RY) is completely continuous.

per

Suppose that u, < u in LI(T,RY). Set z,, = Kj(u,), n > 1. We have
||xn||11’;1 < cgllunll,  with cs >0,

hence {z,}n,>1 € WLP(T,RY) is bounded. Therefore we may assume that

per

T, — x in WA(T,RY) and z,, — x in LP(T,RY). Because u, = Vi(z,), n > 1,
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it follows that u = Vi(z) = S\(z) + J(z) = U(z) + Ax(z) + J(z). For every
n>1 2, €D and so a(z,) € WL(T,RY). Hence a(z,) = @, + G, with

per

a, € RV and @, € V = {v € WLY(T,RY) fo t)dt = 0}. From the equation

per
U(z,) + Ax(zn) + J(z,) = uy, if follows that {( (@) b1 © LIY(T,RY) is
bounded, hence it follows that {a@,},>; € C(T,R") is relatively compact. For
every n > 1 and every t € T', we have

2 (t) = a ' (@, + an(t)).

Integrating this equation over 7' = [0, b] and since z,,(0) = z,,(b), we obtain

/b a” (@, + @ (t))dt = 0.

Invoking Proposition 2.2 of Manasevich-Mawhin [16], we infer that {@,},>1C
RY is bounded. So we conclude that {a(z))},>1 C C(T,RY) is relatively

compact. Hence {a(z],)}n>1 € Wyd(T,RY) is bounded and so we may assume

that a(x!) = Bin WLY(T, RY). Because z,, — z in LP(T,R") and U is maximal

per

monotone, it follows that 3 = U(z), hence a(a:’n) = a( ') in Wyed(T,RY) and
so a(z]) — a(z') in C(T,RY). So we have that 2/, — 2’ in C(T,R"). Therefore
finally we can say that z, — x in W 2(T,RY ) (in fact we have shown that

x, — x in CY(T,RY)). We conclude that the whole sequence {x,, = Ky () }n>1
strongly converges to x = K (u). This proves the claim.

Next let N : O = {z € W)R(T,RY) : [|z(t)]] < M for all t € T} —
LY(T,RY) be the multivalued operator defined by N(x) = Sf’w(.’x(_m/(_)). From
Hu-Papageorgiou [13, p. 236] we know that N has values in P,.(LY(T, RY)) and
it is usc from C' with the relative W);2(T,R")-norm topology into LY (T, R"),,.
Set Ni(x) = —N(x) + J(x). Then Problem (5) is equivalent to the abstract

multivalued fixed point problem

xr € K)\Ny(z). (7)

Let M; > 0 be such that M? > L[clMpb T LU ||03H1M5]. We
consider the following set in WLE(T,RY):

per

W ={z e W)A(T,RY) : ||z(t)|| < M for all t € T and [|2/[|, < M }.
Set Wy = {z € W(T,RY) : |lz(t)| < M forallt € T} and Wy = {z €
WoR(T,RY) : |||, < My}. We have W = Wy N W, and Wy, W, are open. So

W = Wy N W, is an open and of course bounded subset of WLP(T, RY) with

per

0 € W. Note that W = {z € Wr(T,R") : [Jz(t)]| < M for all t € T and
[']lp < M}
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Claim 2: For every x € OW and every & € (0,1), we have x ¢ {(K) o Nq)(z).

Let z € W and suppose that for some ¢ € (0,1), we have z € £(KyoN;)(x).
Then U(%x) + A,\@m) + J(%m) = —f+ J(z) with f € N(x), and hence

collo’llp < =€ (f, 2)gp + (€77 = Dzl < =€ (f,2)gp (8)

(since 0 < & < 1). Using hypothesis H(F),(iii), we obtain

b
—E7H(fo )y < € ar|2lf + €p_102/ ()7 (| ()P~ dt + €7l esly ] x]]2,.-
0
SetT=p—r,0=Cand ¢ =2 (% + é = 1). From Holder’s inequality, we have

=& 2)gp < € Meallllh + € el Gl A € lesllu

Using this in (8) and because 0 < £ < 1, we obtain (recall the choice of M)

