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Low-Frequency Stability Analysis
of Periodic Traveling-Wave Solutions

of Viscous Conservation Laws
in Several Dimensions

Myunghyun Oh and Kevin Zumbrun

Abstract. We generalize the work of Oh & Zumbrun and Serre on spectral sta-
bility of spatially periodic traveling waves of systems of viscous conservation laws
from the one-dimensional to the multi-dimensional setting. Specifically, we extend to
multi-dimensions the connection observed by Serre between the linearized dispersion
relation near zero frequency of the linearized equations about the wave and the ho-
mogenized system obtained by slow modulation (WKB) approximation. This may be
regarded as partial justification of the WKB expansion; an immediate consequence
is that hyperbolicity of the multi-dimensional homogenized system is a necessary
condition for stability of the waves. As pointed out by Oh & Zumbrun in one dimen-
sion, the description of the low-frequency dispersion relation is also a first step in the
determination of time-asymptotic behavior.
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1. Introduction

Nonclassical viscous conservation laws arising in multiphase fluid and solid me-
chanics exhibit a rich variety of traveling wave phenomena, including homoclinic
(pulse-type) and periodic solutions along with the standard heteroclinic (shock,
or front-type) solutions. Here, we investigate stability of periodic traveling
waves: specifically, the spectrum of the linearized operator about the wave.
Our main result generalizes the works [6, 8] about stability of periodic traveling
waves of systems of viscous conservation laws from the one-dimensional to the
multi-dimensional setting.
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Consider a system of conservation laws

ut +
∑

j

f j(u)xj
=
∑
j, k

(
Bjk(u)uxk

)
xj

, (1)

u ∈ U(open) ⊆ Rn, f j ∈ Rn, Bjk ∈ Rn×n, x ∈ Rd, d ≥ 2, and a periodic traveling
wave solution

u = ū(x · ν − st)

of period X, satisfying the traveling wave ordinary differential equation(∑
j,k

νjνkB
jk(ū)ū′

)′
=

(∑
j

νjf
j(ū)

)′
− sū′, (2)

with initial conditions
ū(0) = ū(X) =: u0.

Integrating (2), we reduce to a first-order profile equation∑
j,k

νjνkB
jk(ū)ū′ =

∑
j

νjf
j(ū)− sū− q (3)

encoding the conservative structure of the equations, where q is a constant of
motion.

The one dimensional study was carried out by Oh & Zumbrun [6] in the
“quasi-hamiltonian” case that the traveling-wave equation possesses an integral
of motion, and in the general case by Serre [8]. An important contribution of
Serre was to point out a larger connection between the linearized dispersion
relation (the function λ(ξ) relating spectra to wave number of the linearized
operator about the wave) near zero and the homogenized system obtained by
slow modulation approximation, from which the various stability results of [6, 8]
may then be deduced. The purpose of this paper is to extend to multiple
dimensions this important observation of Serre, relating the linearized dispersion
relation near zero to a multi-dimensional version of the homogenized system
developed in [8]. As an immediate corollary, similarly as in [6, 8] in the one-
dimensional case, this yields as a necessary condition for multi-dimensional
stability the hyperbolicity of the multi-dimensional homogenized system. In
case of stability (so far not found), this relation is also the first step in the
derivation of asymptotic behavior, as in [7] in the one-dimensional case; this we
defer to a future investigation.

We here make only generic assumptions like those in [8], ensuring that
the set of periodic traveling waves is a manifold of maximal dimension subject
to the conservative properties of the equations (encoded in form (3)). Given
(a, s, ν, q) ∈ U × R × Sd−1 × Rn, equation (3) admits a unique local solution
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u(y; a, s, ν, q) such that u(0; a, s, ν, q) = a. Denote by X the period, by ω := 1
X

the frequency and by M and F j the averages over the period:

M :=
1

X

∫ X

0

u(y)dy, F j :=
1

X

∫ X

0

(
f j(u)−

d∑
k=1

Bjk(u)ωνk∂yu
)
dy

when u is a periodic solution of (3). Since these quantities are translation
invariant, we consider the set P of periodic functions u that are solutions of (3)
for some triple (s, ν, q), and construct the quotient set P := P/R under the
relation

(u R v) ⇐⇒
(
∃h ∈ R; v = u(· − h)

)
.

