Nonlinear Boundary Value Problems Involving the p -Laplacian and p-Laplacian-Like Operators

Evgenia H. Papageorgiou and Nikolaos S. Papageorgiou

Abstract. We study nonlinear boundary value problems for systems driven by the vector p-Laplacian or p-Laplacian-like operators and having a maximal monotone term. We consider periodic problems and problems with nonlinear boundary conditions formulated in terms of maximal monotone operators. This way we achieve a unified treatment of the classical Dirichlet, Neumann and periodic problems. Our hypotheses permit the presence of Hartman and Nagumo-Hartman nonlinearities, partially extending this way some recent works of Mawhin and his coworkers.

Keywords: Ordinary p-Laplacian, p-Laplacian-like operator, maximal monotone operator, Nagumo-Hartaman nonlinearity, fixed point, complete continuity

MSC 2000: 34B15, 34C25

1. Introduction

In this paper we study the following two nonlinear boundary value problems in \mathbb{R}^N :

$$
\begin{cases} (\alpha(x'(t)))^{'} \in A(x(t)) + F(t, x(t), x'(t)) \text{ a.e. on } T = [0, b] \\ x(0) = x(b), x'(0) = x'(b), \end{cases}
$$
 (1)

and

$$
\begin{cases} (||x'(t)||^{p-2}x'(t))' \in A(x(t)) + F(t, x(t), x'(t)) \text{ a.e. on } T = [0, b] \\ (\varphi_p(x'(0)), -\varphi_p(x'(b))) \in \xi(x(0), x(b)), 1 < p < \infty. \end{cases} (2)
$$

Here $a : \mathbb{R}^N \to \mathbb{R}^N$ is a suitable homeomorphism which is not in general homogeneous, $A: D(A) \subseteq \mathbb{R}^N \to 2^{\mathbb{R}^N}$ is a maximal monotone map, $F: T \times \mathbb{R}^N \times \mathbb{R}^N \to$

ISSN 0232-2064 / \$ 2.50 c Heldermann Verlag Berlin

E. H. and N. S. Papageorgiou: Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece; npapg@math.ntua.gr

 $2^{\mathbb{R}^N}\setminus\{\emptyset\}$ is a multivalued in general nonlinearity satisfying Caratheodory type conditions, $\varphi_p : \mathbb{R}^N \to \mathbb{R}^N$ is the homeomorphism defined by

$$
\varphi_p(r) = \begin{cases} ||r||^{p-2}r & \text{if } r \neq 0 \\ 0 & \text{if } r = 0 \end{cases}
$$

and $\xi: D(\xi) \subseteq \mathbb{R}^N \times \mathbb{R}^N \to 2^{\mathbb{R}^N \times \mathbb{R}^N}$ is a maximal monotone map.

Boundary value problems involving the ordinary p-Laplacian have been the focus of attention of many researchers in the last decade. Most of the works deal with the scalar problem. We refer to the works of Boccardo-Drabek-Giachetti-Kucera [2], De Coster [4], Del Pino-Manasevich-Murua [5], Fabry-Fayyad [8], Guo [11] and the references therein. We also mention the work of Dang-Oppenheimer [3], where the ordinary scalar p-Laplacian is replaced by a one-dimensional possibly nonhomogeneous nonlinear differential operator.

Recently in a series of interesting papers, Mawhin and coworkers studied systems driven by the ordinary vector p -Laplacian or p -Laplacian like operators and having primarily periodic boundary conditions. We refer to the papers of Manasevich-Mawhin [16] Mawhin [18, 19] and Mawhin-Urena [20]. As the Nagumo-Hartman condition used here is distinct from the one used by Mawhin-Urena [20] we provide a partial extension of the works by Mawhin [18] and Mawhin-Urena [20], where the authors employ nonlinearities of the Hartman and Nagumo-Hartman type. Also in these works the ordinary vector p-Laplacian with periodic boundary conditions is used, $A \equiv 0$ and the nonlinearity is single-valued.

The problems that we study here are more general since they involve the maximal monotone operator A , which in the case of Problem (1) is not necessarily defined everywhere (see hypotheses $H(A)_1$). This way we incorporate in our framework differential variational inequalities. Moreover, in the case of Problem (2), the nonlinear multivalued boundary conditions used here achieve a unified treatment of the Dirichlet, Neumann and periodic problems and go beyond them (see Section 5). This way we extend the semilinear works (i.e., $p = 2$) of Erbe-Krawcewicz [7], Frigon [9], Kandilakis-Papageorgiou [14] and Halidias-Papageorgiou [12] and the recent nonlinear works of Kyritsi-Matzakos-Papageorgiou [15] and Papageorgiou-Papageorgiou [21]. Our approach is based on nonlinear operator theory and fixed point arguments.

2. Mathematical background

Let (Ω, Σ) be a measurable space and X a separable Banach space. We introduce the notations

 $P_{f(c)}(X) = \{A \subseteq X : A \text{ is nonempty, closed (and convex)}\}$ $P_{(w)k(c)}(X) = \{A \subseteq X : A \text{ is nonempty, (weakly) compact (and convex)}\}.$ A multifunction $F: \Omega \to P_f(X)$ is said to be *measurable*, if for all $x \in X$ $\omega \to d(x, F(\omega)) = \inf \{ ||x - u|| : u \in F(\omega) \}$ is measurable. Also we say that $F: \Omega \to 2^X \setminus \{\varnothing\}$ is graph measurable, if $\text{Gr} F = \{(\omega, x) \in \Omega \times X : x \in F(\omega)\}$ $\Sigma \times B(X)$, with $B(X)$ being the Borel σ -field of X. For multifunctions with values in $P_f(X)$ measurability implies graph measurability, while the converse holds if Σ is complete. Next let (Ω, Σ, μ) be a finite measure space and $F : \Omega \to$ $2^X \setminus \{\varnothing\}$ a multifunction. For $1 \leq p \leq \infty$ we introduce the set

$$
S_F^p = \{ f \in L^p(\Omega, X) : f(\omega) \in F(\omega) \ \mu-\text{a.e. on } \Omega \}.
$$

Let Y, Z be Hausdorff topological spaces. A multifunction $G: Y \to 2^Z \setminus \{ \varnothing \}$ is said to be upper semicontinuous (usc for short) (respectively lower semicontinuous (lsc for short)), if for every closed set $C \subseteq Z$, the set $G^{-}(C) = \{y \in Y :$ $G(y) \cap C \neq \emptyset$ (respectively the set $G^+(C) = \{y \in Y : G(y) \subseteq C\}$) is closed in Y. If Z is regular and F is $P_f(Z)$ -valued and usc, then it has a closed graph, i.e., $GrG = \{(y, z) \in Y \times Z : z \in G(y)\}\$ is closed in $Y \times Z$. The converse is true if G is locally compact.

Now let X be a reflexive Banach space and X^* its topological dual. Recall that a monotone, demicontinuous operator $A: X \to X^*$ is maximal monotone. Also a maximal monotone coercive operator, is surjective. When $X = H$ (Hilbert space) and $A: D(A) \subseteq H \to 2^H$ is a maximal monotone operator, then for every $\lambda > 0$ we introduce the well-known operators

$$
J_{\lambda} = (I + \lambda A)^{-1} \quad \text{(resolvent of } A\text{)}
$$

$$
A_{\lambda} = \frac{1}{\lambda}(I - J_{\lambda}) \quad \text{(Yosida approximation of } A\text{)}.
$$

Both operators are single-valued and defined on all of H. Moreover, J_{λ} is nonexpansive, while A_{λ} is Lipschitz continuous with constant $\frac{1}{\lambda}$ (hence A_{λ} is maximal monotone).