L P
rcg MPbr

la'llp < £ Jen 275 + el M| < P
0

To conclude that z € W it remains to show that |z(t)| < M for all
t € T. We argue by contradiction. So suppose that for some ¢y € T" we have
lz(to)|| = M. Since x € W, we must have that ||z(tp)|| = maxer ||(t)]|. Let
0(t) = %H:L‘(t)”p. We see that 6(-) attains its maximum on 7" = [0, b] at the point
to € T. If ty € (0,b), then 0'(ty) = 0 and so ||z(to)||P~*(x(to), 2/ (to))ry = 0,
hence (z(ty), 2'(to))rv = 0. By virtue of (6), for almost all t € T" we have

inf [(v, 2)zy + collyll” : 12 — 2(to) | + ly — 2/ (to) | < 0, v € F(t, 2,y)] > 5> 0.

We can find a §; > 0 such that if ¢ € (¢, to+01] we have ||z(t) —x(to) ||+ |2 (¢) —
2'(tg)]] < ¢ and z(t) # 0. Then for almost all ¢ € (tg,to + d1],

(f(t), 2(t))rr + coll2'(B)[|P > c6 > 0. (9)
We know that a.e. on T
(f(8), z(t))rw

_ ((a<%x'(t)>>/,x(t))

and hence (see 9)

- (W (ge)a)) (1= g letol?

RN

((a(%x’(t)))I,x(t))RN Lol (D= ¢ >0 ae. on (fo o+ 6]
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Integrating this inequality on [to,t] with ¢ € (to,to + 01], after integration by

parts, we obtain
. ((“(%x’@o))),x’(to))

(((t0))0), .

- /t: (a<%x’(s)>,x’(s)>RNds + o /t: 12 (s)|[Pds > cs(t — to) > 0.

Suppose that the first version of hypothesis H(a)s holds, namely that a(y) =
c(y)y. The reasoning is similar if the other version is valid. We have
1 / 1 /
— (e (t0)>g(x (o), (to)) g = O.
N

<a(%m'(t0)) , x(to)) :

Therefore for ¢ € (tg, to + d1] we have (2/(t), z(t))gr > 0 (since 0 < £ < 1), i.e.,
V'(t) > 0 for t € (to,to + 01]. So 6 is strictly increasing on (tg,to + 6], which
contradicts the choice of t,. Therefore we infer that ||z(t)|| < M for all t € T.

If o = 0, then 0’ (to) = 0.(0) < 0 and 6" (b) > 0 (because 0(0) = 6(b),
from the periodic boundary conditions). So we have (z(0),2'(0))ry = 0 (since
2(0) = z(b), 2/(0) = 2/(b), recall that = € D). So we proceed as before. Similarly
if tg = b. Therefore we conclude that ||z(¢)|| < M for all t € T and so x € W,
which proves the claim.

R

Now we can apply Proposition 2.1 and obtain = € D NW which solves the
fixed point Problem (7). Clearly z € D N'W is a solution of (5).

Finally it remains to remove the stronger version of hypothesis H(F);(iv)
(see (6)). To this end let €, | 0 and set F,(t,z,y) = F(t,z,y) + €,x. Then
Problem (5) with F replaced by F),, has a solution =, € DNW, n > 1.

Evidently we may assume that z, — x in W)2(T,RY). As in the proof of

Claim 1, we have x, — x in W 2(T,R") and in the limit as n — oo we obtain
U(x) + Ay(z) € N(x). Therefore z € D N W is a solution of (5). |

Now that we have solved the auxiliary Problem (5), by passing to the limit
as A | 0, we shall obtain a solution for the original Problem (1).

Theorem 3.6. If hypotheses H(a)y, H(A); and H(F); hold, then Problem (1)
has a solution x € C,,.(T,RY) with a(z'(-)) € W,(T,R").