We thus have class functions:

X = X(u̇), ω = Ω(u̇), s = S(u̇), ν = N(u̇), q = Q(u̇), M = M(u̇), F j = F j(u̇),

where u̇ is the equivalence class of translates of different periodic functions. Note
that ū is a nonconstant periodic solution. Without loss of generality, assume
S(ū) = 0 and N(ū) = e1, so that (3) takes the form

B11(ū)ū′ = f 1(ū)− q̄

for q̄ = Q(ū). Letting X̄ = X(ū) and ā = ū(0) = u0, the map (y, a, s, ν, q) 7→
u(y; a, s, ν, q)−a is smooth and well-defined in a neighborhood of (X̄; ā, 0, e1, q̄),
and it vanishes at this special point. Here and elsewhere, ej denotes the jth
standard Euclidean basis element. We assume:

(H0) f j, Bjk ∈ C2.

(H1) Re σ(
∑

jk νjνkB
jk) ≥ θ > 0.

(H2) The map H : R × U × R × Sd−1 × Rn → Rn taking (X; a, s, ν, q) 7→
u(X; a, s, ν, q)− a is a submersion at point (X̄; ā, 0, e1, q̄).

As a consequence of (H0), (H2), there is a smooth n+d dimensional manifold P
of periodic solutions u̇ in the vicinity of ū, where d is the spatial dimension. On
this set, one may obtain, rescaling by (x, t) → (εx, εt) and carrying out a formal
WKB expansion as ε → 0 a closed system of n + d averaged, or homogenized,
equations

∂tM(u̇) +
∑

j

∂xj
(F j(u̇)) = 0

∂t(ΩN(u̇)) +∇x(ΩS(u̇)) = 0

(4)

in the (n + d)-dimensional unknown u̇, expected to correspond to large time-
space behavior. For details, see Section 4. The problem of stability of ū may
heuristically be expected to be related to the linearized equations of (4) about
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the constant solution u̇(x, t) ≡ u0, u0 ∼ ū, provided that the WKB expansion
is justifiable by stability considerations. This leads to the homogeneous degree
n + d linearized dispersion relation

∆̂(ξ, λ) := det

(
λ

∂(M, ΩN)

∂u̇
( ˙̄u) +

∑
j

iξj
∂(F j, SΩej)

∂u̇
( ˙̄u)

)
= 0. (5)

On the other hand, one may also pursue the direct course of linearizing
PDE (1) about the stationary solution ū and studying the spectrum of the
associated linearized operator L. Taking the Fourier transform in constant
directions xj, j 6= 1, and following the general construction of [1, 6] we obtain
an Evans function D(ξ, λ), ξ ∈ Rd, λ ∈ C, of which the zero set (ξ, λ(ξ))
determines the linearized dispersion relation for (1), with λ(ξ) running over the
spectrum of L as ξ runs over Rd. For details, see Section 2. In particular,
the low-frequency expansion of λ(ξ) near (ξ, λ) = (0, 0) may be expected to
determine long-time asymptotic behavior, provided that the spectrum away
from λ = 0 has a strictly negative real part, and this in turn may be expected
to derive from the lowest order terms of the Taylor expansion of D. A tedious,
but fairly straightforward calculation following [6, 8] shows that

D(ξ, λ) = ∆1(ξ, λ) +O
(
|ξ, λ|n+2

)
, (6)

where ∆1 is a homogeneous degree n + 1 polynomial expressed as the determi-
nant of a rather complicated 2n× 2n matrix in (ξ, λ): in particular, not in the
simple form det λN0 +

∑
j iξjNj of a first-order hyperbolic (n + 1) × (n + 1)

dispersion relation, or an obvious tensor product thereof.

Our main result is the following theorem relating these two expansions,
generalizing the result of [8] in the one-dimensional case. Define

∆(ξ, λ) := λ1−d∆̂(ξ, λ),

where ∆̂ is defined as in (5).

Theorem 1.1. Under the assumptions (H0)–(H2), ∆1 = Γ0∆, i.e.,

D(ξ, λ) = Γ0∆(ξ, λ) +O
(
|ξ, λ|n+2

)
(7)

Γ0 6= 0 constant, for |ξ, λ| sufficiently small.

That is, up to an additional factor of λd−1, the dispersion relation (5) for
the averaged system (4) indeed describes the low-frequency limit of the exact
linearized dispersion relation

D(ξ, λ) = 0.