We return to the general case of X being a reflexive Banach space. An operator $A: X \to 2^{X^*}$ is said to be *pseudomonotone*, if

- (a) for all $x \in X$, $A(x) \in P_{wkc}(X^*)$;
- (b) A is usc from every finite dimensional subspace Z of X into X^*_{w} ;
- (c) if $x_n \stackrel{w}{\rightarrow} x$ in $X, x_n^* \in A(x_n)$ and $\limsup_{n\to\infty} \langle x_n^*, x_n x \rangle \leq 0$, then for every $y \in X$, there exists $x^*(y) \in A(x)$ such that $\langle x^*(y), x - y \rangle \leq$ $\liminf_{n\to\infty} \langle x_n^*, x_n - y \rangle.$

We say that $A: D(A) \subseteq X \to 2^{X^*}$ is generalized pseudomonotone, if for all $x_n^* \in$ $A(x_n)$ such that $x_n \stackrel{\omega}{\to} \overline{x}$ in $X, x_n^* \stackrel{\omega}{\to} \overline{x}^*$ in X^* and $\limsup_{n\to\infty} \langle x_n^*, x_n - x \rangle \leq 0$, we have $x^* \in A(x)$ and $\langle x_n^*, x_n \rangle \to \langle x^*, x \rangle$. A maximal monotone operator is generalized pseudomonotone and a pseudomonotone operator is generalized pseudomonotone. A generalized pseudomonotone operator is pseudomonotone, if it is everywhere defined and bounded. A pseudomonotone coercive operator is surjective and the sum of pseudomonotone operators is again a pseudomonotone operator. For details on multifunctions and nonlinear operators of monotone type, we refer to the books of Hu-Papageorgiou [13] and Zeidler [22].

Recall that if V, Z are Banach spaces and $K: V \to Z$, we say that K is completely continuous, if $v_n \stackrel{w}{\rightarrow} v$ in V implies that $K(v_n) \rightarrow K(v)$ in Z. In our analysis of problems (1) and (2) we shall use the following multivalued nonlinear alternative theorem due to Bader [1] which improves a result of Dugundji-Granas [6, p. 98].

Proposition 2.1. If X, Y are Banach spaces with Y reflexive, W is a bounded open subset of X with $0 \in W$, $G : \overline{W} \to P_{wkc}(Y)$ is usc from \overline{W} into Y_w , bounded, and $K: Y \to X$ is completely continuous, then one of the following alternatives holds:

(a) there exist $x_0 \in \partial W$ and $s \in (0,1)$ such that $x_0 \in s(K \circ G)(x_0);$ or

(b) $\Phi = G \circ K$ has a fixed point (i.e., there exist $\overline{x} \in \overline{W}$ such that $\overline{x} \in \Phi(\overline{x})$).

3. Problems with p -Laplacian–like operators

In this section we deal with Problem (1) and we do not require that $D(A) = \mathbb{R}^N$. Our analysis of Problem (1) starts with the study of the auxiliary periodic problem

$$
\begin{cases}\n-(\alpha(x'(t)))' + A_{\lambda}(x(t)) + ||x(t)||^{p-2}x(t) = g(t) & \text{a.e. on } T = [0, b] \\
x(0) = x(b), x'(0) = x'(b),\n\end{cases}
$$
\n(3)

where $1 \lt p \lt \infty, g \in L^q(T, \mathbb{R}^N), \frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1$ and $\lambda > 0$. We introduce the following hypotheses on the maps α and A :

- $H(a)_1: a: \mathbb{R}^N \to \mathbb{R}^N$ is continuous, strictly monotone and there exists a function $\gamma : [0, +\infty) \to [0, +\infty)$ such that $\gamma(r) \to +\infty$ as $r \to +\infty$ and for all $x \in \mathbb{R}^N$ we have $\gamma(\|x\|) \|x\| \leq (a(x), x)_{\mathbb{R}^N}$.
- $H(A)_1$: $A : D(A) \subseteq \mathbb{R}^N \to 2^{\mathbb{R}^N}$ is a maximal monotone map such that $0 \in A(0)$.

Remark 3.1. We emphasize that we do not require that $D(A) = \mathbb{R}^N$.

In what follows we shall use the two spaces $C_{per}^1(T, \mathbb{R}^N) = \{x \in C^1(T, \mathbb{R}^N) :$ $x(0) = x(b), x'(0) = x'(b)$ and $W^{1,p}_{per}(T, \mathbb{R}^N) = \{x \in W^{1,p}(T, \mathbb{R}^N) : x(0) = x(b)\}.$

Proposition 3.2. If hypotheses $H(a)_1$ and $H(A)_1$ hold, then Problem (3) has a unique solution $x \in C^1_{per}(T, \mathbb{R}^N)$ such that $a(x') \in W^{1,q}_{per}(T, \mathbb{R}^N)$.

Proof. Let $f: T \times \mathbb{R}^N \to \mathbb{R}^N$ be defined by $f(t, x) = A_\lambda(x) + ||x||^{p-2}x - g(t)$. Evidently f is a Caratheodory function. Also let $\eta : \mathbb{R}^N \to \mathbb{R}^N$ be defined by $\eta(x) = x$. Then if $h(t) = h_1^+(t)$ where $h_1(t) = \sup_{r>0} [-r^p + r^{p-1} + \frac{1}{\lambda}]$ $\frac{1}{\lambda}r +$ $||g(t)||r + ||g(t)||$, and $R_0 > \max\{1, ||\overline{g}||\}$ where $\overline{g} = \frac{1}{b}$ $\frac{1}{b} \int_0^b g(t) dt$, with all the above data we can apply Corollary 3.1 of Manasevich-Mawhin [16] and obtain a solution for (3). The uniqueness follows at once from hypotheses $H(\alpha)_1$ and the monotonicity of A_{λ} and strict monotonicity of φ_p .

Let $\widehat{D} = \{x \in C^1_{per}(T, \mathbb{R}^N) : a(x') \in W^{1,q}_{per}(T, \mathbb{R}^N)\}\.$ For $\lambda > 0$, let S_λ : $\widehat{D} \subseteq L^p(T, \mathbb{R}^N) \to L^q(T, \mathbb{R}^N)$ be the nonlinear operator defined by $S_\lambda(x) =$ $-(a(x'))' + \widehat{A}_{\lambda}(x)$, where for every $x \in \widehat{D}$, $\widehat{A}_{\lambda}(x)(\cdot) = A_{\lambda}(x(\cdot))$. Note that if $x \in \widehat{D}$, then $A_{\lambda}(x(\cdot)) \in C(T, \mathbb{R}^{N})$.

Proposition 3.3. If the hypothesis H(a)₁ holds and $\lambda > 0$, then $S_{\lambda} : \widehat{D} \subseteq$ $L^p(T,\mathbb{R}^N) \to L^q(T,\mathbb{R}^N)$ is maximal monotone.

Proof. Let $J: L^p(T, \mathbb{R}^N) \to L^q(T, \mathbb{R}^N)$ be the continuous, strictly monotone (thus maximal monotone) operator defined by $J(x)(\cdot) = ||x(\cdot)||^{p-2}x(\cdot)$. From Proposition 3.2 we know that $R(S_{\lambda} + J) = L^{q}(T, \mathbb{R}^{N})$. We will show that S_{λ} is maximal monotone. Indeed first note that S_λ is monotone. Suppose that for some $y \in L^p(T, \mathbb{R}^N)$ and some $v \in L^q(T, \mathbb{R}^N)$, we have

$$
(S_{\lambda}(x) - v, x - y)_{qp} \ge 0 \quad \text{for all } x \in D. \tag{4}
$$

Hereafter by $(\cdot, \cdot)_{qp}$ we denote the duality brackets for the pair $(L^q(T, \mathbb{R}^N)),$ $L^p(T, \mathbb{R}^N)$. Since $S_\lambda + J$ is surjective, we can find $x_1 \in \widehat{D}$ such that $S_\lambda(x_1) +$ $J(x_1) = v + J(y)$. Using this in (4) with $x = x_1 \in \hat{D}$, we obtain $y = x_1 \in \hat{D}$ since J is strictly monotone and $v = S_{\lambda}(x_1)$.