Proof. Let A\, | 0 and let z, € D NW be solutions of the corresponding
auxiliary problems (5). Evidently {z,},>1 C WL2(T,RY) is bounded and so

per

we may assume that z,, — z in Wple’f (T,RY). For every n > 1, we have

(Un). An (@), + 1A, @013 = = (fu A, (), (10)
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From integration by parts and since z,(0) = x,(b), 2,,(0) = 2/,(b), we have

~

(U(‘%”)’AAn(:U"))qp = /(; ( - (a<x;(t>>>/a Ay, (xn(t)))Rth
= [ (el v o)

From the chain rule of Marcus-Mizel [17], we have that %A, (z,(t))
= A\ (zn(t))z,(t) a.e. on T. So (see H(A);)

~

b
wwmAM@mwzldmmx%wﬂM@ﬂmﬂmwﬁzu

Using this inequality in (10), we obtain that {Ay, (2,)}ns1 C L*(T,RY) is
bounded. So we may assume that Ay (z,) - u in L¥(T,RY). If I, (xn) () =
Iy, (za (1)) € C(T,RN), we have Jy (z,) — « in L(T, RY). Because Ay, (z,(t))
€ A(Jx,(zn(t))) for all n > 1 and all t € T, we have Ay, () € A(y, (x0)).
Because Ay, (2,,) € A(Jy, (22)), Jx, (22) —  in LA(T,RY) and A, (z,) 2 u in
L3(T,RY), we infer that u € ﬁ(w), ie., u(t) € A(z(t)) a.e. on T. Moreover,
we may assume that f, — f in L9(T,R"). Arguing as in the proof of Propo-
sition 3.5 (see Claim 1), we obtain z,, — z in C'(T,RY). Then in the limit as
n — oo, we have f € Nj(z) and (a(2'(t))) = u(t) + f(t) € A(x(t)) +
F(t,z(t),2'(t)) a.e on T, 2(0) = z(b), 2'(0) = «'(b). |

4. Problems with the p-Laplacian and
nonlinear boundary conditions

In this section we deal with Problem (2). Now, in contrast to the situation
of Section 3, we assume that D(A) = RY. This permits the improvement of
the growth condition on F' and so we can have multivalued nonlinearities of
the Nagumo-Hartman type (see also Mawhin-Urena [20]). More precisely our
hypotheses on the data of (2) are the following:

H(A),: A:RY — 2" ig a maximal monotone map with D(A) = RN and

0 € A(0).

H(F)y: F: TxRYxRY — P (RY) is a multifunction such that H(F).(i), (ii)
hold and

(iii) for almost all t € T, all ||z|| < M and all [|y[[P~* > M; > 0 we
have

sup [[[v]] - v € F(t,2,y)] < n(llyll")

where 7 : Ry — R, \ {0} is a locally bounded Borel measurable
function such that f My Sds = +400;
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(iv) if ||xo|| = M (with M > 0 as in (iii)), hypothesis H(F); (iv) holds;

(v) for all r > 0, there exists v, € LY(T) (% + % = 1) such that for
almost all t € T, all ||z||, ||y|| < r and all v € F(t,z,y), we have
[oll < 7 (t);

(vi) is the same as H(F);(iii).

Recall that if A: D(A) € X — 2% is a maximal monotone operator, we
define A : D(A) C LP(T, X) — 20X by A(z) = {h € LYT, X*) : h(t) €
A(z(t)) a.e. on T} for all z € D(A) = {x € L(T, X) : z(t) € D(A) ae. on T
and S () * 2}

Proposition 4.1. If X is a separable reflexive Banach space and A : D(A)
X — 2% is a mazimal monotone operator with 0 € A(0), then A : D(A)
LP(T, X) — 2L"TXY) s mazimal monotone too.

