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Nonlinear Boundary Value Problems
Involving the p-Laplacian

and p-Laplacian-Like Operators

Evgenia H. Papageorgiou and Nikolaos S. Papageorgiou

Abstract. We study nonlinear boundary value problems for systems driven by the
vector p-Laplacian or p-Laplacian-like operators and having a maximal monotone
term. We consider periodic problems and problems with nonlinear boundary condi-
tions formulated in terms of maximal monotone operators. This way we achieve a
unified treatment of the classical Dirichlet, Neumann and periodic problems. Our
hypotheses permit the presence of Hartman and Nagumo-Hartman nonlinearities,
partially extending this way some recent works of Mawhin and his coworkers.
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1. Introduction

In this paper we study the following two nonlinear boundary value problems
in RN : { (

α(x′(t))
)′
∈ A(x(t)) + F

(
t, x(t), x′(t)

)
a.e. on T = [0, b]

x(0) = x(b), x′(0) = x′(b),
(1)

and{ (
‖x′(t)‖p−2x

′
(t)
)′
∈ A(x(t)) + F

(
t, x(t), x′(t)

)
a.e. on T = [0, b](

ϕp(x
′(0)),−ϕp(x

′(b))
)
∈ ξ
(
x(0), x(b)

)
, 1 < p <∞.

(2)

Here a : RN → RN is a suitable homeomorphism which is not in general homoge-
neous, A : D(A) ⊆ RN → 2RN

is a maximal monotone map, F : T×RN×RN →
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2RN \{∅} is a multivalued in general nonlinearity satisfying Caratheodory type
conditions, ϕp : RN → RN is the homeomorphism defined by

ϕp(r) =

{ ‖r‖p−2r if r 6= 0

0 if r = 0

and ξ : D(ξ) ⊆ RN × RN → 2RN×RN
is a maximal monotone map.

Boundary value problems involving the ordinary p-Laplacian have been the
focus of attention of many researchers in the last decade. Most of the works
deal with the scalar problem. We refer to the works of Boccardo-Drabek-
Giachetti-Kucera [2], De Coster [4], Del Pino-Manasevich-Murua [5], Fabry-
Fayyad [8], Guo [11] and the references therein. We also mention the work
of Dang-Oppenheimer [3], where the ordinary scalar p-Laplacian is replaced by
a one-dimensional possibly nonhomogeneous nonlinear differential operator.

Recently in a series of interesting papers, Mawhin and coworkers studied
systems driven by the ordinary vector p-Laplacian or p-Laplacian like opera-
tors and having primarily periodic boundary conditions. We refer to the pa-
pers of Manasevich-Mawhin [16] Mawhin [18, 19] and Mawhin-Urena [20]. As
the Nagumo-Hartman condition used here is distinct from the one used by
Mawhin-Urena [20] we provide a partial extension of the works by Mawhin [18]
and Mawhin-Urena [20], where the authors employ nonlinearities of the Hart-
man and Nagumo-Hartman type. Also in these works the ordinary vector p-
Laplacian with periodic boundary conditions is used, A ≡ 0 and the nonlinearity
is single-valued.

The problems that we study here are more general since they involve the
maximal monotone operator A, which in the case of Problem (1) is not nec-
essarily defined everywhere (see hypotheses H(A)1). This way we incorporate
in our framework differential variational inequalities. Moreover, in the case of
Problem (2), the nonlinear multivalued boundary conditions used here achieve
a unified treatment of the Dirichlet, Neumann and periodic problems and go
beyond them (see Section 5). This way we extend the semilinear works (i.e.,
p = 2) of Erbe-Krawcewicz [7], Frigon [9], Kandilakis-Papageorgiou [14] and
Halidias-Papageorgiou [12] and the recent nonlinear works of Kyritsi-Matzakos-
Papageorgiou [15] and Papageorgiou-Papageorgiou [21]. Our approach is based
on nonlinear operator theory and fixed point arguments.

2. Mathematical background

Let (Ω,Σ) be a measurable space and X a separable Banach space. We intro-
duce the notations

Pf(c)(X) =
{
A ⊆ X : A is nonempty, closed (and convex)

}
P(w)k(c)(X) =

{
A ⊆ X : A is nonempty, (weakly) compact (and convex)

}
.
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A multifunction F : Ω → Pf (X) is said to be measurable, if for all x ∈ X
ω → d(x, F (ω)) = inf[‖x − u‖ : u ∈ F (ω)] is measurable. Also we say that
F : Ω → 2X \{∅} is graph measurable, if GrF = {(ω, x) ∈ Ω×X : x ∈ F (ω)} ∈
Σ × B(X), with B(X) being the Borel σ-field of X. For multifunctions with
values in Pf (X) measurability implies graph measurability, while the converse
holds if Σ is complete. Next let (Ω,Σ, µ) be a finite measure space and F : Ω →
2X \ {∅} a multifunction. For 1 ≤ p ≤ ∞ we introduce the set

Sp
F =

{
f ∈ Lp(Ω, X) : f(ω) ∈ F (ω) µ− a.e. on Ω

}
.

Let Y, Z be Hausdorff topological spaces. A multifunction G : Y → 2Z \ {∅} is
said to be upper semicontinuous (usc for short) (respectively lower semicontin-
uous (lsc for short)), if for every closed set C ⊆ Z, the set G−(C) = {y ∈ Y :
G(y) ∩ C 6= ∅} (respectively the set G+(C) = {y ∈ Y : G(y) ⊆ C}) is closed
in Y . If Z is regular and F is Pf (Z)-valued and usc, then it has a closed graph,
i.e., GrG = {(y, z) ∈ Y ×Z : z ∈ G(y)} is closed in Y ×Z. The converse is true
if G is locally compact.