The discrepancy λd−1 is an interesting and at first glance puzzling new
phenomenon in the multi-dimensional case. However, it is easily explained by a
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closer look at the formal approximation procedure described in Section 4. For,
in the derivation of (4), it was assumed that ΩN represent the gradient ∇xφ of a
certain phase function φ(x, t). In one dimension, this is no restriction, since we
may always take φ(x, t) :=

∫ x

0
ω(z)dz. However, in multidimensions, it imposes

the additional constraint
curl (ΩN) ≡ 0 (8)

which properly should be adjoined to the averaged system.

Taking the curl of the second equation of (4), we obtain the simple equation

∂t curl (ΩN) = 0,

revealing at once that constraint (8) is compatible with the time-evolution of
the system, and that the unconstrained system possesses (d− 1) spurious zero
characteristices λ(ξ) ≡ 0, corresponding to the (d − 1) Fourier modes in the
range of the curl operator f̂ → ξ curl f̂ , lying in (ξ/|ξ|)⊥. Thus, ∆(ξ, λ) =
λ1−d∆̂(ξ, λ) = 0 is exactly the linearized dispersion relation for the constrained
averaged system (4), (8) relevant to time-asymptotic behavior.

Theorem 1.1 may be regarded as partial justification of the WKB expansion.
Roughly speaking, it states that if perturbed periodic waves exhibit coherent
behavior near the unperturbed wave ū, then this behavior is well-described by
the constrained averaged equations (4), (8). In one dimension, additional re-
sults of [7] case give rigorous sense to this statement in the form of detailed
pointwise linear bounds under the assumption of spectral stability of the lin-
earized operator about the wave. To establish a comparable long time result
on behavior in multidimensions would be a very interesting direction for future
investigation. Moreover, the new description of the solution given in [8] by mod-
ulation expansion might give a sufficiently good nonlinear Ansatz to carry out
a complete nonlinear analysis, which was not done even in the one-dimensional
case. Thus, it would be interesting to revisit also the one-dimensional setting
of [7] from this new perspective, in particular, to resolve certain puzzling issues
in the general, non-quasi-Hamiltonian case.

An equally interesting direction for future investigation would be to rigor-
ously validate the WKB expansion of Section 4 for the closely related small
viscosity problem

ut +
∑

j

f j(u)xj
= ε

∑
j, k

(
Bjk(u)uxk

)
xj

,

ε → 0, similarly as in [3, 4] for the viscous shock case. We note in this regard that
a key ingredient in the [3, 4] analysis, the conjugation lemma of [5] asserting
the existence of a coordinate change converting an asymptotically constant-
coefficient resolvent ODE to constant-coefficient form, has a straightforward
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analog in the standard Floquet construction converting periodic- to constant-
coefficient ODE; indeed, this construction is more natural in the periodic case.
Thus, the whole Kreiss symmetrizer construction of [3, 4] may be brought to
bear also in the periodic case. Indeed, the situation is simpler since no shock
front appears; as remarked in [7], there is a much closer analogy to the constant-
coefficient case. Assuming successful validation of the modulation equations,
there is also the interesting question of secondary modulation, i.e., what happens
after shock formation time for the averaged, hyperbolic equations?

We point out further, as observed by Serre [8] in the one-dimensional case,
that the result of Theorem 1.1 is completely analogous to the corresponding
relation established in [12] for the linearized dispersion relation associated with
a perturbed viscous traveling front u = ū(x · ν − st), limz→±∞ = u±, in which
the WKB expansion corresponds to matched asymptotics joining an outer, hy-
perbolic solution and an inner, viscous profile. See [11, Section 1.3] for a formal
derivation in the shock case, starting with the same rescaling (x, t) → (εx, εt);
see also the related discussion of long-time vs. small-viscosity problems in [2].
Rigorous verification may be found in [2, 11].

As an immediate consequence of Theorem 1.1, we obtain the following two
corollaries, yielding a necessary condition for low-frequency multi-dimensional
spectral stability strengthening the one-dimensional version obtained in [6, 8].

Corollary 1.2. Assuming (H0)–(H2) and the nondegeneracy condition

det

(
∂(M, ΩN)

∂u̇
( ˙̄u)

)
6= 0, (9)

then for λ, ξ sufficiently small, the zero-set of D(·, ·), corresponding to spectra
of L, consists of n + 1 characteristic surfaces:

λj(ξ) = −iaj(ξ) + o(ξ), j = 1, . . . , n + 1, (10)

where aj(ξ) denote the eigenvalues of

A :=
∑

j

ξj
∂(F j, SΩej)

∂(M, ΩN)
,

excluding (d−1) identically zero eigenvalues associated with modes not satisfying
constraint (8).