C
C

Proof. By Troyanski’s renorming theorem (see Hu-Papageorgiou [13, p. 316]),
without any loss of generality we may assume that both X and X* are locally
uniformly convex spaces. Let F : X — X* be the duality map of X (i.e., F(z) =
dp(x) with p(z) = ||z||?, see Hu-Papageorgiou [13, p. 30] and Zeidler [22,
p. 860]). We know that F is a homeomorphism (see Zeidler [22, p. 861]).
We introduce the operator Jy : LP(T, X) — L9(T, X*) defined by Jo(x)(:) =
| F(z())]|IP2F(x(+)). It is easy to see that Jy is continuous, strictly monotone,
thus maximal monotone. Clearly A is monotone. We show that R(A + Jy) =
LT, X*) (i.e., surjectivity of A + J). For this purpose let h € LI(T, X*)
and consider the multifunction I' : T — 2% defined by I'(t) = {z € X :
A(z) + ¢(z) > h(t)}, where ¢ : X — X* is the monotone continuous map
defined by ¢(z) = || F(2)||P2F(x). Note that A+ ¢ : D(A) C X — 2%
is maximal monotone. Moreover, because 0 € A(0), we have that A + ¢ is
coercive. Therefore R(A+¢) = X* and so we infer that for allt € T', I'(¢) # @.
Remark that GrI' = {(t,z) € T x X : (z,0(x) — h(t)) € GrA}. Let £ :
T x X — X x X* be defined by {(t,z) = (x,¢o(x) — h(t)). Evidently ¢ is a
Caratheodory function, thus jointly measurable. Note that GrI' = {~1(GrA)
and since GrA is sequentially closed in X x X* | we have GrA € B(X x X)) (the
Borel o-field). But X} is a Souslin space and so B(X x X)) = B(X) x B(X})
(see Hu-Papageorgiou [13, p. 153]). Also B(X}) = B(X*). Therefore GrA €
B(X)x B(X*) = B(X x X*) and so GrI" = ¢ 1(GrA) € L x B(X) with £ being
the Lebesgue o-field of T. We can apply the Yankon-von Neumann-Aumann
selection theorem (see Hu-Papageorgiou [13, p. 158]) to obtain a measurable
map z : T' — X such that z(t) € I'(t) a.e. on T. We have h(t) € A(z(t)) +
o(z(t)) a.e. on T. Taking duality brackets with z(t), we obtain ||z(t)||P <
(h(t),z(t))x+x and so [|z(t)||P~" < ||h(t)] ae. on T, ie., x € LP(T,X). So
we have proved that R(A + Jy) = L9(T, X*). Then arguing as in the proof
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of Proposition 3.3 and exploiting the strict monotonicity of Jy, we obtain the
maximality of A. |

The second auxiliary result concerns the periodic problem

{ =l (1))" + le()[P~2x(t) = g(t) a.e. on T = [0,0]
(p(2'(0)), —p(2(b))) € £(x(0), z(b)), 1 < p < oo.

From Gasinski-Papageorgiou [10] we have the following result:

(11)

Proposition 4.2. If £ : D(§) CRY x RY — 2RV XEY o 4 mazimal monotone
map with (0,0) € £(0,0) and g € LY(T,RY) (%} —1—5 = 1), then Problem (11) has
a unique solution x € C*(T,RN) with ||2'||P~22" € WLa(T,RY).

Let Do={z € CY(T,RY) : [|/|[P=2a’ € WH(T,RY), (g, (2'(0)), —pp(2'(D)))
€ £(x(0), (b))} and let V : Dy C LP(T,RY) — L4(T,RY) be defined by V (z) =
—(||2'||P~22"), x € Dy. Arguing as in the proof of Proposition 3.3, using this
time Proposition 4.2, we obtain

Proposition 4.3. If ¢ : D(&) C RN x RN — 28" <RY s o mazimal monotone
map with (0,0) € £(0,0), then V : Dy C LP(T,RY) — L4(T,RY) is mazimal
monotone.

For the existence theorem for Problem (2) we will use the following hy-
potheses on &:
H(E): €: D(€) C RY x RY — 2B"<BY j5 5 maximal monotone map with
(0,0) € £(0,0) and one of the following holds:

(i) for every (a,d’) € £(a,d), we have (d’,a)gy > 0 and (d’, d)gy > 0;
or

(ii) D(&) ={(a,d) e RN xR : a =d}.

Proposition 4.4. If the hypotheses H(A)y, H(F)s, H(E) and Hy hold, then
Problem (2) has a solution v € C*(T,RY) with ||2'||P722" € WH(T,RY).