Now let X be a reflexive Banach space and X∗ its topological dual. Recall
that a monotone, demicontinuous operator A : X → X∗ is maximal mono-
tone. Also a maximal monotone coercive operator, is surjective. When X = H
(Hilbert space) and A : D(A) ⊆ H → 2H is a maximal monotone operator,
then for every λ > 0 we introduce the well-known operators

Jλ = (I + λA)−1 (resolvent of A)

Aλ =
1

λ
(I − Jλ) (Yosida approximation of A).

Both operators are single-valued and defined on all of H. Moreover, Jλ is
nonexpansive, while Aλ is Lipschitz continuous with constant 1

λ
(hence Aλ is

maximal monotone).

We return to the general case of X being a reflexive Banach space. An
operator A : X → 2X∗

is said to be pseudomonotone, if

(a) for all x ∈ X, A(x) ∈ Pwkc(X
∗);

(b) A is usc from every finite dimensional subspace Z of X into X∗
w;

(c) if xn
w−→ x in X, x∗n ∈ A(xn) and lim supn→∞ 〈x∗n, xn − x〉 ≤ 0, then

for every y ∈ X, there exists x∗(y) ∈ A(x) such that 〈x∗(y), x− y〉 ≤
lim infn→∞ 〈x∗n, xn − y〉.

We say that A : D(A) ⊆ X → 2X∗
is generalized pseudomonotone, if for all x∗n ∈

A(xn) such that xn
w−→ x in X, x∗n

w−→ x∗ in X∗ and lim supn→∞ 〈x∗n, xn − x〉 ≤ 0,
we have x∗ ∈ A(x) and 〈x∗n, xn〉 → 〈x∗, x〉. A maximal monotone operator
is generalized pseudomonotone and a pseudomonotone operator is generalized
pseudomonotone. A generalized pseudomonotone operator is pseudomonotone,
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if it is everywhere defined and bounded. A pseudomonotone coercive operator is
surjective and the sum of pseudomonotone operators is again a pseudomonotone
operator. For details on multifunctions and nonlinear operators of monotone
type, we refer to the books of Hu-Papageorgiou [13] and Zeidler [22].

Recall that if V, Z are Banach spaces and K : V → Z, we say that K
is completely continuous, if vn

w−→ v in V implies that K(vn) → K(v) in Z.
In our analysis of problems (1) and (2) we shall use the following multival-
ued nonlinear alternative theorem due to Bader [1] which improves a result of
Dugundji-Granas [6, p. 98].

Proposition 2.1. If X, Y are Banach spaces with Y reflexive, W is a bounded
open subset of X with 0 ∈ W , G : W → Pwkc(Y ) is usc from W into Yw,
bounded, and K : Y → X is completely continuous, then one of the following
alternatives holds:

(a) there exist x0 ∈ ∂W and s ∈ (0, 1) such that x0 ∈ s(K ◦G)(x0); or

(b) Φ = G ◦K has a fixed point (i.e., there exist x ∈ W such that x ∈ Φ(x)).

3. Problems with p-Laplacian–like operators

In this section we deal with Problem (1) and we do not require that D(A) = RN .
Our analysis of Problem (1) starts with the study of the auxiliary periodic
problem{

−(α(x′(t)))
′
+ Aλ(x(t)) + ‖x(t)‖p−2x(t) = g(t) a.e. on T = [0, b]

x(0) = x(b), x′(0) = x′(b),
(3)

where 1 < p < ∞, g ∈ Lq(T,RN), 1
p

+ 1
q

= 1 and λ > 0. We introduce the
following hypotheses on the maps a and A:

H(a)1: a : RN → RN is continuous, strictly monotone and there exists a
function γ : [0,+∞) → [0,+∞) such that γ(r) → +∞ as r → +∞
and for all x ∈ RN we have γ(‖x‖)‖x‖ ≤ (a(x), x)RN .

H(A)1: A : D(A) ⊆ RN → 2RN
is a maximal monotone map such that

0 ∈ A(0).

Remark 3.1. We emphasize that we do not require that D(A) = RN .

In what follows we shall use the two spaces C1
per(T,RN) = {x ∈ C1(T,RN) :

x(0)=x(b), x′(0)=x′(b)} and W 1,p
per(T,RN) = {x ∈ W 1,p(T,RN) : x(0)=x(b)}.

Proposition 3.2. If hypotheses H(a)1 and H(A)1 hold, then Problem (3) has a
unique solution x ∈ C1

per(T,RN) such that a(x′) ∈ W 1,q
per(T,RN).
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Proof. Let f : T × RN → RN be defined by f(t, x) = Aλ(x) + ‖x‖p−2x− g(t).
Evidently f is a Caratheodory function. Also let η : RN → RN be defined
by η(x) = x. Then if h(t) = h+

1 (t) where h1(t) = supr>0[−rp + rp−1 + 1
λ
r +

‖g(t)‖r + ‖g(t)‖], and R0 > max{1, ‖g‖} where g = 1
b

∫ b

0
g(t)dt, with all the

above data we can apply Corollary 3.1 of Manasevich-Mawhin [16] and obtain
a solution for (3). The uniqueness follows at once from hypotheses H(α)1 and
the monotonicity of Aλ and strict monotonicity of ϕp.

Let D̂ = {x ∈ C1
per(T,RN) : a(x′) ∈ W 1,q

per(T,RN)}. For λ > 0, let Sλ :

D̂ ⊆ Lp(T,RN) → Lq(T,RN) be the nonlinear operator defined by Sλ(x) =

−(a(x′))′ + Âλ(x), where for every x ∈ D̂, Âλ(x)(·) = Aλ(x(·)). Note that if

x ∈ D̂, then Aλ(x(·)) ∈ C(T,RN).

Proposition 3.3. If the hypothesis H(a)1 holds and λ > 0, then Sλ : D̂ ⊆
Lp(T,RN) → Lq(T,RN) is maximal monotone.