Proof. Similarly as in the proof of the analogous Lemma 7.5 in [12] in the shock
wave case, assuming (9), we may easily deduce (10) from (7) using Rouché’s
Theorem. Defining

Dρ,ξ̂(λ̂) := ρ−(n+1)D(ρξ̂, ρλ̂),
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for (ρ, ξ̂, λ̂) ∈ R× Sd−1 × C, we obtain a d-parameter family of analytic maps,

converging as ρ → 0 to D0,ξ̂ = ∆(ξ̂, ·). Under assumption (9), D0,ξ̂ = ∆(ξ̂, · ) ∼
λ̂n+1 as |λ| → ∞, hence, for ρ sufficiently small, Dρ,ξ̂ has n + 1 continuously
varying roots λ = âj(ξ̂, ρ). Defining aj(ξ) := |ξ|âj(ξ/|ξ|, |ξ|), we obtain the
result.

Remark 1.3. Evidently, aj(ξ) are smooth in |ξ| for fixed ξ̂, but in general have
a conical singularity at ξ = 0 when considered as a function of ξ, i.e., ∂aj/∂ξ is
discontinuous at ξ = 0.

Corollary 1.4. Assuming (H0)–(H2) and the nondegeneracy condition (9), a
necessary condition for low-frequency spectral stability of ū, defined as Re λ ≤ 0
for D(ξ, λ) = 0, ξ ∈ Rd, and |ξ, λ| sufficiently small, is that the averaged
system (4) be “weakly hyperbolic” in the sense that it possesses a full set of real
characteristics λ̂j(ξ) for each ξ ∈ Rd, i.e., the eigenvalues of

A =
∑

j

ξj
∂(F j, SΩej)

∂(M, ΩN)

are real.

Remark 1.5. Condition (9), or equivalently (∂/∂λ)n+1D(0, 0) 6= 0, is a neces-
sary condition for one-dimensional linearized stability [7], while hyperbolicity is
necessary for stability of the homogenized system linearized about a constant
state. Thus, Corollaries 1.2 and 1.4 are analogous to results of [12] in the shock
wave case, stating that, given one-dimensional stability, stability of the invis-
cid equations linearized about an ideal shock is necessary for multi-dimensional
stability of a viscous shock wave.

Finally, we mention that, though the averaged system may in some cases be
hyperbolic [6], so far, only unstable periodic traveling-wave solutions have been
found for viscous conservation laws. However, essentially only the single, 2× 2
model of van der Waals gas dynamics with viscosity – capillarity in one dimen-
sion has so far been considered in detail [6, 8, 9] and we see no obvious reason
why a stable wave should not exist for other models. It would be extremely
interesting to either find such an example, with the associated rich behavior
described by the modulation equations, or show that it can in no case exist. As
suggested by Serre [10], a useful starting point might be to consider whether
the averaged system (4) might ever possess an entropy.

Plan of the paper. In Section 2, we recall the basic Evans function construc-
tion of [1]. In Section 3, we carry out the expansion (6), and in Section 4, the
multi-dimensional WKB expansion (4). Finally, in Section 5, we carry out the
proof of Theorem 1.1 by a calculation similar to the one used by Serre [8] to
treat the one-dimensional case.
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2. Preliminaries

Without loss of generality taking S(ū) = 0, N(ū) = e1, ū = ū(x1) represents a
stationary solution. Linearizing (1) about ū(·), we obtain

vt = Lv :=
∑(

Bjkvxk

)
xj
−
∑(

Ajv
)

xj
, (11)

where the coefficients

Bjk := Bjk(ū), Ajv := Df j(ū)v −
(
DBj1(ū)v

)
ūx1 (12)

are now periodic functions of x1.

Taking the Fourier transform in the transverse coordinate x̃ = (x2, . . . , xd),
we obtain

v̂t = Lξ̃v̂ =
(
B11v̂x1

)
x1
−
(
A1v̂

)
x1

+ i

(∑
j 6=1

Bj1ξj

)
v̂x1

+ i

(∑
k 6=1

B1kξkv̂

)
x1

− i
∑
j 6=1

Ajξj v̂ −
∑

j 6=1,k 6=1

Bjkξkξj v̂ .