Next we study of the following regular approximation of Problem (1):

$$
\begin{cases} (\alpha(x'(t)))^{'} \in A_{\lambda}(x(t)) + F(t, x(t), x'(t)) \quad \text{a.e. on } T = [0, b] \\ x(0) = x(b), x'(0) = x'(b), \end{cases}
$$
(5)

where $\lambda > 0$. Our hypotheses on the data of (5) are the following:

- $H(a)_2$: $a : \mathbb{R}^N \to \mathbb{R}^N$ is a monotone map such that $a(y) = c(y)y$ or $a(y) =$ $(c_k(y_k)y_k)_{k=1}^N$ for all $y = (y)_{k=1}^N \in \mathbb{R}^N$, with $c : \mathbb{R}^N \to \mathbb{R}_+$ and c_k : $\mathbb{R} \to \mathbb{R}_+$, $k \in \{1, ..., N\}$, continuous maps and for all $y \in \mathbb{R}^N$ we have $(a(y), y)_{\mathbb{R}^N} \ge c_0 \|y\|^p$ for some $c_0 > 0$.
- $\mathbf{H}(\mathbf{F})_1$: $F: T \times \mathbb{R}^N \times \mathbb{R}^N \to P_{kc}(\mathbb{R}^N)$ is a multifunction such that
	- (i) for all $x, y \in \mathbb{R}^N$, $t \to F(t, x, y)$ is graph measurable;
	- (ii) for almost all $t \in T$, $(x, y) \to F(t, x, y)$ has closed graph;

696 E. H. Papageorgiou and N. S. Papageorgiou

(iii) for almost all $t \in T$, all $x, y \in \mathbb{R}^N$ and all $v \in F(t, x, y)$ we have

$$
(v,x)_{\mathbb{R}^N} \ge -c_1 \|x\|^p - c_2 \|x\|^r \|y\|^{p-r} - c_3(t) \|x\|^s
$$

with $c_1, c_2 > 0, c_3 \in L^1(T)_+, 1 \le r, s < p;$

(iv) there exists $M > 0$ such that if $||x_0|| = M$ and $(x_0, y_0)_{\mathbb{R}^N} = 0$, we can find a $\delta > 0$ such that for almost all $t \in T$, we have

$$
\inf\left[(v,x)_{\mathbb{R}^N}+c_0\|y\|^p:\|x-x_0\|+\|y-y_0\|<\delta, v\in F(t,x,y)\right]\geq 0\,;
$$

(v) for almost all $t \in T$, all $||x|| \leq M$, all $y \in \mathbb{R}^N$ and all $v \in F(t, x, y)$, we have $\overline{1}$

$$
||v|| \le c_4(t) + c_5 ||y||^{p-1}
$$

with
$$
c_4(t) \in L^{\eta}(T)_+, \eta = \max\{2, q\}, c_5 > 0.
$$

Remark 3.4. Hypothesis $H(F)₁(iv)$ is a suitable extension to the present setting of the so-called "Hartman condition" (see Mawhin [19]).

Proposition 3.5. If hypotheses $H(a)_2$, $H(A)_1$ and $H(F)_1$ hold, then Problem (5) has a solution $x \in C^1_{per}(T, \mathbb{R}^N)$ with $a(x') \in W^{1,q}_{per}(T, \mathbb{R}^N)$.

Proof. First we do the proof by assuming the following stronger version of hypothesis $H(F)₁(iv)$:

"(iv)" there exists an $M > 0$ such that if $||x_0|| = M$ and $(x_0, y_0)_{\mathbb{R}^N} = 0$, we can find $\delta > 0$ and $c_6 > 0$ such that for almost all $t \in T$ we have

$$
\inf\left[(v,x)_{\mathbb{R}^N}+c_0\|y\|^p:\|x-x_0\|+\|y-y_0\|<\delta,v\in F(t,x,y)\right]\geq c_6>0.\tag{6}
$$

Let $S_{\lambda} : \widehat{D} \subseteq L^p(T, \mathbb{R}^N) \to L^q(T, \mathbb{R}^N)$ be the maximal monotone operator introduced earlier in this section (see Proposition 3.3). Also as before let J : $L^p(T,\mathbb{R}^N)\to L^q(T,\mathbb{R}^N)$ be defined by $J(x)(\cdot)=\|x(\cdot)\|^{p-2}x(\cdot)$. This operator is maximal monotone. Set $V_{\lambda} = S_{\lambda} + J$. Then V_{λ} is maximal monotone. Also let $U : \widehat{D} \subseteq L^p(T, \mathbb{R}^N) \to L^q(T, \mathbb{R}^N)$ be the nonlinear differential operator defined by $U(x) = -(a(x'))'$, $x \in D$. From Proposition 3.3 we have that U is maximal monotone. Clearly V_{λ} is coercive. So $R(V_{\lambda}) = L^{q}(T, \mathbb{R}^{N})$. Moreover, V_{λ} is also injective. So we can define the map

$$
K_{\lambda} = V_{\lambda}^{-1} : L^{q}(T, \mathbb{R}^{N}) \to \widehat{D} \subseteq W_{per}^{1, p}(T, \mathbb{R}^{N}).
$$

Claim 1: $K_{\lambda}: L^q(T, \mathbb{R}^N) \to W^{1,p}_{per}(T, \mathbb{R}^N)$ is completely continuous.

Suppose that $u_n \stackrel{w}{\to} u$ in $L^q(T, \mathbb{R}^N)$. Set $x_n = K_\lambda(u_n)$, $n \geq 1$. We have

$$
||x_n||_{1,p}^{p-1} \le c_8 ||u_n||_q
$$
 with $c_8 > 0$,

hence $\{x_n\}_{n\geq 1} \subseteq W^{1,p}_{per}(T,\mathbb{R}^N)$ is bounded. Therefore we may assume that $x_n \xrightarrow{w} x$ in $W^{1,p}_{per}(T,\mathbb{R}^N)$ and $x_n \to x$ in $L^p(T,\mathbb{R}^N)$. Because $u_n = V_\lambda(x_n)$, $n \ge 1$, it follows that $u = V_\lambda(x) = S_\lambda(x) + J(x) = U(x) + \widehat{A}_\lambda(x) + J(x)$. For every $n \geq 1, x_n \in \widehat{D}$ and so $a(x'_n) \in W^{1,q}_{per}(T, \mathbb{R}^N)$. Hence $a(x'_n) = \overline{a}_n + \widehat{a}_n$, with $\overline{a}_n \in \mathbb{R}^N$ and $\widehat{a}_n \in V = \{v \in W^{1,q}_{per}(T, \mathbb{R}^N) : \int_0^b v(t)dt = 0\}$. From the equation $U(x_n) + \widehat{A}_{\lambda}(x_n) + J(x_n) = u_n$, if follows that $\{(a(x'_n))'\}_{n \geq 1} \subseteq L^q(T, \mathbb{R}^N)$ is bounded, hence it follows that $\{\widehat{a}_n\}_{n\geq 1} \subseteq C(T, \mathbb{R}^N)$ is relatively compact. For every $n \geq 1$ and every $t \in T$, we have

$$
x'_n(t) = a^{-1}(\overline{a}_n + \widehat{a}_n(t)).
$$

Integrating this equation over $T = [0, b]$ and since $x_n(0) = x_n(b)$, we obtain

$$
\int_0^b a^{-1} (\overline{a}_n + \widehat{a}_n(t)) dt = 0.
$$

Invoking Proposition 2.2 of Manasevich-Mawhin [16], we infer that $\{\overline{a}_n\}_{n>1}\subseteq$ \mathbb{R}^N is bounded. So we conclude that $\{a(x'_n)\}_{n\geq 1} \subseteq C(T, \mathbb{R}^N)$ is relatively compact. Hence $\{a(x'_n)\}_{n\geq 1}\subseteq W^{1,q}_{per}(T,\mathbb{R}^N)$ is bounded and so we may assume that $a(x'_n) \stackrel{w}{\rightarrow} \beta$ in $W^{1,q}_{per}(T,\mathbb{R}^N)$. Because $x_n \rightarrow x$ in $L^p(T,\mathbb{R}^N)$ and U is maximal monotone, it follows that $\beta = U(x)$, hence $a(x'_n) \stackrel{w}{\rightarrow} a(x')$ in $W^{1,q}_{per}(T,\mathbb{R}^N)$ and so $a(x'_n) \to a(x')$ in $C(T, \mathbb{R}^N)$. So we have that $x'_n \to x'$ in $C(T, \mathbb{R}^N)$. Therefore finally we can say that $x_n \to x$ in $W_{per}^{1,p}(T,\mathbb{R}^N)$ (in fact we have shown that $x_n \to x$ in $C^1(T, \mathbb{R}^N)$. We conclude that the whole sequence $\{x_n = K_\lambda(u_n)\}_{n \geq 1}$ strongly converges to $x = K_{\lambda}(u)$. This proves the claim.