Proof. Let J : Lp(T,RN) → Lq(T,RN) be the continuous, strictly monotone
(thus maximal monotone) operator defined by J(x)(·) = ‖x(·)‖p−2x(·). From
Proposition 3.2 we know that R(Sλ + J) = Lq(T,RN). We will show that Sλ

is maximal monotone. Indeed first note that Sλ is monotone. Suppose that for
some y ∈ Lp(T,RN) and some v ∈ Lq(T,RN), we have

(Sλ(x)− v, x− y)qp ≥ 0 for all x ∈ D̂. (4)

Hereafter by (·, ·)qp we denote the duality brackets for the pair (Lq(T,RN),

Lp(T,RN)). Since Sλ + J is surjective, we can find x1 ∈ D̂ such that Sλ(x1) +

J(x1) = v + J(y). Using this in (4) with x = x1 ∈ D̂, we obtain y = x1 ∈ D̂
since J is strictly monotone and v = Sλ(x1).

Next we study of the following regular approximation of Problem (1):{ (
α(x′(t))

)′
∈ Aλ(x(t)) + F

(
t, x(t), x′(t)

)
a.e. on T = [0, b]

x(0) = x(b), x′(0) = x′(b),
(5)

where λ > 0. Our hypotheses on the data of (5) are the following:

H(a)2: a : RN → RN is a monotone map such that a(y) = c(y)y or a(y) =
(ck(yk)yk)

N
k=1 for all y = (y)N

k=1 ∈ RN , with c : RN → R+ and ck :
R → R+, k ∈ {1, ..., N}, continuous maps and for all y ∈ RN we have
(a(y), y)RN ≥ c0‖y‖p for some c0 > 0.

H(F)1: F : T × RN × RN → Pkc(RN) is a multifunction such that

(i) for all x, y ∈ RN , t→ F (t, x, y) is graph measurable;

(ii) for almost all t ∈ T, (x, y) → F (t, x, y) has closed graph;
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(iii) for almost all t ∈ T , all x, y ∈ RN and all v ∈ F (t, x, y) we have

(v, x)RN ≥ −c1‖x‖p − c2‖x‖r‖y‖p−r − c3(t)‖x‖s

with c1, c2 > 0, c3 ∈ L1(T )+, 1 ≤ r, s < p;

(iv) there exists M > 0 such that if ‖x0‖ = M and (x0, y0)RN = 0, we
can find a δ > 0 such that for almost all t ∈ T , we have

inf
[
(v, x)RN +c0‖y‖p : ‖x−x0‖+‖y−y0‖ < δ, v ∈ F (t, x, y)

]
≥ 0 ;

(v) for almost all t ∈ T , all ‖x‖ ≤M , all y ∈ RN and all v ∈ F (t, x, y),
we have

‖v‖ ≤ c4(t) + c5‖y‖p−1

with c4(t) ∈ Lη(T )+, η = max{2, q}, c5 > 0.

Remark 3.4. Hypothesis H(F)1(iv) is a suitable extension to the present setting
of the so-called “Hartman condition” (see Mawhin [19]).

Proposition 3.5. If hypotheses H(a)2, H(A)1 and H(F)1 hold, then Problem (5)
has a solution x ∈ C1

per(T,RN) with a(x′) ∈ W 1,q
per(T,RN).

Proof. First we do the proof by assuming the following stronger version of
hypothesis H(F)1(iv):

“(iv)” there exists an M > 0 such that if ‖x0‖ = M and (x0, y0)RN = 0, we
can find δ > 0 and c6 > 0 such that for almost all t ∈ T we have

inf
[
(v, x)RN + c0‖y‖p : ‖x− x0‖+ ‖y − y0‖ < δ, v ∈ F (t, x, y)

]
≥ c6 > 0. (6)

Let Sλ : D̂ ⊆ Lp(T,RN) → Lq(T,RN) be the maximal monotone operator
introduced earlier in this section (see Proposition 3.3). Also as before let J :
Lp(T,RN) → Lq(T,RN) be defined by J(x)(·) = ‖x(·)‖p−2x(·). This operator is
maximal monotone. Set Vλ = Sλ + J . Then Vλ is maximal monotone. Also let
U : D̂ ⊆ Lp(T,RN) → Lq(T,RN) be the nonlinear differential operator defined

by U(x) = −(a(x′))′, x ∈ D̂. From Proposition 3.3 we have that U is maximal
monotone. Clearly Vλ is coercive. So R(Vλ) = Lq(T,RN). Moreover, Vλ is also
injective. So we can define the map

Kλ = V −1
λ : Lq(T,RN) → D̂ ⊆ W 1,p

per(T,RN).

Claim 1: Kλ : Lq(T,RN) → W 1,p
per(T,RN) is completely continuous.

Suppose that un
w−→ u in Lq(T,RN). Set xn = Kλ(un), n ≥ 1. We have

‖xn‖p−1
1,p ≤ c8‖un‖q with c8 > 0 ,

hence {xn}n≥1 ⊆ W 1,p
per(T,RN) is bounded. Therefore we may assume that

xn
w−→ x in W 1,p

per(T,RN) and xn → x in Lp(T,RN). Because un = Vλ(xn), n ≥ 1,
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it follows that u = Vλ(x) = Sλ(x) + J(x) = U(x) + Âλ(x) + J(x). For every

n ≥ 1, xn ∈ D̂ and so a(x′n) ∈ W 1,q
per(T,RN). Hence a(x′n) = an + ân, with

an ∈ RN and ân ∈ V = {v ∈ W 1,q
per(T,RN) :

∫ b

0
v(t)dt = 0}. From the equation

U(xn) + Âλ(xn) + J(xn) = un, if follows that {(a(x′n))′}n≥1 ⊆ Lq(T,RN) is
bounded, hence it follows that {ân}n≥1 ⊆ C(T,RN) is relatively compact. For
every n ≥ 1 and every t ∈ T , we have

x′n(t) = a−1(an + ân(t)).