Proof. Because A is maximal monotone with D(A) = RY, we have that § =
sup [||ul] : v € A(z), ||z £ M] < 400 (see Hu-Papageorgiou [13, p. 308]).
Without any loss of generality we may assume that for almost all » > 0, 0 <
B <n(r). Set qy(r) =0+n(r). Ify > %—l— 1, then we have n;(r) < An(r) for all

r >0 and so fJ\OZ nsﬁ) = 400.

As we did with Problem (1) (see Section 3), first we assume that the mul-
tivalued nonlinearity F' satisfies (6) (with ¢ = 1) instead of H(F)q(iv). Let

p—1

s ; MPb ’
M >max{bp (i {clMpb+7f2—+\|Cs||1Ms}> aMl}
cop

TCo 0
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—1

and then take M, > 0 such that MY~ > M! and fl\j‘f nsl‘(lz) = M. Also let
W C CYT,RY) be defined by

W ={z e CHT,RY) : |z(t)|| < M, ||2'(t)|]| < My forallteT}.
The set W is open, bounded in C*(T,R") and 0 € W. Moreover, we have
oW = {z e CHT,R") : ||2]c = M, ||2'||c = Ma}.

Let N : W — Pu(LY(T,RY)) be defined by N(z) = Stea()a(). We know
that N is usc from W with the C'(T, R")-norm topology into LI(T,RY) with
the weak topology. For each g € LI(T,RY), we consider Problem (11). By
Proposition 4.2 we know that this problem has a unique solution z = K(g) €
CHT,RY). So we can define the map K : LY(T,RY) — CY(T,RY) which to
each g € LY(T,R") assigns the unique solution of (11). Tt is easy to check that
K is completely continuous.

Let J : CHT,RY) — L(T,RY) be the bounded continuous map defined
by J(z)(-) = [|z()||P"22(-). Also let A : CY(T,RY) — 2L“TEY) pe defined by
Alz) = Sy We have that A is usc from C'(T,RY) into L(T,R"Y),. Set
Ni(z) = —=N(z) + J(z) — A(z). Evidently Ny : W — Py(LY(T,RY)) is usc
from W with the C'(T,RY)-norm topology into L(T,R"),. Problem (2) is
equivalent to the fixed point problem

r e (Ko Ny (). (12)

Claim: For every x € OW and every £ € (0,1), we have z ¢ {(K o Ny)(z).

Let 2 € W and suppose that for some & € (0,1) we have z € £(K o Ny)(z).
Arguing as in the proof of Proposition 3.5 (claim 2), we obtain

e P
rcg MPbr

o'y < L e+ Flesthar
0

. p—1 .
and hence ||2/|[2=! < 4 M{. The function ¥(u) = u » , u > 0, is concave. So
bpr

using Jensen’s inequality, we have
Y,

1 /|p—1 1 ’ / p—1
e Ha=aay A E ) i
br 0

Therefore it follows (since 117 + % = 1) that

b
/O |2/ () |[P~1dt < M. (13)
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We claim that ||2/(t)|| < Ms for all ¢ € T. Suppose that this is not the case.
Then we can find ¢y € T such that ||2/(ty)|| = Ms, hence ||/ (to)|P~! > M]. So
from (13) we infer that there exists a t; € T such that ||z(¢1)||P~' = M] (take the
t1 € T which is closest to ty). Let x : [M{,+00) — R, be the function defined
by x(r) = f]&{ 77lL(s)ds. Clearly x is continuous, strictly increasing, x(M;) = 0

and y(M2™') = M!. We have
Mj = x(M;™)

= Ix(l2 () [I”)]

| et s
B /M1 771(3) ’
| e s
B /nx'uo)v'—l m(s)
SOOI OY ]
L;mmwwwwwmw®“d“

(14)

IN

We also have
[l @722 (1))']| < 6+ n(ll="@®)P)
= m(|l2'( )Hp‘l)
= m (|| (I @I~ @))]])-

Using this in (14), we obtain (see (13))

t1 max{to it }
/Hﬂwﬂﬂ:/ /() < M,
to

min{¢o,t1}

M <

a contradiction. Therefore ||2/(t)|| < Ms for all t € T. Moreover, following the
argument in the proof of Proposition 3.5 and using hypotheses H(&), we can
show that ||z(t)|| < M for all t € T. Therefore x € W and we have proved the
claim.