Next let $N: C = \{x \in W^{1,p}_{per}(T,\mathbb{R}^N) : ||x(t)|| \leq M \text{ for all } t \in T\} \rightarrow$ $L^q(T,\mathbb{R}^N)$ be the multivalued operator defined by $N(x) = S^q_{F(\cdot,x(\cdot),x'(\cdot))}$. From Hu-Papageorgiou [13, p. 236] we know that N has values in $P_{wkc}(L^{q}(T,\mathbb{R}^{N}))$ and it is usc from C with the relative $W_{per}^{1,p}(T,\mathbb{R}^N)$ -norm topology into $L^q(T,\mathbb{R}^N)_w$. Set $N_1(x) = -N(x) + J(x)$. Then Problem (5) is equivalent to the abstract multivalued fixed point problem

$$
x \in K_{\lambda} N_1(x). \tag{7}
$$

Let $M_1 > 0$ be such that $M_1^p > \frac{p}{rc}$ rc_0 $\left[c_1 M^p b + \frac{r c_2^p M^p b^{\frac{p}{r}}}{c_0 p} + ||c_3||_1 M^s\right]$. We consider the following set in $W_{per}^{1,p}(T,\mathbb{R}^N)$:

$$
W = \left\{ x \in W^{1,p}_{per}(T, \mathbb{R}^N) : ||x(t)|| < M \text{ for all } t \in T \text{ and } ||x'||_p < M_1 \right\}.
$$

Set $W_1 = \{x \in W^{1,p}_{per}(T,\mathbb{R}^N) : ||x(t)|| < M \text{ for all } t \in T\}$ and $W_2 = \{x \in$ $W_{per}^{1,p}(T,\mathbb{R}^N): ||x'||_p \leq M_1$. We have $W = W_1 \cap W_2$ and W_1, W_2 are open. So $W = W_1 \cap W_2$ is an open and of course bounded subset of $W_{per}^{1,p}(T,\mathbb{R}^N)$ with $0 \in W$. Note that $\overline{W} = \{x \in W^{1,p}_{per}(T,\mathbb{R}^N) : ||x(t)|| \leq M \text{ for all } t \in T \text{ and }$ $||x'||_p \leq M_1$.

Claim 2: For every $x \in \partial W$ and every $\xi \in (0,1)$, we have $x \notin \xi(K_\lambda \circ N_1)(x)$.

Let $x \in \overline{W}$ and suppose that for some $\xi \in (0,1)$, we have $x \in \xi(K_\lambda \circ N_1)(x)$. Then $U(\frac{1}{\epsilon})$ $(\frac{1}{\xi}x)+\widehat{A}_{\lambda}(\frac{1}{\xi}% -\lambda)^{\widehat{a}}$ $(\frac{1}{\xi}x)+J(\frac{1}{\xi})$ $(\frac{1}{\xi}x) = -f + J(x)$ with $f \in N(x)$, and hence

$$
c_0 \|x'\|_p^p \le -\xi^{p-1}(f,x)_{qp} + (\xi^{p-1} - 1) \|x\|_p^p \le -\xi^{p-1}(f,x)_{qp} \tag{8}
$$

(since $0 < \xi < 1$). Using hypothesis H(F)₁(iii), we obtain

$$
-\xi^{p-1}(f,x)_{qp} \leq \xi^{p-1}c_1||x||_p^p + \xi^{p-1}c_2\int_0^b ||x(t)||^r||x'(t)||^{p-r}dt + \xi^{p-1}||c_3||_1||x||_\infty^s.
$$

Set $\tau = p - r, \theta = \frac{p}{r}$ $\frac{p}{r}$ and $\theta' = \frac{p}{\tau}$ $\frac{p}{\tau}$ $(\frac{1}{\theta} + \frac{1}{\theta})$ $\frac{1}{\theta'}=1$). From Hölder's inequality, we have

$$
-\xi^{p-1}(f,x)_{qp} \leq \xi^{p-1}c_1||x||_p^p + \xi^{p-1}c_2||x||_p^r||x'||_p^r + \xi^{p-1}||c_3||_1||x||_\infty^s.
$$

Using this in (8) and because $0 < \xi < 1$, we obtain (recall the choice of M_1)

$$
||x'||_p^p \le \frac{p}{r c_0} \bigg[c_1 M^p b + \frac{r c_2^{\frac{p}{2}} M^p b^{\frac{p}{r}}}{c_0 p} + ||c_3||_1 M^s \bigg] < M_1^p.
$$

To conclude that $x \in W$ it remains to show that $||x(t)|| < M$ for all $t \in T$. We argue by contradiction. So suppose that for some $t_0 \in T$ we have $||x(t_0)|| = M$. Since $x \in \overline{W}$, we must have that $||x(t_0)|| = \max_{t \in T} ||x(t)||$. Let $\theta(t) = \frac{1}{p} ||x(t)||^p$. We see that $\theta(\cdot)$ attains its maximum on $T = [0, b]$ at the point $t_0 \in T$. If $t_0 \in (0, b)$, then $\theta'(t_0) = 0$ and so $||x(t_0)||^{p-2}(x(t_0), x'(t_0))_{\mathbb{R}^N} = 0$, hence $(x(t_0), x'(t_0))_{\mathbb{R}^N} = 0$. By virtue of (6), for almost all $t \in T$ we have

$$
\inf [(v, z)_{\mathbb{R}^N} + c_0 \|y\|^p : \|z - x(t_0)\| + \|y - x'(t_0)\| < \delta, \ v \in F(t, z, y) \ge c_6 > 0.
$$

We can find a $\delta_1 > 0$ such that if $t \in (t_0, t_0 + \delta_1]$ we have $||x(t) - x(t_0)|| + ||x'(t) - x(t_0)||$ $x'(t_0)$ < δ and $x(t) \neq 0$. Then for almost all $t \in (t_0, t_0 + \delta_1]$,

$$
(f(t),x(t))_{\mathbb{R}^N} + c_0 \|x'(t)\|^p \ge c_6 > 0.
$$
 (9)

We know that a.e. on T

$$
(f(t),x(t))_{\mathbb{R}^N}
$$

=
$$
\left(\left(a\left(\frac{1}{\xi}x'(t)\right)\right)',x(t) \right)_{\mathbb{R}^N} - \left(A_{\lambda}\left(\frac{1}{\xi}x(t)\right),x(t) \right)_{\mathbb{R}^N} + \left(1 - \frac{1}{\xi^{p-1}} \right) ||x(t)||^p
$$

and hence (see 9)

$$
\left(\left(a\left(\frac{1}{\xi}x'(t)\right)\right)', x(t) \right)_{\mathbb{R}^N} + c_0 \|x'(t)\|_p^p \ge c_6 > 0 \quad \text{a.e. on } (t_0, t_0 + \delta_1].
$$

Integrating this inequality on $[t_0, t]$ with $t \in (t_0, t_0 + \delta_1]$, after integration by parts, we obtain

$$
\left(\left(a\left(\frac{1}{\xi}x'(t)\right)\right),x(t)\right)_{\mathbb{R}^N} - \left(\left(a\left(\frac{1}{\xi}x'(t_0)\right)\right),x'(t_0)\right)_{\mathbb{R}^N} -\int_{t_0}^t \left(a\left(\frac{1}{\xi}x'(s)\right),x'(s)\right)_{\mathbb{R}^N} ds + c_0 \int_{t_0}^t \|x'(s)\|^p ds \ge c_6(t-t_0) > 0.
$$

Suppose that the first version of hypothesis $H(a)_2$ holds, namely that $a(y)$ = $c(y)y$. The reasoning is similar if the other version is valid. We have

$$
\left(a\left(\frac{1}{\xi}x'(t_0)\right),x(t_0)\right)_{\mathbb{R}^N} = c\left(\frac{1}{\xi}x'(t_0)\right)\frac{1}{\xi}\left(x'(t_0),x(t_0)\right)_{\mathbb{R}^N} = 0.
$$

Therefore for $t \in (t_0, t_0 + \delta_1]$ we have $(x'(t), x(t))_{\mathbb{R}^N} > 0$ (since $0 < \xi < 1$), i.e., $\vartheta'(t) > 0$ for $t \in (t_0, t_0 + \delta_1]$. So θ is strictly increasing on $(t_0, t_0 + \delta_1]$, which contradicts the choice of t_0 . Therefore we infer that $||x(t)|| < M$ for all $t \in T$.