Integrating this equation over T = [0, b] and since xn(0) = xn(b), we obtain∫ b

0

a−1
(
an + ân(t)

)
dt = 0.

Invoking Proposition 2.2 of Manasevich-Mawhin [16], we infer that {an}n≥1⊆
RN is bounded. So we conclude that {a(x′n)}n≥1 ⊆ C(T,RN) is relatively
compact. Hence {a(x′n)}n≥1 ⊆ W 1,q

per(T,RN) is bounded and so we may assume

that a(x′n)
w−→ β inW 1,q

per(T,RN). Because xn → x in Lp(T,RN) and U is maximal

monotone, it follows that β = U(x), hence a(x′n)
w−→ a(x′) in W 1,q

per(T,RN) and
so a(x′n) → a(x′) in C(T,RN). So we have that x′n → x′ in C(T,RN). Therefore
finally we can say that xn → x in W 1,p

per(T,RN) (in fact we have shown that
xn → x in C1(T,RN)). We conclude that the whole sequence {xn = Kλ(un)}n≥1

strongly converges to x = Kλ(u). This proves the claim.

Next let N : C = {x ∈ W 1,p
per(T,RN) : ‖x(t)‖ ≤ M for all t ∈ T} →

Lq(T,RN) be the multivalued operator defined by N(x) = Sq
F (·,x(·),x′(·)). From

Hu-Papageorgiou [13, p. 236] we know thatN has values in Pwkc(L
q(T,RN)) and

it is usc from C with the relative W 1,p
per(T,RN)-norm topology into Lq(T,RN)w.

Set N1(x) = −N(x) + J(x). Then Problem (5) is equivalent to the abstract
multivalued fixed point problem

x ∈ KλN1(x). (7)

Let M1 > 0 be such that Mp
1 > p

rc0

[
c1M

pb +
rc

p
r
2 Mpb

p
r

c0p
+ ‖c3‖1M

s
]
. We

consider the following set in W 1,p
per(T,RN):

W =
{
x ∈ W 1,p

per(T,RN) : ‖x(t)‖ < M for all t ∈ T and ‖x′‖p < M1

}
.

Set W1 = {x ∈ W 1,p
per(T,RN) : ‖x(t)‖ < M for all t ∈ T} and W2 = {x ∈

W 1,p
per(T,RN) : ‖x′‖p < M1}. We have W = W1 ∩W2 and W1,W2 are open. So

W = W1 ∩W2 is an open and of course bounded subset of W 1,p
per(T,RN) with

0 ∈ W . Note that W = {x ∈ W 1,p
per(T,RN) : ‖x(t)‖ ≤ M for all t ∈ T and

‖x′‖p ≤M1}.
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Claim 2: For every x ∈ ∂W and every ξ ∈ (0, 1), we have x /∈ ξ(Kλ ◦N1)(x).

Let x ∈ W and suppose that for some ξ ∈ (0, 1), we have x ∈ ξ(Kλ◦N1)(x).

Then U
(

1
ξ
x
)

+ Âλ

(
1
ξ
x
)

+ J
(

1
ξ
x
)

= −f + J(x) with f ∈ N(x), and hence

c0‖x′‖p
p ≤ −ξp−1(f, x)qp + (ξp−1 − 1)‖x‖p

p ≤ −ξp−1(f, x)qp (8)

(since 0 < ξ < 1). Using hypothesis H(F)1(iii), we obtain

−ξp−1(f, x)qp ≤ ξp−1c1‖x‖p
p + ξp−1c2

∫ b

0

‖x(t)‖r‖x′(t)‖p−rdt+ ξp−1‖c3‖1‖x‖s
∞.

Set τ = p− r, θ = p
r

and θ′ = p
τ

(1
θ
+ 1

θ′
= 1). From Hölder’s inequality, we have

−ξp−1(f, x)qp ≤ ξp−1c1‖x‖p
p + ξp−1c2‖x‖r

p‖x′‖τ
p + ξp−1‖c3‖1‖x‖s

∞.

Using this in (8) and because 0 < ξ < 1, we obtain (recall the choice of M1)

‖x′‖p
p ≤

p

rc0

[
c1M

pb+
rc

p
r
2M

pb
p
r

c0p
+ ‖c3‖1M

s

]
< Mp

1 .

To conclude that x ∈ W it remains to show that ‖x(t)‖ < M for all
t ∈ T . We argue by contradiction. So suppose that for some t0 ∈ T we have
‖x(t0)‖ = M . Since x ∈ W , we must have that ‖x(t0)‖ = maxt∈T ‖x(t)‖. Let
θ(t) = 1

p
‖x(t)‖p. We see that θ(·) attains its maximum on T = [0, b] at the point

t0 ∈ T . If t0 ∈ (0, b), then θ′(t0) = 0 and so ‖x(t0)‖p−2(x(t0), x
′(t0))RN = 0,

hence (x(t0), x
′(t0))RN = 0. By virtue of (6), for almost all t ∈ T we have

inf
[
(v, z)RN + c0‖y‖p : ‖z − x(t0)‖+ ‖y − x′(t0)‖ < δ, v ∈ F (t, z, y)

]
≥ c6 > 0.

We can find a δ1 > 0 such that if t ∈ (t0, t0+δ1] we have ‖x(t)−x(t0)‖+‖x′(t)−
x′(t0)‖ < δ and x(t) 6= 0. Then for almost all t ∈ (t0, t0 + δ1],

(f(t), x(t))RN + c0‖x′(t)‖p ≥ c6 > 0. (9)

We know that a.e. on T

(f(t), x(t))RN

=

((
a
(1

ξ
x′(t)

))′
, x(t)

)
RN

−
(
Aλ

(1

ξ
x(t)

)
, x(t)

)
RN

+
(
1− 1

ξp−1

)
‖x(t)‖p

and hence (see 9)((
a
(1

ξ
x′(t)

))′
, x(t)

)
RN

+ c0‖x′(t)‖p
p ≥ c6 > 0 a.e. on (t0, t0 + δ1] .
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Integrating this inequality on [t0, t] with t ∈ (t0, t0 + δ1], after integration by
parts, we obtain((

a
(1

ξ
x′(t)

))
, x(t)

)
RN

−
((

a
(1

ξ
x′(t0)

))
, x′(t0)

)
RN

−
∫ t

t0

(
a
(1

ξ
x′(s)

)
, x′(s)

)
RN

ds+ c0

∫ t

t0

‖x′(s)‖pds ≥ c6(t− t0) > 0.

