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Monogenic Wavelets over the Unit Ball
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Abstract. In this article we de�ne a monogenic wavelet transform for quaternion
valued functions on the unit ball B in R3 based on representations of the group of
Möbius transformations which maps the unit ball onto itself.
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1. Introduction

Wavelets have undergone a rapid growth in the last �fteen years both in research
and applications, mainly because they are based on a powerful mathematical
theory. In its abstract de�nition we have a transitive action of a group of linear
automorphisms of the domain and a representation of its group on a Hilbert
space. If this representation is unitary, irreducible, and square-integrable we
obtain a continuous wavelet transform, a reproducing kernel, etc. [9, 17]. More
recently there have been developed continuous wavelet transforms on the 2D-
sphere via group representations on the tangent bundle (see e.g. [8]) or based
on coherent states associated to square integrable group representations of sub-
groups of the Euclidean group [9] and of SO(3,1) [1], which is the conformal
group of the sphere. If we now take a look at the theory of monogenic functions,
the so-called Cli�ord analysis, we can observe strong connections between both
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theories, which can be easily seen if we de�ne monogenic functions via irre-
ducible representations of the Spin-group [11]. These connections were already
considered by M. Mitrea, V. Kisil and J. Cnops for the classical case of Rn

and Hardy spaces, see [5, 7, 15, 18]. Moreover, it gives rise to the question of
what happens in the particular case of the unit ball which has its own group of
automorphisms.

The case of the complex unit disk can be found in [14] and [16]. In the
last one we can �nd the discrete series of the group SL(2,R), isomorphic to the
group SU(1, 1):

SU(1, 1) =

{(
α β

β α

)
: |α|2 − |β|2 = 1

}
∼= SL(2,R).

The group SU(1, 1) acts on B = {z ∈ C : |z| < 1} by g(z) = αz+β

βz+α
, transitively.

For f analytic on B and n ≥ 2, we have the representations

Dn

(
α β

β α

)
f(z) = (−βz + α)−nf

(
αz − β

−βz + α

)
connected to the norm

‖f‖2 =

∫
B

|f(z)|2
(
1− |z|2

)n−2
dx dy,

which gives rise to the discrete series. In [14] it is proved that these represen-
tations are unitary, irreducible and square integrable representations.

If we want to consider the same theory in higher dimensions, in particular
in the case of the unit ball in R3, we immediately encounter a lot of di�cul-
ties. These representations cannot be considered in higher dimensions using
Cli�ord algebras due to the non-commutativity and the fact that the product
of two monogenic functions is not necessary a monogenic function. If we modify
the representation to preserve monogenicity we will lose the unitary property.
Also, problems about the square-integrability of the representation arises. The
purpose of this paper is to show that it is possible to overcome this di�culties
about the representation in higher dimensions and �nally to de�ne monogenic
wavelets over the unit ball and the corresponding continuous wavelet transform.
Moreover, the approach presented in this paper works also in spaces which allow
the functions to have a certain growth to in�nity at the boundary, e.g., weighted
Bergman spaces or Qp,0-spaces.

2. Preliminaries

We will work in H, the skew �eld of quaternions. Each element z ∈ H can
be written in the form z = x0 + x1i + x2j + x3k, xn ∈ R, where 1, i, j, k are
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the basis elements of H. For these elements we have the multiplication rules
i2 = j2 = k2 = −1, ij = −ji = k. The conjugate element z is given by
z = x0 − x1i− x2j − x3k and we have the properties z + w = z + w, zw = wz
and zz = zz = x2

0 + x2
1 + x2

2 + x2
3 := |z|2, which is the Euclidean norm of z.

Each non-zero quaternion has a inverse given by z−1 = z
|z|2 . Since multiplication

is not commutative the symbol w
z
is ambiguous. However, we will de�ne the

symbol by w
z

:= wz−1.

Let x0 =: Sc(z) be the scalar part and z = x1i + x2j + x3k := Vec(z) the
vector part of the quaternion z. Then for w, z quaternions it follows

wz = w0z0 − w · z + w0z + z0w + w × z .

Here w · z denotes the scalar product in R3 and w × z denotes Gibbs' cross
product in R3. Also, we will identify each element x = (x1, x2, x3) ∈ R3 with
the pure quaternion x = z = x1i+ x2j + x3k.