If $t_0 = 0$, then $\theta'_{+}(t_0) = \theta'_{+}(0) \leq 0$ and $\theta'_{-}(b) \geq 0$ (because $\theta(0) = \theta(b)$, from the periodic boundary conditions). So we have $(x(0), x'(0))_{\mathbb{R}^N} = 0$ (since $x(0) = x(b), x'(0) = x'(b)$, recall that $x \in \widehat{D}$). So we proceed as before. Similarly if $t_0 = b$. Therefore we conclude that $||x(t)|| < M$ for all $t \in T$ and so $x \in W$, which proves the claim.

Now we can apply Proposition 2.1 and obtain $x \in \widehat{D} \cap \overline{W}$ which solves the fixed point Problem (7). Clearly $x \in \hat{D} \cap \overline{W}$ is a solution of (5).

Finally it remains to remove the stronger version of hypothesis $H(F)$ ₁(iv) (see (6)). To this end let $\varepsilon_n \downarrow 0$ and set $F_n(t, x, y) = F(t, x, y) + \varepsilon_n x$. Then Problem (5) with F replaced by F_n , has a solution $x_n \in D \cap \overline{W}$, $n \geq 1$. Evidently we may assume that $x_n \stackrel{w}{\rightarrow} x$ in $W^{1,p}_{per}(T,\mathbb{R}^N)$. As in the proof of Claim 1, we have $x_n \to x$ in $W^{1,p}_{per}(T,\mathbb{R}^N)$ and in the limit as $n \to \infty$ we obtain $U(x) + \widehat{A}_{\lambda}(x) \in N(x)$. Therefore $x \in \widehat{D} \cap \overline{W}$ is a solution of (5).

Now that we have solved the auxiliary Problem (5), by passing to the limit as $\lambda \downarrow 0$, we shall obtain a solution for the original Problem (1).

Theorem 3.6. If hypotheses $H(a)_2$, $H(A)_1$ and $H(F)_1$ hold, then Problem (1) has a solution $x \in C_{per}^1(T, \mathbb{R}^N)$ with $a(x'(\cdot)) \in W_{per}^{1,q}(T, \mathbb{R}^N)$.

Proof. Let $\lambda_n \downarrow 0$ and let $x_n \in \widehat{D} \cap \overline{W}$ be solutions of the corresponding auxiliary problems (5). Evidently $\{x_n\}_{n\geq 1} \subseteq W^{1,p}_{per}(T,\mathbb{R}^N)$ is bounded and so we may assume that $x_n \stackrel{w}{\rightarrow} x$ in $W^{1,p}_{per}(T,\mathbb{R}^N)$. For every $n \geq 1$, we have

$$
\left(U(x_n), \widehat{A}_{\lambda_n}(x_n)\right)_{qp} + \|\widehat{A}_{\lambda_n}(x_n)\|_2^2 = -\left(f_n, \widehat{A}_{\lambda_n}(x_n)\right)_{qp} \tag{10}
$$

From integration by parts and since $x_n(0) = x_n(b)$, $x'_n(0) = x'_n(b)$, we have

$$
\left(U(x_n), \hat{A}_{\lambda_n}(x_n)\right)_{qp} = \int_0^b \left(-(a(x'_n(t)))', A_{\lambda_n}(x_n(t))\right)_{\mathbb{R}^N} dt
$$

$$
= \int_0^b \left(a(x'_n(t)), \frac{d}{dt}A_{\lambda_n}(x_n(t))\right)_{\mathbb{R}^N} dt.
$$

From the chain rule of Marcus-Mizel [17], we have that $\frac{d}{dt}A_{\lambda_n}(x_n(t))$ $=A'_{\lambda_n}(x_n(t))x'_n(t)$ a.e. on T. So (see H(A)₁)

$$
\left(U(x_n),\widehat{A}_{\lambda_n}(x_n)\right)_{qp}=\int_0^b c(x'_n(t))\big(x'_n(t),A_{\lambda_n}(x_n(t))x'_n(t)\big)_{\mathbb{R}^N}dt\geq 0.
$$

Using this inequality in (10), we obtain that $\{\widehat{A}_{\lambda_n}(x_n)\}_{n\geq 1} \subseteq L^2(T,\mathbb{R}^N)$ is bounded. So we may assume that $\widehat{A}_{\lambda_n}(x_n) \stackrel{w}{\to} u$ in $L^2(T,\mathbb{R}^N)$. If $\widehat{J}_{\lambda_n}(x_n)(\cdot) =$ $J_{\lambda_n}(x_n(\cdot)) \in C(T, \mathbb{R}^N)$, we have $\widehat{J}_{\lambda_n}(x_n) \to x$ in $L^2(T, \mathbb{R}^N)$. Because $A_{\lambda_n}(x_n(t))$ $\in A(J_{\lambda_n}(x_n(t)))$ for all $n \geq 1$ and all $t \in T$, we have $A_{\lambda_n}(x_n) \in A(J_{\lambda_n}(x_n))$. Because $\widehat{A}_{\lambda_n}(x_n) \in \widehat{A}(\widehat{J}_{\lambda_n}(x_n)), \widehat{J}_{\lambda_n}(x_n) \to x$ in $L^2(T, \mathbb{R}^N)$ and $\widehat{A}_{\lambda_n}(x_n) \xrightarrow{w} u$ in $L^2(T, \mathbb{R}^N)$, we infer that $u \in \widehat{A}(x)$, i.e., $u(t) \in A(x(t))$ a.e. on T. Moreover, we may assume that $f_n \stackrel{w}{\rightarrow} f$ in $L^q(T, \mathbb{R}^N)$. Arguing as in the proof of Proposition 3.5 (see Claim 1), we obtain $x_n \to x$ in $C^1(T, \mathbb{R}^N)$. Then in the limit as $n \rightarrow \infty$, we have $f \in N_1(x)$ and $(a(x'(t)))' = u(t) + f(t) \in A(x(t)) +$ $F(t, x(t), x'(t))$ a.e on T, $x(0) = x(b)$, $x'(0) = x'(b)$. П

4. Problems with the p-Laplacian and nonlinear boundary conditions

In this section we deal with Problem (2). Now, in contrast to the situation of Section 3, we assume that $D(A) = \mathbb{R}^N$. This permits the improvement of the growth condition on F and so we can have multivalued nonlinearities of the Nagumo-Hartman type (see also Mawhin-Urena [20]). More precisely our hypotheses on the data of (2) are the following:

- $\mathbf{H}(\mathbf{A})_2: A: \mathbb{R}^N \to 2^{\mathbb{R}^N}$ is a maximal monotone map with $D(A) = \mathbb{R}^N$ and $0 \in A(0)$.
- $\mathbf{H}(\mathbf{F})_2: F: T \times \mathbb{R}^N \times \mathbb{R}^N \to P_{kc}(\mathbb{R}^N)$ is a multifunction such that $\mathbf{H}(\mathbf{F})_1(i)$, (ii) hold and
	- (iii) for almost all $t \in T$, all $||x|| \leq M$ and all $||y||^{p-1} \geq M_1 > 0$ we have

 $\sup \left[\|v\| : v \in F(t, x, y) \right] \leq \eta(\|y\|^{p-1})$

where $\eta : \mathbb{R}_+ \to \mathbb{R}_+ \setminus \{0\}$ is a locally bounded Borel measurable function such that $\int_{M_1}^{\infty}$ $\frac{sds}{\eta(s)} = +\infty;$

- (iv) if $||x_0|| = M$ (with $M > 0$ as in (iii)), hypothesis H(F)₁(iv) holds;
- (v) for all $r > 0$, there exists $\gamma_r \in L^q(T)_+$ $(\frac{1}{p} + \frac{1}{q} = 1)$ such that for almost all $t \in T$, all $||x||$, $||y|| \leq r$ and all $v \in F(t, x, y)$, we have $||v|| \leq \gamma_r(t);$
- (vi) is the same as $H(F)_1(iii)$.

Recall that if $A: D(A) \subseteq X \to 2^{X^*}$ is a maximal monotone operator, we define $\widehat{A}: D(\widehat{A}) \subseteq L^p(T, X) \to 2^{L^q(T, X^*)}$ by $\widehat{A}(x) = \{h \in L^q(T, X^*) : h(t) \in L^q(T, X^*)$ $A(x(t))$ a.e. on T} for all $x \in D(\tilde{A}) = \{x \in L^p(T, X) : x(t) \in D(A) \text{ a.e. on } T\}$ and $S^q_{A(x(\cdot))} \neq \emptyset$.