Suppose that the first version of hypothesis H(a)2 holds, namely that a(y) =
c(y)y. The reasoning is similar if the other version is valid. We have(

a
(1

ξ
x′(t0)

)
, x(t0)

)
RN

= c
(1

ξ
x′(t0)

)1

ξ

(
x′(t0), x(t0)

)
RN = 0.

Therefore for t ∈ (t0, t0 + δ1] we have (x′(t), x(t))RN > 0 (since 0 < ξ < 1), i.e.,
ϑ′(t) > 0 for t ∈ (t0, t0 + δ1]. So θ is strictly increasing on (t0, t0 + δ1], which
contradicts the choice of t0. Therefore we infer that ‖x(t)‖ < M for all t ∈ T .

If t0 = 0, then θ′+(t0) = θ′+(0) ≤ 0 and θ′−(b) ≥ 0 (because θ(0) = θ(b),
from the periodic boundary conditions). So we have (x(0), x′(0))RN = 0 (since

x(0) = x(b), x′(0) = x′(b), recall that x ∈ D̂). So we proceed as before. Similarly
if t0 = b. Therefore we conclude that ‖x(t)‖ < M for all t ∈ T and so x ∈ W ,
which proves the claim.

Now we can apply Proposition 2.1 and obtain x ∈ D̂ ∩W which solves the
fixed point Problem (7). Clearly x ∈ D̂ ∩W is a solution of (5).

Finally it remains to remove the stronger version of hypothesis H(F)1(iv)
(see (6)). To this end let εn ↓ 0 and set Fn(t, x, y) = F (t, x, y) + εnx. Then

Problem (5) with F replaced by Fn, has a solution xn ∈ D̂ ∩ W , n ≥ 1.
Evidently we may assume that xn

w−→ x in W 1,p
per(T,RN). As in the proof of

Claim 1, we have xn → x in W 1,p
per(T,RN) and in the limit as n→∞ we obtain

U(x) + Âλ(x) ∈ N(x). Therefore x ∈ D̂ ∩W is a solution of (5).

Now that we have solved the auxiliary Problem (5), by passing to the limit
as λ ↓ 0, we shall obtain a solution for the original Problem (1).

Theorem 3.6. If hypotheses H(a)2, H(A)1 and H(F)1 hold, then Problem (1)
has a solution x ∈ C1

per(T,RN) with a(x′(·)) ∈ W 1,q
per(T,RN).

Proof. Let λn ↓ 0 and let xn ∈ D̂ ∩ W be solutions of the corresponding
auxiliary problems (5). Evidently {xn}n≥1 ⊆ W 1,p

per(T,RN) is bounded and so

we may assume that xn
w−→ x in W 1,p

per(T,RN). For every n ≥ 1, we have(
U(xn), Âλn(xn)

)
qp

+ ‖Âλn(xn)‖2
2 = −

(
fn, Âλn(xn)

)
qp

(10)
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From integration by parts and since xn(0) = xn(b), x′n(0) = x′n(b), we have

(
U(xn), Âλn(xn)

)
qp

=

∫ b

0

(
− (a(x′n(t)))′, Aλn(xn(t))

)
RNdt

=

∫ b

0

(
a(x′n(t)),

d

dt
Aλn(xn(t))

)
RN
dt.

From the chain rule of Marcus-Mizel [17], we have that d
dt
Aλn(xn(t))

= A′
λn

(xn(t))x′n(t) a.e. on T . So (see H(A)1)(
U(xn), Âλn(xn)

)
qp

=

∫ b

0

c(x′n(t))
(
x′n(t), Aλn(xn(t))x′n(t)

)
RNdt ≥ 0 .

Using this inequality in (10), we obtain that {Âλn(xn)}n≥1 ⊆ L2(T,RN) is

bounded. So we may assume that Âλn(xn)
w−→ u in L2(T,RN). If Ĵλn(xn)(·) =

Jλn(xn(·)) ∈ C(T,RN), we have Ĵλn(xn) → x in L2(T,RN). Because Aλn(xn(t))

∈ A(Jλn(xn(t))) for all n ≥ 1 and all t ∈ T , we have Âλn(xn) ∈ Â(Ĵλn(xn)).

Because Âλn(xn) ∈ Â(Ĵλn(xn)), Ĵλn(xn) → x in L2(T,RN) and Âλn(xn)
w−→ u in

L2(T,RN), we infer that u ∈ Â(x), i.e., u(t) ∈ A(x(t)) a.e. on T . Moreover,
we may assume that fn

w−→ f in Lq(T,RN). Arguing as in the proof of Propo-
sition 3.5 (see Claim 1), we obtain xn → x in C1(T,RN). Then in the limit as
n → ∞, we have f ∈ N1(x) and (a(x′(t)))′ = u(t) + f(t) ∈ A(x(t)) +
F (t, x(t), x′(t)) a.e on T , x(0) = x(b), x′(0) = x′(b).

4. Problems with the p-Laplacian and
nonlinear boundary conditions

In this section we deal with Problem (2). Now, in contrast to the situation
of Section 3, we assume that D(A) = RN . This permits the improvement of
the growth condition on F and so we can have multivalued nonlinearities of
the Nagumo-Hartman type (see also Mawhin-Urena [20]). More precisely our
hypotheses on the data of (2) are the following:

H(A)2 : A : RN → 2RN
is a maximal monotone map with D(A) = RN and

0 ∈ A(0).