For all what follows we will work over B, the unit ball in R3, and consider
functions f : B 7→ H. Then any function f has a representation f = f0(x) +
if1(x) + jf2(x) + kf3(x) with real-valued components fi, i = 0, . . . , 3. Thus,
notations f ∈ Ck(B,H), k ∈ N ∪ {0}, and f ∈ Lp(B,H), 1 < p < ∞, might be
understood both coordinatewisely and directly. For instance, f ∈ Lp(B,H), 1 <
p <∞, means that {fi} ⊂ Lp(B) or, equivalently, that

∫
B
|f(x)|pdBx <∞. All

these spaces are H-bi-modules. L2(B,H) can be converted into a Hilbert H-
module, namely an inner product can be de�ned as 〈f, g〉 :=

∫
B
f(x)g(x) dBx

and thus L2(B,H) becomes a right H-module. In the following we will use the
short notation Ck(B), Lp(B) etc., instead of Ck(B,H), Lp(B,H).

We now introduce the Dirac operator by

Df = i
∂f

∂x1

+ j
∂f

∂x2

+ k
∂f

∂x3

This operator is a hypercomplex analogue to the complex Cauchy-Riemann
operator. In particular, we have D2 = −∆, where ∆ is the Laplacian in R3. All
functions f which belong to kerD = {f : Df = 0} are called left-monogenic.
Obviously, monogenic functions are also harmonic functions.

Of particular interest for us is the Bergman space L2(B) ∩ kerD. For this
space there exists a basis {Hk

ν : ν = 1, ..., K(3, k)}∞k=0 of homogeneous mono-
genic polynomials, the so-called inner spherical monogenics, hereby k denotes
the degree of homogeneity. These inner spherical monogenics can be made into
an orthonomal basis satisfying the orthogonality condition 〈Hν

k , H
τ
l 〉L2(B) =

δk,lδντ (see [4] and [3]). For more details about monogenic functions see [2],
[10], and [13].
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3. Group theoretical background

Let us give in this section a short resume of the group theoretical background,
which in its abstract context, represents the common group-theoretical denomi-
nator of the wavelet and windowed Fourier transform (see [17] and [9] for more
details). Let H be a Hilbert space and let G be a separable Lie group with
(right) Haar measure µ. A representation π of G in H is de�ned as a mapping
π : G → L(H) of G into the space L(H) of unitary operators on H, such that
π(g1g2) = π(g1)π(g2) for all g1, g2 ∈ G and π(e) = Id. The representation is
continuous if for any φ, ψ ∈ H, the map G 3 g 7→ 〈φ, π(g)ψ〉H is continuous
and it is irreducible if the only invariant subspaces are the trivial spaces {0}
and H. A continuous, unitary representation π is said to be square-integrable

if it is irreducible and there exists a nonzero function ψ ∈ H such that∫
G

|〈π(g)ψ, ψ〉H |2dµ(g) <∞.

Such a function ψ if it exists is called admissible. The left or right-invariant Haar
measure exists on locally compact groups and it is de�ned up to a normalization
factor by its property of preserving the measure.

Any admissible function ψ ∈ H, with ψ 6= 0, gives rise to a wavelet trans-
form Vψf as an operator on H de�ned by

Vψf(g) := 〈π(g)ψ, f〉H , g ∈ G,

which is an isometry from H onto the reproducing Hilbert space M2 = {F ∈
L2(G) : 〈F,R(g, ·)〉 = F (g)} with the reproducing kernel

R(g, l) := 〈π(g)ψ, π(l)ψ〉H = Vψ(π(l)ψ)(g).

Thus Vψ can be inverted on its range M2 by its adjoint V ∗
ψ given by

V ∗
ψF (s) =

∫
G

(
π(g)ψ

)
(s)F (g) dµ(g)

For f ∈ H this provides us with the reconstruction formula

f = V ∗
ψVψf =

∫
G

(
π(g)ψ

)
(s)〈π(g)ψ, f〉H dµ(g).

Moreover, the spaces H and M2 are isometrically isomorphic.
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4. Monogenic wavelets over the unit ball in R3

Let us now consider our case of the unit ball in R3 and investigate how the
general theory translates into our case.

The group of automorphisms of the unit ball consists of the group of Möbius
transformations, which map the unit ball onto itself and the rotations. In
what follows we consider, without loss of generality, only the group of Möbius
transformations (up to rotations) G consisting of the mappings

ϕa(x) = (x− a)(1− ax)−1, a ∈ R3, |a| < 1 ,

which maps the unit ball onto itself. Due to the fact that monogenic functions
are Spin(m)-invariant (Spin(m) is a double covering of SO(m)) and the Spin-
representation is unitary the results are also valid in the more general setting,
i.e., the problems come only from the above group of Möbius transformations.