Proposition 4.1. If X is a separable reflexive Banach space and $A : D(A) \subseteq$ $X \to 2^{X^*}$ is a maximal monotone operator with $0 \in A(0)$, then $\widehat{A} : D(\widehat{A}) \subseteq$ $L^p(T, X) \to 2^{L^q(T, X^*)}$ is maximal monotone too.

Proof. By Troyanski's renorming theorem (see Hu-Papageorgiou [13, p. 316]), without any loss of generality we may assume that both X and X^* are locally uniformly convex spaces. Let $\mathcal{F}: X \to X^*$ be the duality map of X (i.e., $\mathcal{F}(x) =$ $\partial \varphi(x)$ with $\varphi(x) = \frac{1}{2} ||x||^2$, see Hu-Papageorgiou [13, p. 30] and Zeidler [22, p. 860]). We know that $\mathcal F$ is a homeomorphism (see Zeidler [22, p. 861]). We introduce the operator $J_0: L^p(T,X) \to L^q(T,X^*)$ defined by $J_0(x)(\cdot)$ = $\|\mathcal{F}(x(\cdot))\|^{p-2}\mathcal{F}(x(\cdot)).$ It is easy to see that J_0 is continuous, strictly monotone, thus maximal monotone. Clearly \widehat{A} is monotone. We show that $R(\widehat{A} + J_0) =$ $L^q(T, X^*)$ (i.e., surjectivity of $\widehat{A} + J_0$). For this purpose let $h \in L^q(T, X^*)$ and consider the multifunction $\Gamma : T \to 2^{X^*}$ defined by $\Gamma(t) = \{x \in X :$ $A(x) + \varphi(x) \ni h(t)$, where $\varphi : X \to X^*$ is the monotone continuous map defined by $\varphi(x) = ||\mathcal{F}(x)||^{p-2}\mathcal{F}(x)$. Note that $A + \varphi : D(A) \subseteq X \to 2^{X*}$ is maximal monotone. Moreover, because $0 \in A(0)$, we have that $A + \varphi$ is coercive. Therefore $R(A+\varphi) = X^*$ and so we infer that for all $t \in T$, $\Gamma(t) \neq \varnothing$. Remark that $Gr\Gamma = \{(t, x) \in T \times X : (x, \varphi(x) - h(t)) \in GrA\}$. Let ξ : $T \times X \to X \times X^*$ be defined by $\xi(t,x) = (x, \varphi(x) - h(t))$. Evidently ξ is a Caratheodory function, thus jointly measurable. Note that $Gr\Gamma = \xi^{-1}(GrA)$ and since $Gr A$ is sequentially closed in $X \times X_w^*$, we have $Gr A \in B(X \times X_w^*)$ (the Borel σ -field). But X_w^* is a Souslin space and so $B(X \times X_w^*) = B(X) \times B(X_w^*)$ (see Hu-Papageorgiou [13, p. 153]). Also $B(X_w^*) = B(X^*)$. Therefore $GrA \in$ $B(X) \times B(X^*) = B(X \times X^*)$ and so $Gr\Gamma = \xi^{-1}(GrA) \in \mathcal{L} \times B(X)$ with $\mathcal L$ being the Lebesgue σ -field of T. We can apply the Yankon-von Neumann-Aumann selection theorem (see Hu-Papageorgiou [13, p. 158]) to obtain a measurable map $x: T \to X$ such that $x(t) \in \Gamma(t)$ a.e. on T. We have $h(t) \in A(x(t))$ + $\varphi(x(t))$ a.e. on T. Taking duality brackets with $x(t)$, we obtain $||x(t)||^p \leq$ $\langle h(t), x(t) \rangle_{X^*,X}$ and so $||x(t)||^{p-1} \le ||h(t)||$ a.e. on T, i.e., $x \in L^p(T,X)$. So we have proved that $R(\hat{A} + J_0) = L^q(T, X^*)$. Then arguing as in the proof

of Proposition 3.3 and exploiting the strict monotonicity of J_0 , we obtain the maximality of A .

The second auxiliary result concerns the periodic problem

$$
\begin{cases}\n-(\|x'(t)\|^{p-2}x'(t))' + \|x(t)\|^{p-2}x(t) = g(t) & \text{a.e. on } T = [0, b] \\
(\varphi_p(x'(0)), -\varphi_p(x'(b))) \in \xi(x(0), x(b)), \ 1 < p < \infty.\n\end{cases} \tag{11}
$$

From Gasinski-Papageorgiou [10] we have the following result:

Proposition 4.2. If $\xi : D(\xi) \subseteq \mathbb{R}^N \times \mathbb{R}^N \to 2^{\mathbb{R}^N \times \mathbb{R}^N}$ is a maximal monotone map with $(0,0) \in \xi(0,0)$ and $g \in L^{q}(T,\mathbb{R}^{N})$ $(\frac{1}{p} + \frac{1}{q} = 1)$, then Problem (11) has a unique solution $x \in C^1(T, \mathbb{R}^N)$ with $||x'||^{p-2}x' \in W^{1,q}(T, \mathbb{R}^N)$.

Let $D_0 = \{x \in C^1(T, \mathbb{R}^N) : ||x'||^{p-2}x' \in W^{1,q}(T, \mathbb{R}^N), (\varphi_p(x'(0)), -\varphi_p(x'(b)))\}$ $\in \mathcal{E}(x(0), x(b))$ and let $V : D_0 \subseteq L^p(T, \mathbb{R}^N) \to L^q(T, \mathbb{R}^N)$ be defined by $V(x) =$ $-(\|x'\|^{p-2}x')', x \in D_0$. Arguing as in the proof of Proposition 3.3, using this time Proposition 4.2, we obtain

Proposition 4.3. If $\xi : D(\xi) \subseteq \mathbb{R}^N \times \mathbb{R}^N \to 2^{\mathbb{R}^N \times \mathbb{R}^N}$ is a maximal monotone map with $(0,0) \in \xi(0,0)$, then $V : D_0 \subseteq L^p(T, \mathbb{R}^N) \to L^q(T, \mathbb{R}^N)$ is maximal monotone.

For the existence theorem for Problem (2) we will use the following hypotheses on ξ :

- $\mathbf{H}(\xi): \xi: D(\xi) \subseteq \mathbb{R}^N \times \mathbb{R}^N \to 2^{\mathbb{R}^N \times \mathbb{R}^N}$ is a maximal monotone map with $(0, 0) \in \mathcal{E}(0, 0)$ and one of the following holds:
	- (i) for every $(a', d') \in \xi(a, d)$, we have $(a', a)_{\mathbb{R}^N} \geq 0$ and $(d', d)_{\mathbb{R}^N} \geq 0$; or
	- (ii) $D(\xi) = \{(a, d) \in \mathbb{R}^N \times \mathbb{R}^N : a = d\}.$

Proposition 4.4. If the hypotheses $H(A)_2$, $H(F)_2$, $H(\xi)$ and H_0 hold, then Problem (2) has a solution $x \in C^1(T, \mathbb{R}^N)$ with $||x'||^{p-2}x' \in W^{1,q}(T, \mathbb{R}^N)$.