H(F)2 : F : T×RN×RN → Pkc(RN) is a multifunction such that H(F)1(i), (ii)
hold and

(iii) for almost all t ∈ T , all ‖x‖ ≤ M and all ‖y‖p−1 ≥ M1 > 0 we
have

sup
[
‖v‖ : v ∈ F (t, x, y)

]
≤ η(‖y‖p−1)

where η : R+ → R+ \ {0} is a locally bounded Borel measurable
function such that

∫∞
M1

sds
η(s)

= +∞;
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(iv) if ‖x0‖ = M (with M > 0 as in (iii)), hypothesis H(F)1(iv) holds;

(v) for all r > 0, there exists γr ∈ Lq(T )+ (1
p

+ 1
q

= 1) such that for

almost all t ∈ T , all ‖x‖, ‖y‖ ≤ r and all v ∈ F (t, x, y), we have
‖v‖ ≤ γr(t);

(vi) is the same as H(F)1(iii).

Recall that if A : D(A) ⊆ X → 2X∗
is a maximal monotone operator, we

define Â : D(Â) ⊆ Lp(T,X) → 2Lq(T,X∗) by Â(x) = {h ∈ Lq(T,X∗) : h(t) ∈
A(x(t)) a.e. on T} for all x ∈ D(Â) = {x ∈ Lp(T,X) : x(t) ∈ D(A) a.e. on T
and Sq

A(x(·)) 6= ∅}.

Proposition 4.1. If X is a separable reflexive Banach space and A : D(A) ⊆
X → 2X∗

is a maximal monotone operator with 0 ∈ A(0), then Â : D(Â) ⊆
Lp(T,X) → 2Lq(T,X∗) is maximal monotone too.

Proof. By Troyanski’s renorming theorem (see Hu-Papageorgiou [13, p. 316]),
without any loss of generality we may assume that both X and X∗ are locally
uniformly convex spaces. Let F : X → X∗ be the duality map ofX (i.e., F(x) =
∂ϕ(x) with ϕ(x) = 1

2
‖x‖2, see Hu-Papageorgiou [13, p. 30] and Zeidler [22,

p. 860]). We know that F is a homeomorphism (see Zeidler [22, p. 861]).
We introduce the operator J0 : Lp(T,X) → Lq(T,X∗) defined by J0(x)(·) =
‖F(x(·))‖p−2F(x(·)). It is easy to see that J0 is continuous, strictly monotone,

thus maximal monotone. Clearly Â is monotone. We show that R(Â + J0) =

Lq(T,X∗) (i.e., surjectivity of Â + J0). For this purpose let h ∈ Lq(T,X∗)
and consider the multifunction Γ : T → 2X∗

defined by Γ(t) = {x ∈ X :
A(x) + ϕ(x) 3 h(t)}, where ϕ : X → X∗ is the monotone continuous map
defined by ϕ(x) = ‖F(x)‖p−2F(x). Note that A + ϕ : D(A) ⊆ X → 2X∗

is maximal monotone. Moreover, because 0 ∈ A(0), we have that A + ϕ is
coercive. Therefore R(A+ϕ) = X∗ and so we infer that for all t ∈ T , Γ(t) 6= ∅.
Remark that GrΓ = {(t, x) ∈ T × X : (x, ϕ(x) − h(t)) ∈ GrA}. Let ξ :
T × X → X × X∗ be defined by ξ(t, x) = (x, ϕ(x) − h(t)). Evidently ξ is a
Caratheodory function, thus jointly measurable. Note that GrΓ = ξ−1(GrA)
and since GrA is sequentially closed in X×X∗

w, we have GrA ∈ B(X×X∗
w) (the

Borel σ-field). But X∗
w is a Souslin space and so B(X ×X∗

w) = B(X)×B(X∗
w)

(see Hu-Papageorgiou [13, p. 153]). Also B(X∗
w) = B(X∗). Therefore GrA ∈

B(X)×B(X∗) = B(X×X∗) and so GrΓ = ξ−1(GrA) ∈ L×B(X) with L being
the Lebesgue σ-field of T . We can apply the Yankon-von Neumann-Aumann
selection theorem (see Hu-Papageorgiou [13, p. 158]) to obtain a measurable
map x : T → X such that x(t) ∈ Γ(t) a.e. on T . We have h(t) ∈ A(x(t)) +
ϕ(x(t)) a.e. on T . Taking duality brackets with x(t), we obtain ‖x(t)‖p ≤
〈h(t), x(t)〉X∗,X and so ‖x(t)‖p−1 ≤ ‖h(t)‖ a.e. on T , i.e., x ∈ Lp(T,X). So

we have proved that R(Â + J0) = Lq(T,X∗). Then arguing as in the proof
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of Proposition 3.3 and exploiting the strict monotonicity of J0, we obtain the
maximality of Â.

The second auxiliary result concerns the periodic problem{ −(‖x′(t)‖p−2x′(t))′ + ‖x(t)‖p−2x(t) = g(t) a.e. on T = [0, b]

(ϕp(x
′(0)),−ϕp(x

′(b))) ∈ ξ(x(0), x(b)), 1 < p <∞.
(11)

From Gasinski-Papageorgiou [10] we have the following result:

Proposition 4.2. If ξ : D(ξ) ⊆ RN × RN → 2RN×RN
is a maximal monotone

map with (0, 0) ∈ ξ(0, 0) and g ∈ Lq(T,RN) (1
p
+ 1

q
= 1), then Problem (11) has

a unique solution x ∈ C1(T,RN) with ‖x′‖p−2x′ ∈ W 1,q(T,RN).