The composition of two Möbius transformations is another Möbius trans-
formation up to a rotation

ϕa ◦ ϕb(x) =
1 + ab

|1 + ab|
x− (1 + ab)−1(a+ b)

1− (1 + ab)−1(a+ b)x

1 + ab

|1 + ab|
= q ϕ(1+ab)−1(a+b)(x) q

with q = 1+ab
|1+ab| . We denote by b× a = (1 + ab)−1(a+ b) the symbol of the new

Möbius transformation. It's important to observe that we have the property

(1 + ab)−1(a+ b) =
1 + ab

|1 + ab|2
(a+ b)

=
a+ b+ baa+ bab

|1 + ab|2

=
a+ b+ aab+ bab

|1 + ab|2

=
(a+ b)(1 + ab)

|1 + ab|2

= (a+ b)(1 + ba)−1.

(1)

With the neutral element ϕ0(x) and the inversion (ϕa(x))
−1 = ϕ−a(x) we have

that G is a (non-abelian) locally compact group. We must remark that we have
a natural isomorphism between this group of M öbius transformations and the
group of points of the unit ball G∗ identifying each ϕa(x) with the element
a ∈ B and the operation ϕa ◦ ϕb with b× a. So the integration over the group
can be seen as an integration over the unit ball.



846 P. Cerejeiras et al.

Lemma 4.1. The right-invariant Haar measure µR, on G or G∗ is given by

µR(a) =

(
1

1− |a|2

)3

dBa .

Proof. Let us consider the group G∗. The right-invariant measure for G∗ is

µR(G∗) =

∫
G∗

1 dµR(a) =

∫
G∗

(
1

1− |a|2

)3

dBa .

We must prove that for b ∈ B (and, therefore, b ∈ G∗) µR(G∗ ◦ b) = µR(G∗).
We have

µR(G∗ ◦ b) =

∫
G∗◦ b

1 dµR(a) =

∫
Φ(B)

(
1

1− |a|2

)3

dBa ,

where the transformation Φ : B → B is given by

Φ(a) = b× a = (1 + ab)−1(a+ b) = (a+ b)(1 + ba)−1 = ϕ−b(a) .

The Jacobian of this transformation is
(

1−|b|2
|1+ba|2

)3

. Using the relation

1− |ϕa(x)|2

1− |x|2
=

1− |a|2

|1− ax|2
(2)

and the transformation theorem yields

µR(G∗ ◦ b) =

∫
B

(
1

1− |b× a|2

)3

| det JΦ(a)| dBa

=

∫
B

(
1

1− |ϕ−b(a)|2

)3 (
1− |b|2

|1 + ba|2

)3

dBa

=

∫
B

(
|1 + ba|2

(1− |a|2)(1− |b|2)
1− |b|2

|1 + ba|2

)3

dBa

=

∫
B

(
1

(1− |a|2)

)3

dBa

= µR(G∗).

The next step is to �nd a square integrable representation of G in L2(B) ∩
kerD. Initially we can think in the trivial representation π(a)f(x) = f

(
ϕa(x)

)
for functions f : L2(B)∩kerD → H. It is a homomorphism. The main problem
is that if the function f is monogenic, the function f

(
ϕa(x)

)
is not monogenic

for dimensions higher or equal to 3, so the representation is not in the space
L2(B) ∩ kerD. But we know that 1−xa

|1−ax|3f
(
ϕa(x)

)
is again monogenic. We

refer to [19] for the general case and to [20] who studied this problem for the
four-dimensional case already in 1979. Therefore, we get
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Theorem 4.2. Let π : G→ L(L2(B) ∩ kerD) de�ned by

π(a)f(x) =
(1− |a|2)(1− xa)

|1− ax|3
f
(
ϕa(x)

)
.

Then π de�nes a representation of the group of Möbius transformations into the

linear automorphisms over L2(B) ∩ kerD.