Apply Proposition 2.1 to obtain # € Dy N W which solves (12). Evidently
this is a solution of (2) when (6) (with ¢ = 1) is in effect. As in the proof of
Proposition 3.5 we remove this extra restriction. |

Remark 4.5. It will be interesting to have this existence result when
D(A) # RV,
5. Special cases and examples

We show that our general formulation of Problem (2) unifies the classical Dirich-
let, Neumann and periodic problems and goes beyond them:
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(a) Let Ky, Ky € P;.(RY) with 0 € K, N Ky. By 0k, xx, we denote the
indicator function of the set K; x Ks, i.e.,

0 if (.T,y)EK1XKQ
+00 otherwise.

5K1><K2 (aj? y) = {

Evidently 0k, xk, is proper, lower semicontinuous and convex, i.e., 0x, xx, €
F()(RN XRN). Set f = 8(5K1X[(2 = NK1><K2 = NK1 X NK2 (given C e Pfc(RN> by
Ne(x) we denote the normal cone to the set C at x € C, see Hu-Papageorgiou
[13, p. 624]). Then Problem (2) becomes

(lz'()||P~22'(t)) € A(x(t)) + F(t,z(t),2'(t)) a.e. onT
z(0) € Ky, z(b) € Ky (15)
(#(0), 2(0))rr = o(2'(0), K1), (='(b), 2(b))ax = o(=2'(b), K3).
Note that £ = 9k, xk, is maximal monotone, (0,0) € £(0,0) and hypothesis
H(¢) is valid (the first option).

(b) In the previous case, let K1 = Ky = {0}. Then Problem (15) becomes
the usual Dirichlet problem.

(c) Again in the first example let K; = Ko = RY. Then & = Ng, x Nk, =
{(0,0)} and so we have Neumann problem. The Neumann problem was not
examined before in the presence of Nagumo-Hartman nonlinearities (compare

with Mawhin-Urena [20]).

(d) Let K = {(z,y) € RN xRN : z = ¢y} and let £ = Od. Then &(z,y) =
Kt = {(v,w) € RY x RY : v = —w}. So Problem (2) becomes the usual
periodic problem.

(e) Let £ : RY x RN — RN x RY be defined by
1 1 .
§(z,y) = pr(f), —ep(y) | with 6,9 > 0.

g—1 n
Evidently, £ is continuous, monotone (hence maximal monotone) and £(0,0) =
(0,0). With this choice of &, Problem (2) becomes a Sturm-Liouville type
problem
{ (|lz"(O)||P~22' (¢)) € A(z(t)) + F(t,z(t),2'(t)) ae. onT
z(0) — 02'(0) = 0, x(b) + na'(b) = 0.
Hypothesis H(¢) is satisfied.

(f) Let &,& : RY — RY be two monotone, continuous maps such that
£(0) = &(0) = 0. Let £ : RY x RN — RY x RY be defined by &(z,y) =
(&1(2), & (y)). Evidently ¢ satisfies hypothesis H(£). Then Problem (2) becomes

{ (12" (O)|P~22' (¢)) € A(z(t)) + F(t,z(t),2'(t)) ae. onT
2'(0) = q(&1(2(0))), —2'(b) = @q(&2(x(0))).

(16)

(17)
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Next let ¢ = 0y, A = 0, K = {(z,y) € RVYXRY : 2z =y} and € = 00 = K+.
We have

B B | {0} if xp >0 forall ke {1,..,N}
Alw) = () = Ngy (@) = { —RY n{z}+ if 2y =0 for some k € {1, ..., N}.

Then Problem (2) becomes the following differential variational inequality:

( (Il @)= (1))" € F(t,x(t), 2/ (1))
a.e.on{t €T :ax(t)>0forall k=1,..,N}

(IO € F(t 20,20 = utt) "
a.e. on {t € T': zx(t) = 0 for some k =1,..., N}
= (zx( ): eRY forallt € T, u e LY(T,RY)
( () 2(b), 2/(0) = /().
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