The Laplace transform in time t leads us to study the family of eigenvalue
equations

0 = (Lξ̃ − λ)w =
(
B11w′)′ − (A1w

)′
+ i
∑
j 6=1

Bj1ξjw
′ + i

(∑
k 6=1

B1kξkw

)′
− i
∑
j 6=1

Ajξjw −
∑

j 6=1,k 6=1

Bjkξkξjw − λw,
(13)

associated with operators Lξ̃ and frequency λ ∈ C, where ‘′’ denotes ∂/∂x1.
Clearly, a necessary condition for stability of (1) is that equations (13) have no
L2 solutions w for ξ̃ ∈ Rd−1 and Re λ > 0. For solutions of (13) correspond to

normal modes v̂(x, t) = eλteiξ̃·x̃w(x1) of (11).

The difficulty of our problem is due to accumulation at the origin of the
essential spectrum of the linearized operator L about the wave as in the one
dimensional case. Multidimensional stability concerns the behavior of the per-
turbation of the top eigenvalue, λ = 0 under small perturbations in ξ̃. To study
this stability, we use Floquet’s theory and an Evans function [1] which not only
depends on λ but also on ξ1 which corresponds to the phase shift and ξ̃. To
define the Evans function, we choose a basis {w1(x1, ξ̃, λ), . . . , w2n(x1, ξ̃, λ)} of
the kernel of Lξ̃ − λ, which is analytic in (ξ̃, λ) and is real when λ is real, for
details see [6, 8]. Now we can define the Evans function by

D(λ, ξ1, ξ̃) :=

∣∣∣∣∣ wl(X, ξ̃, λ)− eiXξ1wl(0, ξ̃, λ)

(wl)′(X, ξ̃, λ)− eiXξ1(wl)′(0, ξ̃, λ)

∣∣∣∣∣
1≤l≤2n

(14)
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where ξ1 ∈ R. Note that Xξ1 is exactly θ in [8]. We remark that D is analytic
everywhere, with associated analytic eigenfunction wl for 1 ≤ l ≤ 2n. A point λ
is in the spectrum of Lξ̃ if and only if D(λ, ξ) = 0 with ξ = (ξ1, ξ̃).

Example 2.1. In the constant-coefficient case

B11w′′ − A1w′ + i
∑
j 6=1

Bj1ξjw
′ + i

∑
k 6=1

B1kξkw
′

− i
∑
j 6=1

Ajξjw −
∑

j 6=1,k 6=1

Bjkξkξjw − λw = 0,

an elementary computation yields

D(λ, ξ) =
2n∏
l=1

(
eµl(λ,ξ̃)X − eiξ1x

)
,

where µl, l = 1, . . . , 2n, denote the roots of the characteristic equation(
µ2B11 + µ

(
− A1 + i

∑
j 6=1

Bj1ξj + i
∑
k 6=1

B1kξk

)

−
(

i
∑
j 6=1

Ajξj +
∑

j 6=1,k 6=1

Bjkξkξj + λI

))
w̄ = 0 ,

(15)

where w = eµx1w̄. The zero set of D consists of all λ and ξ1 such that

µl(λ, ξ̃) = iξ1(mod2πi/X)

for some l. Setting µ = iξ1 in (15), we obtain the dispersion relation

det(−Bξ − iAξ − λI) = 0, (16)

where Aξ =
∑

j Ajξj and Bξ =
∑

j,k Bjkξkξj.

Remark 2.2. If (λ, ξ̃) = (0, 0), then (15) reduces to µ
(
(B11)−1A1 − µ

)
w̄ = 0

giving n nonzero roots µ = sj, w̄ = tj, where sj, tj are eigenvalues and eigen-
vectors for the matrix (B11)−1A1, and an n-fold root µ = 0. Thus, D(0, 0) = 0
in the above example. We shall see later that this holds also in the general
variable-coefficient case.

Remark 2.3. In the constant coefficient case, (16) yields expansions

λj(ξ) = 0− iaj(ξ) + o(|ξ|), j = 1, . . . , n,

for the n roots bifurcating from λ(0) = 0, where aj denote the eigenvalues of Aξ.
Thus we obtain the necessary stability condition of hyperbolicity, σ(Aξ) real.
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3. Evans function calculations

Motivated by the example, we now find linearized dispersion relations for the
variable-coefficient Evans function in the low-frequency limit. From now on,
coordinatize ν in the vicinity of e1 by

ν =:
(1, δ2, . . . , δd)√

1 + |δ|2
, (17)

δ = (δ2, . . . , δd) ∈ Rd−1. Note that differentiation of (17) yields ∂ν = (0, δ).