Proof. We have to prove that π(a)f(x) is a homomorphism, i.e., π(b)(π(a)f(x))
= π(b× a)f(x) and π0f(x) = f(x). On one hand,

π(b)
(
π(a)f(x)

)
= π(b)

(
(1− |a|2)(1− xa)

|1− ax|3
f
(
ϕa(x)

))
=

(1− |b|2)(1− xb)

|1− bx|3
(1− |a|2)(1− ϕb(x)a)

|1− aϕb(x)|3
f
(
ϕa(ϕb(x))

)
=

(1− |b|2)(1− xb)

|1− bx|3
(1− |a|2)(1− (x− b)(1− bx)−1)a

|1− a(x− b)(1− bx)−1|3
f
(
ϕb×a(x)

)
=

(1− |a|2)(1− |b|2)(1− xb)

|1− bx|3
1− (1− xb)−1(x− b)a

|1− a(x− b)(1− bx)−1|3
f
(
ϕb×a(x)

)
=

(1− |a|2)(1− |b|2)(1− xb)(1− xb)−1[(1− xb)− (x− b)a]

|1− bx|3|1− bx− a(x− b)|3|(1− bx)−1|3
f
(
ϕb×a(x)

)
=

(1− |a|2)(1− |b|2)(1 + ba− x(a+ b))

|1 + ab− (a+ b)x|3
f
(
ϕb×a(x)

)
.

On the other hand,

π(b×a)f(x)

=
(1− |b× a|2)(1− x(1 + ab)−1(a+ b))

|1− (1 + ab)−1(a+ b)x|3
f
(
ϕb×a(x)

)
=

(1− |a|2)(1− |b|2)(1− x(a+ b)(1 + ba)−1)

|1 + ba|2|1− (a+ b)(1 + ba)−1x|3
f
(
ϕb×a(x)

)
,

=
(1− |a|2)(1− |b|2)(1 + ba− x(a+ b))

|1 + ba|2|1 + ab− (a+ b)x|3|(1 + ab)−1|3
(1 + ba)−1f

(
ϕb×a(x)

)
=

(1− |a|2)(1− |b|2)(1 + ba− x(a+ b))

|1 + ab− (a+ b)x|3
1 + ab

|1 + ab|2
|1 + ab|f

(
ϕb×a(x)

)
=

(1− |a|2)(1− |b|2)(1 + ba− x(a+ b))

|1 + ab− (a+ b)x|3
1 + ab

|1 + ab|
f
(
ϕb×a(x)

)
.
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As we can see π is a homomorphism up to a constant factor with modulus 1,
hence being a rotation inH. The condition π(0)f(x) = f(x) is trivially satis�ed.
So π is a representation.

Unfortunately, this representation is not unitary in the space L2(B)∩kerD
but in the space L2(B,

1
1−|x|2dBx) ∩ kerD. Here we have another problem. We

can't work in the space L2(B,
1

1−|x|2dBx) ∩ kerD because the functions in this
space are zero almost everywhere. If we want the unitary property in the space

L2(B) ∩ kerD we must introduce the �multiplier� (1−|a|2)1/2

|1−ax| but in that case
we loose the monogenicity property of the representation. Therefore, we will
drop the unitary property and continue to work with our representation π.
However, we remark that the representation π is irreducible since the subgroup
SO(3) induces already the irreducibility of this representation into our space
(of monogenic functions) [11].

Now we study the square integrable property of our representation. To
this end we will consider the function ψ(x) ≡ 1. We have to prove that∫
G
|〈π(a)1, 1〉|2dµ(a) < ∞. Using the fact that (π(a)1)(x) = (1−|a|2)(1−xa)

|1−ax|3 is
a left monogenic function we can expand it in a generalized power series with
respect to the inner spherical monogenics Hk

ν (x) already mentioned in the end
of the preliminaries and use their orthogonality property. Thus,

〈π(a)1, 1〉 =

∫
B

(1− |a|2)(1− xa)

|1− ax|3
dBx

=

∫
B

(1− |a|2)dBx +
∞∑
k=1

K(3,k)∑
ν=1

∫
B

Hk
ν (x) cν dBx

=

∫
B

(1− |a|2)dBx +
∞∑
k=1

K(3,k)∑
ν=1

cν

∫
B

Hk
ν (x) dBx

=
4

3
π(1− |a|2) .

with cν ∈ H. Finally, using the Haar measure we obtain∫
G

|〈π(a)1, 1〉|2dµ(a) =

(
4

3
π

)2 ∫
B

(1− |a|2)2 1

(1− |a|2)3
dBa.