Proof. Because A is maximal monotone with $D(A) = \mathbb{R}^N$, we have that $\theta =$ $\sup \|u\| : u \in A(x), \|x\| \leq M$ < $+\infty$ (see Hu-Papageorgiou [13, p. 308]). Without any loss of generality we may assume that for almost all $r \geq 0$, $0 <$ $\beta \leq \eta(r)$. Set $\eta_1(r) = \theta + \eta(r)$. If $\hat{\gamma} \geq \frac{\theta}{\beta} + 1$, then we have $\eta_1(r) \leq \hat{\gamma}\eta(r)$ for all $r \geq 0$ and so $\int_{M_1}^{\infty}$ $\frac{sds}{\eta_1(s)} = +\infty.$

As we did with Problem (1) (see Section 3), first we assume that the multivalued nonlinearity F satisfies (6) (with $c_0 = 1$) instead of H(F)₂(iv). Let

$$
M_1' > \max\left\{b^{\frac{1}{p}} \Bigg(\frac{p}{r c_0} \Bigg[c_1 M^p b + \frac{r c_2^{\frac{p}{r}} M^p b^{\frac{p}{r}}}{c_0 p} + \|c_3\|_1 M^s \Bigg] \right\}^{\frac{p-1}{p}}, M_1 \right\}
$$

and then take $M_2 > 0$ such that $M_2^{p-1} > M'_1$ and $\int_{M_1}^{M_2^{p-1}}$ $\frac{sds}{\eta_1(s)} = M'_1$. Also let $W \subseteq C^1(T, \mathbb{R}^N)$ be defined by

$$
W = \{ x \in C^1(T, \mathbb{R}^N) : ||x(t)|| < M, ||x'(t)|| < M_2 \text{ for all } t \in T \}.
$$

The set W is open, bounded in $C^1(T, \mathbb{R}^N)$ and $0 \in W$. Moreover, we have

$$
\partial W = \{ x \in C^1(T, \mathbb{R}^N) : ||x||_{\infty} = M, ||x'||_{\infty} = M_2 \}.
$$

Let $N: \overline{W} \to P_{wkc}(L^q(T,\mathbb{R}^N))$ be defined by $N(x) = S^q_{F(\cdot,x(\cdot),x'(\cdot))}$. We know that N is use from \overline{W} with the $C^1(T, \mathbb{R}^N)$ -norm topology into $L^q(T, \mathbb{R}^N)$ with the weak topology. For each $g \in L^q(T, \mathbb{R}^N)$, we consider Problem (11). By Proposition 4.2 we know that this problem has a unique solution $x = K(q) \in$ $C^1(T, \mathbb{R}^N)$. So we can define the map $K: L^q(T, \mathbb{R}^N) \to C^1(T, \mathbb{R}^N)$ which to each $g \in L^{q}(T,\mathbb{R}^{N})$ assigns the unique solution of (11). It is easy to check that K is completely continuous.

Let $J: C^1(T, \mathbb{R}^N) \to L^q(T, \mathbb{R}^N)$ be the bounded continuous map defined by $J(x)(\cdot) = ||x(\cdot)||^{p-2}x(\cdot)$. Also let $\widehat{A}: C^1(T, \mathbb{R}^N) \to 2^{L^q(T, \mathbb{R}^N)}$ be defined by $\widehat{A}(x) = S^q_{A(x(\cdot))}$. We have that \widehat{A} is usc from $C^1(T, \mathbb{R}^N)$ into $L^q(T, \mathbb{R}^N)_w$. Set $N_1(x) = -N(x) + J(x) - \widehat{A}(x)$. Evidently $N_1 : \overline{W} \to P_{wkc}(L^q(T, \mathbb{R}^N))$ is usc from \overline{W} with the $C^1(T,\mathbb{R}^N)$ -norm topology into $L^q(T,\mathbb{R}^N)_w$. Problem (2) is equivalent to the fixed point problem

$$
x \in (K \circ N_1)(x). \tag{12}
$$

Claim: For every $x \in \partial W$ and every $\xi \in (0,1)$, we have $x \notin \xi(K \circ N_1)(x)$.

Let $x \in \overline{W}$ and suppose that for some $\xi \in (0,1)$ we have $x \in \xi(K \circ N_1)(x)$. Arguing as in the proof of Proposition 3.5 (claim 2), we obtain

$$
||x'||_p^p \leq \frac{p}{r c_0} \bigg[c_1 M^p b + \frac{r c_2^{\frac{p}{2}} M^p b^{\frac{p}{r}}}{c_0 p} + ||c_3||_1 M^s \bigg] \,,
$$

and hence $||x'||_p^{p-1} < \frac{1}{\sqrt{2}}$ $\frac{1}{b^{\frac{1}{p}}}M'_{1}$. The function $\vartheta(u)=u^{\frac{p-1}{p}}, u \geq 0$, is concave. So using Jensen's inequality, we have

$$
\frac{1}{b^{\frac{1}{p}}}\|x'\|_{p}^{p-1} \geq \frac{1}{b}\int_{0}^{b}\|x'(t)\|^{p-1}dt.
$$

Therefore it follows (since $\frac{1}{p} + \frac{1}{q} = 1$) that

$$
\int_0^b \|x'(t)\|^{p-1} dt < M_1' \,. \tag{13}
$$

We claim that $||x'(t)|| < M_2$ for all $t \in T$. Suppose that this is not the case. Then we can find $t_0 \in T$ such that $||x'(t_0)|| = M_2$, hence $||x'(t_0)||^{p-1} > M'_1$. So from (13) we infer that there exists a $t_1 \in T$ such that $||x(t_1)||^{p-1} = M'_1$ (take the $t_1 \in T$ which is closest to t_0). Let $\chi : [M'_1, +\infty) \to \mathbb{R}_+$ be the function defined by $\chi(r) = \int_{M'_1}^r$ s $\frac{s}{\eta_1(s)}ds$. Clearly χ is continuous, strictly increasing, $\chi(M'_1) = 0$ and $\chi(M_2^{p-1})$ $\binom{p-1}{2} = M'_1$. We have

$$
M'_{1} = \chi(M_{2}^{p-1})
$$

\n
$$
= |\chi(||x'(t_{0})||^{p-1})|
$$

\n
$$
= |\int_{M_{1}}^{||x'(t_{0})||^{p-1}} \frac{s}{\eta_{1}(s)} ds|
$$

\n
$$
= |\int_{||x'(t_{0})||^{p-1}}^{||x'(t_{1})||^{p-1}} \frac{s}{\eta_{1}(s)} ds|
$$

\n
$$
\leq |\int_{t_{0}}^{t_{1}} \frac{||(||x'(t)||^{p-2}x'(t))'||}{\eta_{1}(||(||x'(t)||^{p-2}x'(t))||)} ||x'(t)||^{p-1} dt|.
$$
\n(14)

We also have

$$
|| (||x'(t)||^{p-2}x'(t))' || \leq \theta + \eta(||x'(t)||^{p-1})
$$

= $\eta_1(||x'(t)||^{p-1})$
= $\eta_1(|| (||(x'(t))||^{p-2}x'(t)) ||).$

Using this in (14) , we obtain (see (13))

$$
M_1' \le \left| \int_{t_0}^{t_1} \|x'(t)\|^{p-1} dt \right| = \int_{\min\{t_0, t_1\}}^{\max\{t_0, t_1\}} \|x'(t)\|^{p-1} dt < M_1',
$$

a contradiction. Therefore $||x'(t)|| < M_2$ for all $t \in T$. Moreover, following the argument in the proof of Proposition 3.5 and using hypotheses $H(\xi)$, we can show that $||x(t)|| < M$ for all $t \in T$. Therefore $x \in W$ and we have proved the claim.

Apply Proposition 2.1 to obtain $x \in D_0 \cap \overline{W}$ which solves (12). Evidently this is a solution of (2) when (6) (with $c_0 = 1$) is in effect. As in the proof of Proposition 3.5 we remove this extra restriction. П

Remark 4.5. It will be interesting to have this existence result when $D(A) \neq \mathbb{R}^N$.

5. Special cases and examples

We show that our general formulation of Problem (2) unifies the classical Dirichlet, Neumann and periodic problems and goes beyond them:

(a) Let $K_1, K_2 \in P_{fc}(\mathbb{R}^N)$ with $0 \in K_1 \cap K_2$. By $\delta_{K_1 \times K_2}$ we denote the indicator function of the set $K_1 \times K_2$, i.e.,

$$
\delta_{K_1 \times K_2}(x, y) = \begin{cases} 0 & \text{if } (x, y) \in K_1 \times K_2 \\ +\infty & \text{otherwise.} \end{cases}
$$

Evidently $\delta_{K_1 \times K_2}$ is proper, lower semicontinuous and convex, i.e., $\delta_{K_1 \times K_2} \in$ $\Gamma_0(\mathbb{R}^N\times\mathbb{R}^N)$. Set $\xi=\partial \delta_{K_1\times K_2}=N_{K_1\times K_2}=N_{K_1}\times N_{K_2}$ (given $C\in P_{fc}(\mathbb{R}^N)$ by $N_C(x)$ we denote the normal cone to the set C at $x \in C$, see Hu-Papageorgiou [13, p. 624]). Then Problem (2) becomes

$$
\begin{cases}\n(\|x'(t)\|^{p-2}x'(t))' \in A(x(t)) + F(t, x(t), x'(t)) & \text{a.e. on } T \\
x(0) \in K_1, x(b) \in K_2 \\
(x'(0), x(0))_{\mathbb{R}^N} = \sigma(x'(0), K_1), (-x'(b), x(b))_{\mathbb{R}^N} = \sigma(-x'(b), K_2).\n\end{cases}
$$
\n(15)

Note that $\xi = \partial \delta_{K_1 \times K_2}$ is maximal monotone, $(0,0) \in \xi(0,0)$ and hypothesis $H(\xi)$ is valid (the first option).