Lemma 3.1 ([8]). Assumption (H2) is equivalent to

(H2)′ Rn = span
{[

∂u
∂s

]
,
[

∂u
∂δ

]
, [w2], . . . , [w2n], ū′(0)

}
.

Proof. Immediate, using [w1] = 0; see [8] for the one-dimensional case.

3.1. Variational relations. If ξ̃ = 0, equation (13) becomes

(L0 − λ)w =
(
B11w′)′ − (A1w

)′ − λw = 0,

which is associated with the one dimensional stability problem studied in [6, 8].
Recall that ū is X̄-periodic in x1 and the functions w1(x1, ξ̃, λ), . . ., w2n(x1, ξ̃, λ)
are in the basis of the kernel of Lξ̃ − λ. Following [6], we normalize

wj(0, ξ̃, λ) = ej, (wj)′(0, ξ̃, λ) = (B11)−1A1ej

wn+j(0, ξ̃, λ) = 0, (wn+j)′(0, ξ̃, λ) = −(B11)−1ej

(18)

for j = 1, . . . , n and all (ξ̃, λ), giving in particular

L̂wj(0, ξ̃, λ) = 0, L̂wn+j(0, ξ̃, λ) = ej for j = 1, . . . , n. (19)

Plug the Taylor expansion of w(x1, ξ̃, λ) at the origin of (λ, ξ̃)

wl(·, ξ̃, λ)

= wl(·, 0, 0) + λwl
λ(·, 0, 0) +

∑
j 6=1

wl
ξj

(·, 0, 0)ξj

+
1

2

(
λ2wl

λλ(·, 0, 0) + 2λ
∑
j 6=1

wl
λξj

(·, 0, 0)ξj +
∑

j 6=1,k 6=1

wl
ξjξk

(·, 0, 0)ξkξj

)
+ . . .

into (13) to find the identities(
L̂wl

)′
= 0,

(
L̂wl

λ

)′
= wl,

(
L̂wl

λλ

)′
= 2wl

λ
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and (
L̂wl

λξj

)′
= iAjwl

λ − iBj1
(
wl

λ

)′ − i
(
B1jwl

λ

)′
+ wl

ξj(
L̂wl

ξjξk

)′
= iAjwl

ξk
+ iAkwl

ξj
− iBj1

(
wl

ξk

)′ − i
(
B1jwl

ξk

)′ − iBk1
(
wl

ξj

)′
− i
(
B1kwl

ξj

)′
+ 2Bjkwl,

where L̂w = B11w′ − A1w, and also(
L̂wl

ξj

)′
= i
(
Ajwl −Bj1(wl)′ −

(
B1jwl

)′)
, j 6= 1

and (
L̂w1

ξj

)′
= i
(
f j(ū)−Bj1(ū)ū′ −B1j(ū)ū′

)′
, j 6= 1

by using the definition of Aj in (12). In the Laplacian case Bjk = δj
k, the latter

identity simplifies to (
L̂w1

ξj

)′
= if j(ū)′.

Note that the functions w1(x1, 0, 0), . . . , w2n(x1, 0, 0) are in the basis of the
kernel of L0. We omit (·, 0, 0) hereabove and denote [w] = w(X) − w(0). We

also have w1 = ū′, L̂w1 = 0, [w1] = 0,
∫ X̄

0
w1dx1 = 0, and moreover,

[L̂wl] = 0, [L̂wl
λ] =

∫ X̄

0

wldx1

[L̂w1
λ] = 0, [L̂w1

ξj
] = 0

and

[L̂w1
λλ] = 2

∫ X̄

0

w1
λdx1

[L̂w1
λξj

] =

∫ X̄

0

(
iAjw1

λ − iBj1
(
wl

λ

)′ − i
(
B1jw1

λ

)′
+ w1

ξj

)
dx1

[L̂w1
ξjξk

] =

∫ X̄

0

(
iAjw1

ξk
+ iAkw1

ξj
− iBj1

(
w1

ξk

)′ − i
(
B1jw1

ξk

)′
− iBk1

(
w1

ξj

)′ − i
(
B1kw1

ξj

)′
+ 2Bjkw1

)
dx1.