Here appears a problem with the Haar measure which does not exist in the
complex case. Because the exponent of the term 1 − |a|2 in the Haar measure
is larger than in the representation the above integral is equal to in�nity. We
cannot simply change the weight in the representation or we lose the property
of being an homomorphism. The way out we suggest here is to use a di�erent

measure, e.g., dµ ∗ (a) =
(

1
1−|a|2

)2
dBa, such that

∫
B
(1 − |a|2)2dµ(a) < ∞. Let
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us remark that although this measure is not invariant, we can easily get the
transformation formulae from the proof of the Haar measure:∫

G

|〈π(a)1, 1〉|2dµ∗(a) =

(
4

3
π

)2 ∫
B

(1− |a|2)2 1

(1− |a|2)2
dBa =

(
4

3
π

)3

<∞ .

This leads to the following theorem.

Theorem 4.3. The representation π is square integrable with respect to the

measure dµ∗(a).

If we consider a more general Hilbert space H with measure that satis�es∫
B
dµ(a) < ∞ we can prove that the representation is square integrable, too.

For instance, we can prove it for the following Hilbert spaces (p ≥ 0):

L2(B, (1− |x|2)pdBx) ∩ kerD

and

Qp,0 =

{
f ∈ kerD : |f(0)|+ lim

a→1

∫
B

|∇f |2(1− |ϕa(x)|2)pdBx <∞
}
.

Using the orthogonality property of our (orthonormalized) inner spherical mono-
genics the above considerations lead to the following proposition.

Proposition 4.4. A function f de�ned in the unit ball B is admissible if the

quaternionic series
∑∞

k=0

∑
ν cνdν converges where cν and dν are the coe�cients

of the generalized power series

π(a)ψ(x) = (1− |a|2)
∞∑
k=0

( ∑
ν

Hk
ν cν

)
and ψ(x) =

∞∑
l=0

( ∑
τ

Hk
τ dτ

)
with cν , dτ ∈ H.

Proof. By the Fourier expansion of π(a)ψ and ψ we have

〈π(a)ψ, ψ〉 =

∫
B

π(a)ψ(x)ψ(x)dBx

=

∫
B

(1− |a|2)
( ∞∑

k=0

∑
ν

Hk
ν (x) cν

)( ∞∑
l=0

∑
τ

H l
τ (x) dτ

)
dBx

= (1− |a|2)
∞∑
k=0

∑
ν

∞∑
l=0

∑
τ

∫
B

cνHk
ν (x)H

l
τ (x) dτ dBx

= (1− |a|2)
∞∑
k=0

∑
ν

∞∑
l=0

∑
τ

cν

∫
B

Hk
ν (x)H

l
τ (x) dBx dτ

=
4

3
π(1− |a|2)

∞∑
k=0

∑
ν

cνdν

=
4

3
π(1− |a|2)α
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with α ∈ H. Finally,∫
G

|〈π(a)ψ(x), ψ(x)〉|2 dµ ∗ (a) =

(
4

3
π

)2 ∫
B

(1− |a|2)2|α|2 1

(1− |a|2)2
dBa

=

(
4

3
π

)3

|α|2 <∞.

As an immediate consequence of this proposition we get the following corol-
lary.

Corollary 4.5. Each inner spherical monogenic Hk
ν (x) of degree k is an ad-

missible function.

Now, we are ready to de�ne the continuous wavelet transform for an admis-
sible function ψ. Let ψ 6= 0 be admissible and let f ∈ L2(B) ∩ kerD, then the
continuous left integrable wavelet transform is given by

Vψf(a) := 〈π(a)ψ, f〉L2(B) = (1− |a|2)
∫
B

(1− xa)

|1− ax|3
ψ

(
ϕa(x)

)
f(x) dBx

which maps L2(B) ∩ kerD into L2(G). Let us remark that because our rep-
resentation is neither unitary nor square integrable with respect to the Haar
measure, we cannot state the immediate consequences from the general theory,
directly. But, we can use the knowledge of the existence of the reproducing
kernel in our Hilbert space, the Bergman kernel (see [2] and [6]), to establish
nearly the same results.

While in the classic wavelet theory one uses the knowledge of the represen-
tation and the Wavelet transform to establish the reproducing kernel we can go
the other way around and get from the existence of the Bergman projection the
invertibility of our wavelet transform, i.e. V −1

ψ Vψf = Pf , where P denotes the
Bergman projection. Therefore, for an admissible function ψ 6= 0 our wavelets
are given by

π(a)ψ(x) =
(1− |a|2)(1− xa)

|1− ax|3
ψ

(
ϕa(x)

)
.