Let D0 = {x ∈ C1(T,RN) : ‖x′‖p−2x′ ∈ W 1,q(T,RN), (ϕp(x
′(0)),−ϕp(x

′(b)))
∈ ξ(x(0), x(b))} and let V : D0 ⊆ Lp(T,RN) → Lq(T,RN) be defined by V (x) =
−(‖x′‖p−2x′)′, x ∈ D0. Arguing as in the proof of Proposition 3.3, using this
time Proposition 4.2, we obtain

Proposition 4.3. If ξ : D(ξ) ⊆ RN × RN → 2RN×RN
is a maximal monotone

map with (0, 0) ∈ ξ(0, 0), then V : D0 ⊆ Lp(T,RN) → Lq(T,RN) is maximal
monotone.

For the existence theorem for Problem (2) we will use the following hy-
potheses on ξ:

H(ξ) : ξ : D(ξ) ⊆ RN × RN → 2RN×RN
is a maximal monotone map with

(0, 0) ∈ ξ(0, 0) and one of the following holds:

(i) for every (a′, d′) ∈ ξ(a, d), we have (a′, a)RN ≥ 0 and (d′, d)RN ≥ 0;
or

(ii) D(ξ) = {(a, d) ∈ RN × RN : a = d}.

Proposition 4.4. If the hypotheses H(A)2, H(F)2, H(ξ) and H0 hold, then
Problem (2) has a solution x ∈ C1(T,RN) with ‖x′‖p−2x′ ∈ W 1,q(T,RN).

Proof. Because A is maximal monotone with D(A) = RN , we have that θ =
sup [ ‖u‖ : u ∈ A(x), ‖x‖ ≤ M ] < +∞ (see Hu-Papageorgiou [13, p. 308]).
Without any loss of generality we may assume that for almost all r ≥ 0, 0 <
β ≤ η(r). Set η1(r) = θ+ η(r). If γ̂ ≥ θ

β
+ 1, then we have η1(r) ≤ γ̂η(r) for all

r ≥ 0 and so
∫∞

M1

sds
η1(s)

= +∞.

As we did with Problem (1) (see Section 3), first we assume that the mul-
tivalued nonlinearity F satisfies (6) (with c0 = 1) instead of H(F)2(iv). Let

M ′
1 > max

{
b

1
p

(
p

rc0

[
c1M

pb+
rc

p
r
2M

pb
p
r

c0p
+ ‖c3‖1M

s

]) p−1
p

,M1

}
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and then take M2 > 0 such that Mp−1
2 > M ′

1 and
∫Mp−1

2

M1

sds
η1(s)

= M ′
1. Also let

W ⊆ C1(T,RN) be defined by

W =
{
x ∈ C1(T,RN) : ‖x(t)‖ < M, ‖x′(t)‖ < M2 for all t ∈ T

}
.

The set W is open, bounded in C1(T,RN) and 0 ∈ W . Moreover, we have

∂W =
{
x ∈ C1(T,RN) : ‖x‖∞ = M, ‖x′‖∞ = M2

}
.

Let N : W → Pwkc(L
q(T,RN)) be defined by N(x) = Sq

F (·,x(·),x′(·)). We know

that N is usc from W with the C1(T,RN)-norm topology into Lq(T,RN) with
the weak topology. For each g ∈ Lq(T,RN), we consider Problem (11). By
Proposition 4.2 we know that this problem has a unique solution x = K(g) ∈
C1(T,RN). So we can define the map K : Lq(T,RN) → C1(T,RN) which to
each g ∈ Lq(T,RN) assigns the unique solution of (11). It is easy to check that
K is completely continuous.

Let J : C1(T,RN) → Lq(T,RN) be the bounded continuous map defined

by J(x)(·) = ‖x(·)‖p−2x(·). Also let Â : C1(T,RN) → 2Lq(T,RN ) be defined by

Â(x) = Sq
A(x(·)). We have that Â is usc from C1(T,RN) into Lq(T,RN)w. Set

N1(x) = −N(x) + J(x) − Â(x). Evidently N1 : W → Pwkc(L
q(T,RN)) is usc

from W with the C1(T,RN)-norm topology into Lq(T,RN)w. Problem (2) is
equivalent to the fixed point problem

x ∈ (K ◦N1)(x). (12)

Claim: For every x ∈ ∂W and every ξ ∈ (0, 1), we have x /∈ ξ(K ◦N1)(x).

Let x ∈ W and suppose that for some ξ ∈ (0, 1) we have x ∈ ξ(K ◦N1)(x).
Arguing as in the proof of Proposition 3.5 (claim 2), we obtain

‖x′‖p
p ≤

p

rc0

[
c1M

pb+
rc

p
r
2M

pb
p
r

c0p
+ ‖c3‖1M

s

]
,

and hence ‖x′‖p−1
p < 1

b
1
p
M ′

1. The function ϑ(u) = u
p−1

p , u ≥ 0, is concave. So

using Jensen’s inequality, we have

1

b
1
p

‖x′‖p−1
p ≥ 1

b

∫ b

0

‖x′(t)‖p−1dt.

Therefore it follows (since 1
p

+ 1
q

= 1) that∫ b

0

‖x′(t)‖p−1dt < M ′
1 . (13)
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We claim that ‖x′(t)‖ < M2 for all t ∈ T . Suppose that this is not the case.
Then we can find t0 ∈ T such that ‖x′(t0)‖ = M2, hence ‖x′(t0)‖p−1 > M ′

1. So
from (13) we infer that there exists a t1 ∈ T such that ‖x(t1)‖p−1 = M ′

1 (take the
t1 ∈ T which is closest to t0). Let χ : [M ′

1,+∞) → R+ be the function defined
by χ(r) =

∫ r

M ′
1

s
η1(s)

ds. Clearly χ is continuous, strictly increasing, χ(M ′
1) = 0

and χ(Mp−1
2 ) = M ′

1. We have

M ′
1 = χ(Mp−1

2 )

= |χ(‖x′(t0)‖p−1)|

=

∣∣∣∣ ∫ ‖x′(t0)‖p−1

M1

s

η1(s)
ds

∣∣∣∣
=

∣∣∣∣ ∫ ‖x′(t1)‖p−1

‖x′(t0)‖p−1

s

η1(s)
ds

∣∣∣∣
≤
∣∣∣∣ ∫ t1

t0

‖(‖x′(t)‖p−2x′(t))′‖
η1(‖(‖x′(t)‖p−2x′(t))‖)

‖x′(t)‖p−1dt

∣∣∣∣.