In the Laplacian case Bjk = δj
k, the last two identities simplify considerably to

[L̂w1
λξj

] =

∫ X̄

0

(
iAjw1

λ + w1
ξj

)
dx1

[L̂w1
ξjξk

] =

∫ X̄

0

(
iAjw1

ξk
+ iAkw1

ξj

)
dx1.
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3.2. Connection to traveling-wave variations. From (18), we find easily
that

wj(·, 0, 0) =
∂u

∂aj

∣∣∣∣
ū

, wn+j(·, 0, 0) =
∂u

∂qj

∣∣∣∣
ū

for j = 1, . . . , n.

For example, taking the variation of traveling wave equation (3) with respect
to qj, we find that z = ∂u

∂qj
satisfies

B11z′ − A1z = −ej

with z(0) = 0, so that L0z = 0 and z′(0) = −(B11)−1ej as claimed.

Further (see [6, 8])

w1
λ = −∂u

∂s
+

2n∑
n+1

αlwl

for α ∈ R2n, since L0(−∂u
∂s

) = L0w
1
λ(·, 0, 0) = ū′ and w1

λ(0, 0, 0) = (∂u
∂s

)(0) = 0,
and, similarly, for j 6= 1, using L0w

1
ξj

(·, 0, 0) = L0(i
∂u
∂δj )(·, 0, 0) = if j(ū)′ and

w1
ξj

(0, 0, 0) = ∂u
∂δj (0) = 0,

w1
ξj

(·, 0, 0) = i
∂u

∂δj
+

2n∑
n+1

βl
jw

l.

Alternatively,

w̃1
λ(·, 0, 0) = −∂u

∂s
, w̃1

ξj
(·, 0, 0) = i

∂u

∂δj

for

w̃1 := w1 − λ
2n∑

n+1

αlwl −
2n∑

`=n+1

∑
j

ξjβ
l
jw

l,

with w̃1(0, 0) still equal to ū′. We hereafter substitute w̃1 for w1 everywhere it
appears, as we are free to do. (Recall, w` can be an arbitrary basis of the kernel
of L.)

3.3. Reduction of the leading part. We rewrite the Evans function (14) as

D(λ, ξ1, ξ̃) :=

∣∣∣∣∣
[
wl(ξ̃, λ)

]
+
(
1− eiX̄ξ1

)
wl(0, ξ̃, λ)[

(wl)′(ξ̃, λ)
]
+
(
1− eiX̄ξ1

)
(wl)′(0, ξ̃, λ)

∣∣∣∣∣
1≤l≤2n

(20)

and then multiply the second row in (20) by B11 and then subtract A1 times
the first one

(det B11)D(λ, ξ1, ξ̃) :=

∣∣∣∣∣
[
wl(ξ̃, λ)

]
+
(
1− eiX̄ξ1

)
wl(0, ξ̃, λ)[

L̂wl(ξ̃, λ)
]
+
(
1− eiX̄ξ1

)
(L̂wl)(0, ξ̃, λ)

∣∣∣∣∣
1≤l≤2n

.
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At this point, we restrict for readability to the Laplacian case Bjk = δj
k. The

general case goes similarly. Then the Evans function D(λ, ξ1, 0) becomes

Γ0 det

(
c(ξ, λ) [w2(0, 0)] . . .

C(ξ, λ) C2(ξ, λ) . . .

)
+O(|λ|n+2 + |ξ1|n+2)

with a nonzero number Γ0 (for details, see [6, 8]), where

c(ξ, λ) = λ[w1
λ] +

∑
j 6=1

ξj[w
1
ξj

]− iX̄ξ1ū
′(0)

= −λ

[
∂u

∂s

]
+
∑
j 6=1

iξj

[
∂u

∂δj

]
− iX̄ξ1ū

′(0)

is a homogeneous degree one polynomial,

C(ξ, λ) :=
1

2
λ2[L̂w1

λλ] + λ
∑
j 6=1

ξj[L̂w1
λξj

] +
1

2

∑
j,k 6=1

ξjξk[L̂w1
ξjξk

]

− iX̄ξ1λ(L̂w1
λ)(0)− iX̄ξ1

∑
j 6=1

ξj(L̂w1
ξj

)(0)

= −λ2

∫ X̄

0

∂u

∂s
dx1 + iλ

∑
j 6=1

ξj

∫ X̄

0

(
Aj
(
− ∂u

∂s

)
+

∂u

∂δj

)
dx1

−
∑
j,k 6=1

ξjξk

∫ X̄

0

Aj
( ∂u

∂δk

)
dx1

+ iX̄ξ1λ
(
L̂

∂u

∂s

)
(0) + X̄ξ1

∑
j 6=1

ξj

(
L̂

∂u

∂δj

)
(0)