As an example, we obtain in the special case ψ(x) ≡ 1

π(a)ψ(x) =
(1− |a|2)(1− xa)

|1− ax|3
=

(
1− 1

|y|2

)
y − x

|y − x|3
y|y|

with y = a
|a|2 ∈ R3\B. If we now take all the y from a dense set in R3\B we

obtain (up to constants) the complete function system from [12] which was used
to prove the orthogonal decomposition of L2(B).



Monogenic Wavelets over the Unit Ball 851

References

[1] Antoine, J.-P. and P. Vandergheynst: Wavelets on the 2-sphere: a group theo-
retical approach, Appl. Comput. Harmon. Anal. 7 (1999), 262 � 291.

[2] Brackx, F., Delanghe, R. and F. Sommen: Cli�ord Analysis. Research Notes in
Mathematics 76. Boston: Pitman-Longman 1982.

[3] Cnops, J.: A Gram-Schmidt method in Hilbert modules. In: Cli�ord algebras
and their applications in mathematical physics (Montpellier 1989; eds.: A.
Micali et al.). Dordrecht: Kluwer Acad. Publ. 1992, pp. 193 � 203.

[4] Cnops, J.: Orthogonal polynomials associated with the Dirac operator in Eu-
clidean space. Chin. Ann. of Math. Ser. B, 13 (1992), 68 � 79.

[5] Cnops, J.: The wavelet transform in Cli�ord analysis. Comput. Meth. Funct.
Theory 1 (2001)(2), 353 � 374.

[6] Cnops, J. and R. Delanghe: A generalised Christo�el-Darboux formula and
reproducing kernels in spaces of polymonogenic and polyharmonic functions.
Results Math. 22 (1992), 667 � 678.

[7] Cnops, J. and V. Kisil: Monogenic functions and representations of nilpo-
tent Lie groups in quantum mechanics. Math. Meth. Appl. Sci. 22 (1999) (4),
353 � 373.

[8] Dahlke, S. and P. Maass: Continuous wavelet transforms with applications to
analyzing functions on spheres. J. Fourier Anal. Appl. 2 (1996)(4), 379 � 396.

[9] Dahlke, S., Steidl, G. and G. Teschke: Coorbit spaces and Banach frames on
homogeneous spaces with applications to analyzing functions on spheres. Adv.
Comput. Math. 21 (2004)(1-2), 147 � 180.

[10] Delanghe, R., Sommen, F., and V. Sou£ek: Cli�ord Algebra and Spinor-Valued
Functions. A Function Theory for the Dirac Operator. Math. and its Appl. 53.
Dordrecht: Kluwer Acad. Publ. 1990.

[11] Gilbert, J. and M. Murray: Cli�ord Algebras and Dirac Operators in Harmonic
Analysis. Cambridge: University Press 1991.

[12] Gürlebeck, K. and W. Spröÿig: Quaternionic Analysis and Elliptic Boundary
Value Problems. Berlin: Akademie-Verlag 1989.

[13] Gürlebeck, K. and W. Spröÿig: Quaternionic and Cli�ord calculus for Engi-
neers and Physicists. Cinchester: John Wiley & Sons 1997.

[14] Knapp, A. and P. Trapa: Representations of semisimple Lie groups. In: Rep-
resentation theory of Lie groups (Park City UT, 1998; eds.: Adams, J. et
al.). IAS/Park City Math. Ser. 8. Providence (RI): Amer. Math. Soc. 2000,
pp. 5 � 87.

[15] Kisil, V.: Wavelets in Banach spaces. Acta Appl. Math. 59 (1999)(1), 79 � 109.

[16] Lang, S.: SL2(R). New York: Springer 1998.

[17] Louis, A., Maaÿ, P. and A. Rieder: Wavelets: Theory and Applications. John
Wiley & Sons 1997.



852 P. Cerejeiras et al.

[18] Mitrea, M.: Cli�ord Wavelets, Singular Integrals, and Hardy Spaces. Lecture
Notes in Mathematics 1575. Berlin: Springer 1994.

[19] Ryan, J.: Conformally covariant operators in Cli�ord analysis. Z. Anal. An-
wendungen 14 (1995), 677 � 704.

[20] Sudbery, A.: Quaternionic analysis. Math. Proc. Cambr. Phil. Soc. 85 (1979),
199 � 225.

Received 09.07.2004