(b) In the previous case, let $K_1 = K_2 = \{0\}$. Then Problem (15) becomes the usual Dirichlet problem.

(c) Again in the first example let $K_1 = K_2 = \mathbb{R}^N$. Then $\xi = N_{K_1} \times N_{K_2} =$ $\{(0,0)\}\$ and so we have Neumann problem. The Neumann problem was not examined before in the presence of Nagumo-Hartman nonlinearities (compare with Mawhin-Urena [20]).

(d) Let $K = \{(x, y) \in \mathbb{R}^N \times \mathbb{R}^N : x = y\}$ and let $\xi = \partial \delta_K$. Then $\xi(x, y) =$ $K^{\perp} = \{(v, w) \in \mathbb{R}^{N} \times \mathbb{R}^{N} : v = -w\}.$ So Problem (2) becomes the usual periodic problem.

(e) Let $\xi : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N \times \mathbb{R}^N$ be defined by

$$
\xi(x,y) = \left(\frac{1}{\theta^{\frac{1}{q-1}}}\varphi_p(x), \frac{1}{\eta^{\frac{1}{q-1}}}\varphi_p(y)\right) \quad \text{with } \theta, \eta > 0.
$$

Evidently, ξ is continuous, monotone (hence maximal monotone) and $\xi(0,0)$ = $(0, 0)$. With this choice of ξ , Problem (2) becomes a Sturm-Liouville type problem

$$
\begin{cases} (||x'(t)||^{p-2}x'(t))' \in A(x(t)) + F(t, x(t), x'(t)) \text{ a.e. on } T\\ x(0) - \theta x'(0) = 0, \ x(b) + \eta x'(b) = 0. \end{cases}
$$
(16)

Hypothesis $H(\xi)$ is satisfied.

(f) Let $\xi_1, \xi_2 : \mathbb{R}^N \to \mathbb{R}^N$ be two monotone, continuous maps such that $\xi_1(0) = \xi_2(0) = 0$. Let $\xi : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N \times \mathbb{R}^N$ be defined by $\xi(x, y) =$ $(\xi_1(x), \xi_2(y))$. Evidently ξ satisfies hypothesis H(ξ). Then Problem (2) becomes

$$
\begin{cases} (||x'(t)||^{p-2}x'(t))' \in A(x(t)) + F(t, x(t), x'(t)) \text{ a.e. on } T \\ x'(0) = \varphi_q(\xi_1(x(0))), -x'(b) = \varphi_q(\xi_2(x(b))). \end{cases}
$$
(17)

Next let $\psi = \delta_{\mathbb{R}_+^N}$, $A = \partial \psi$, $K = \{(x, y) \in \mathbb{R}^N \times \mathbb{R}^N : x = y\}$ and $\xi = \partial \delta_K = K^{\perp}$. We have

$$
A(x) = \partial \psi(x) = N_{\mathbb{R}_+^N}(x) = \begin{cases} \{0\} & \text{if } x_k > 0 \text{ for all } k \in \{1, ..., N\} \\ -\mathbb{R}_+^N \cap \{x\}^\perp & \text{if } x_k = 0 \text{ for some } k \in \{1, ..., N\}. \end{cases}
$$

Then Problem (2) becomes the following differential variational inequality:

$$
\begin{cases}\n\left(\|x'(t)\|^{p-2}x'(t)\right)' \in F(t, x(t), x'(t)) \\
\text{a.e. on } \{t \in T : x_k(t) > 0 \text{ for all } k = 1, ..., N\} \\
\left(\|x'(t)\|^{p-2}x'(t)\right)' \in F(t, x(t), x'(t)) - u(t) \\
\text{a.e. on } \{t \in T : x_k(t) = 0 \text{ for some } k = 1, ..., N\} \\
x(t) = \left(x_k(t)\right)_{k=1}^N \in \mathbb{R}_+^N \text{ for all } t \in T, u \in L^q(T, \mathbb{R}_+^N) \\
x(0) = x(b), x'(0) = x'(b).\n\end{cases} \tag{18}
$$

Acknowledgement. The authors wish to thank a knowledgeable referee for his (her) corrections and constructive remarks.

References

- [1] Bader, R.: A topological fixed-point index theory for evolution inclusions. Z. Anal. Anwendungen 20 (2000), 3 – 15.
- [2] Boccardo, L., Drabek, P., Giachetti, D. and M. Kucera: Generalization of Fredholm alternative for nonlinear differential operators. Nonlin. Anal. 10 (1986), 1083 – 1103.
- [3] Dang, H. and S. F. Oppenheimer: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), $35 - 48$.
- [4] De Coster, C.: On pairs of positive solutions for the one-dimensional p-Laplacian. Nonlin. Anal. 23 (1994), 669 – 681.
- [5] Del Pino, M., Manasevich, R. and A. Murua: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ode. Nonlin. Anal. 18 (1992), 79 – 92.
- [6] Dugundji, J. and A. Granas: Fixed Point Theory. Warszawa: Polish Scientific Publishers 1982.
- [7] Erbe, L. and W. Krawcewicz: Nonlinear boundary value problems for differential inclusions $y'' \in F(t, y, y')$. Annales Polonici Math. 54 (1991), 195 – 226.
- [8] Fabry, C. and D. Fayyad: Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207 – 227.
- [9] Frigon, M.: Theoremes d'existence des solutions d'inclusions differentielles. In: Topological Methods in Differential Equations and Inclusions. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472. Dordrecht: Kluwer 1995, pp. 51 – 87.
- [10] Gasinski, L. and N. S. Papageorgiou: Nonlinear second order multivalued boundary value problems. Proc. Indian Acad. Sci. Math. Sci. 113 (2003), 293 – 319.
- [11] Guo, Z.: Boundary value problems of a class of quasilinear ordinary differential equations. Diff. Integral. Eqs. $8(1995), 429 - 452.$
- [12] Halidias, N. and N. S. Papageorgiou: Existence and relaxation results for nonlinear second order multivalued boundary value problem in \mathbb{R}^N . J. Diff. Eqs. 147 (1998), 123 – 154.
- [13] Hu, S. and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory. Dordrecht: Kluwer 1997.
- [14] Kandilakis, D. and N. S. Papageorgiou: Existence theorem for nonlinear boundary value problems for second order differential inclusions. J. Diff. Eqs. 132 $(1996), 107 - 125.$
- [15] Kyritsi, S., Matzakos, N. and N. S. Papageorgiou: Periodic problems for strongly nonlinear second order differential inclusions. J. Diff. Eqs. 183 (2002), 279 – 302.
- [16] Manasevich, R. and J. Mawhin: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Diff. Eqs. 145 (1998), 367 – 393.
- [17] Marcus, M. and V. Mizel: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294 – 320.
- [18] Mawhin, J.: Periodic solutions of systems with p-Laplacian like operators. In: Nonlinear Analysis and its Applications to Differential Equations (Lisboa 1997; eds: M. R. Grossinho et al.). Progress in Nonlinear Differential Equations and Applications. Boston: Birkhauser 1998, pp. 37 – 63.
- [19] Mawhin, J.: Some boundary value problems for Hartaman-type perturbations of the ordinary vector p-Laplacian. Nonlin. Anal. 40 (2000), $497 - 503$.
- [20] Mawhin, J. and A. J. Ureña: A Hartman-Nagumo inequality for the vector ordinary pLaplacian and applications to nonlinear boundary value problems. J. Inequal. Appl. 7 (2002), 701 – 725.
- [21] Papageorgiou, E. H. and N. S. Papageorgiou: Strongly nonlinear multivalued periodic problems with maximal monotone terms. Diff. Integral Eqs. 17 (2004), $443 - 480.$
- [22] Zeidler, E.: Nonlinear Functional Analysis and its Applications II. New York: Springer 1990.

Received 10.05.2004; in revised form 01.06.2005