(14)

We also have ∥∥(‖x′(t)‖p−2x′(t))′
∥∥ ≤ θ + η(‖x′(t)‖p−1)

= η1(‖x′(t)‖p−1)

= η1

( ∥∥(‖(x′(t))‖p−2x′(t))
∥∥ ).

Using this in (14), we obtain (see (13))

M ′
1 ≤

∣∣∣∣ ∫ t1

t0

‖x′(t)‖p−1dt

∣∣∣∣ =

∫ max{t0,t1}

min{t0,t1}
‖x′(t)‖p−1dt < M ′

1,

a contradiction. Therefore ‖x′(t)‖ < M2 for all t ∈ T . Moreover, following the
argument in the proof of Proposition 3.5 and using hypotheses H(ξ), we can
show that ‖x(t)‖ < M for all t ∈ T . Therefore x ∈ W and we have proved the
claim.

Apply Proposition 2.1 to obtain x ∈ D0 ∩W which solves (12). Evidently
this is a solution of (2) when (6) (with c0 = 1) is in effect. As in the proof of
Proposition 3.5 we remove this extra restriction.

Remark 4.5. It will be interesting to have this existence result when
D(A) 6= RN .

5. Special cases and examples

We show that our general formulation of Problem (2) unifies the classical Dirich-
let, Neumann and periodic problems and goes beyond them:
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(a) Let K1, K2 ∈ Pfc(RN) with 0 ∈ K1 ∩ K2. By δK1×K2 we denote the
indicator function of the set K1 ×K2, i.e.,

δK1×K2(x, y) =

{
0 if (x, y) ∈ K1 ×K2

+∞ otherwise.

Evidently δK1×K2 is proper, lower semicontinuous and convex, i.e., δK1×K2 ∈
Γ0(RN ×RN). Set ξ = ∂δK1×K2 = NK1×K2 = NK1×NK2 (given C ∈ Pfc(RN) by
NC(x) we denote the normal cone to the set C at x ∈ C, see Hu-Papageorgiou
[13, p. 624]). Then Problem (2) becomes

(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + F (t, x(t), x′(t)) a.e. on T

x(0) ∈ K1, x(b) ∈ K2

(x′(0), x(0))RN = σ(x′(0), K1), (−x′(b), x(b))RN = σ(−x′(b), K2).

(15)

Note that ξ = ∂δK1×K2 is maximal monotone, (0, 0) ∈ ξ(0, 0) and hypothesis
H(ξ) is valid (the first option).

(b) In the previous case, let K1 = K2 = {0}. Then Problem (15) becomes
the usual Dirichlet problem.

(c) Again in the first example let K1 = K2 = RN . Then ξ = NK1 ×NK2 =
{(0, 0)} and so we have Neumann problem. The Neumann problem was not
examined before in the presence of Nagumo-Hartman nonlinearities (compare
with Mawhin-Urena [20]).

(d) Let K = {(x, y) ∈ RN × RN : x = y} and let ξ = ∂δK . Then ξ(x, y) =
K⊥ = {(v, w) ∈ RN × RN : v = −w}. So Problem (2) becomes the usual
periodic problem.

(e) Let ξ : RN × RN → RN × RN be defined by

ξ(x, y) =

(
1

θ
1

q−1

ϕp(x),
1

η
1

q−1

ϕp(y)

)
with θ, η > 0.

Evidently, ξ is continuous, monotone (hence maximal monotone) and ξ(0, 0) =
(0, 0). With this choice of ξ, Problem (2) becomes a Sturm-Liouville type
problem {

(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + F (t, x(t), x′(t)) a.e. on T

x(0)− θx′(0) = 0, x(b) + ηx′(b) = 0.
(16)

Hypothesis H(ξ) is satisfied.

(f) Let ξ1, ξ2 : RN → RN be two monotone, continuous maps such that
ξ1(0) = ξ2(0) = 0. Let ξ : RN × RN → RN × RN be defined by ξ(x, y) =
(ξ1(x), ξ2(y)). Evidently ξ satisfies hypothesis H(ξ). Then Problem (2) becomes{

(‖x′(t)‖p−2x′(t))′ ∈ A(x(t)) + F (t, x(t), x′(t)) a.e. on T

x′(0) = ϕq(ξ1(x(0))), −x′(b) = ϕq(ξ2(x(b))).
(17)
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Next let ψ = δRN
+
, A = ∂ψ, K = {(x, y) ∈ RN×RN : x = y} and ξ = ∂δK = K⊥.

We have

A(x) = ∂ψ(x) = NRN
+
(x) =

{
{0} if xk > 0 for all k ∈ {1, ..., N}
−RN

+ ∩ {x}⊥ if xk = 0 for some k ∈ {1, ..., N}.

Then Problem (2) becomes the following differential variational inequality:

(
‖x′(t)‖p−2x′(t)

)′ ∈ F (t, x(t), x′(t))
a.e. on {t ∈ T : xk(t) > 0 for all k = 1, ..., N}(
‖x′(t)‖p−2x′(t)

)′ ∈ F (t, x(t), x′(t))− u(t)
a.e. on {t ∈ T : xk(t) = 0 for some k = 1, ..., N}

x(t) =
(
xk(t)

)N
k=1

∈ RN
+ for all t ∈ T, u ∈ Lq(T,RN

+ )
x(0)= x(b), x′(0) = x′(b).

(18)
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