= −λ2

∫ X̄

0

(∂u

∂s

)
dx1 + iλ

∑
j 6=1

ξj

(
− ∂

∂s

∫ X̄

0

f j(u)dx1 +
∂

∂δj

∫ X̄

0

udx1

)

−
∑
j,k 6=1

ξjξk
∂

∂δk

∫ X̄

0

f j(u)dx1

+ iX̄ξ1λ
(
L̂

∂u

∂s

)
(0) + X̄ξ1

∑
j 6=1

ξj

(
L̂

∂u

∂δj

)
(0)

is a homogeneous degree two polynomial, and

C`(ξ, λ) := λ[L̂wl
λ] +

∑
j 6=1

ξj[L̂wl
ξj

]− iX̄ξ1L̂wl(0)

are homogeneous degree one polynomials given by

∂

∂aj

(
λ

∫ X̄

0

u(x1)dx1 +
∑
j 6=1

ξj

∫ X̄

0

if j
(
u(x1)

)
dx1 − iX̄ξ1

(
u′(0)− f 1(u(0))

))
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for ` = j = 2, . . . , n, and

∂

∂qj

(
λ

∫ X̄

0

u(x1)dx1 +
∑
j 6=1

ξj

∫ X̄

0

if j
(
u(x1)

)
dx1 − iX̄ξ1

(
u′(0)− f 1(u(0))

))
for ` = n + j = n + 1, . . . , 2n.

Thus, the leading order part of D near (ξ, λ) = (0, 0) is the homogeneous
degree (n + 1) polynomial

∆1(ξ, λ) := Γ0 det

(
c(ξ, λ) [w2(0, 0)] . . .

C(ξ, λ) C2(ξ, λ) . . .

)
(21)

with c, C, C` defined as above. In particular, the Evans function has a zero of
order n + 1 at (λ, ξ) = (0, 0).

4. Slow modulation approximation

Next, we carry out a multi-dimensional version of the slow modulation (WKB)
expansion in [8]. Rescale (x, t) 7→ (εx, εt) in (1) to obtain

ut +
∑

j

f j(u)xj
= ε

∑
j, k

(
Bjk(u)uxk

)
xj

. (22)

Let

uε(x, t) = u0

(
x, t,

φ(x, t)

ε

)
+ εu1

(
x, t,

φ(x, t)

ε

)
+ · · · , (23)

where y 7→ u0(x, t, y) is a periodic function with ∂xφ 6= 0. We plug (23) into (22)
and consider the equations obtained by equating coefficients at successive pow-
ers of ε. At order ε−1, we have

−s∂yu
0 +

∑
j

ωνj∂y(f
j(u0))− ∂y

(∑
j,k

ω2νjνkB
jk(u0)∂yu

0

)
= 0,

with

s := − ∂tφ

|∂xφ|
, ν :=

∂xφ

|∂xφ|
, ω := |∂xφ|,

which may be recognized as the traveling-profile equation after rescaling y →
ωy. That is, u0(y) = ū(ωy) for a periodic profile of period X = ω−1, hence
u0 is periodic of period one, as described in [8]. The quantities ω(x, t), s(x, t),
ν(x, t) are the local frequency, speed, and direction of the modulated wave. At
order ε0, we have

∂tu
0 +

d∑
j=1

∂xj

(
f j(u0)−

d∑
k=1

Bjk(u0)ωνk∂yu
0

)
= ∂y(. . .).
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Taking the average with respect to y, and rescaling with y := ωy, we obtain

∂tM(u0) +
∑
j=1

∂xj
F j(u0) = 0,

where

F j(u0) =
1

X

∫ X

0

(
f j(u0)−

d∑
k=1

Bjk(u0)ωνk∂yu
0

)
dy (24)

is the averaged flux along orbit u0 (now rescaled to actual period X̄), with∑
j

νjF
j = (SM + Q)(u0),

by the profile equation. In the Laplacian case Bjk =δj
k, (24) simplifies to

F j(u0) =
1

X

∫ X

0

(
f j(u0)− νj(u

0)∂yu
0
)
dy. (25)

We have additional d equations

∂t(ΩN)(u0) + ∂x

(
ΩS(u0)

)
= 0 (26)

from the Schwarz identity ∂t∂xφ = ∂x∂tφ, where d is the dimension of the spatial
variable x. (Note: (Ω, N) may be regarded as polar coordinates for ΩN .)

Combining, we obtain finally the closed homogenized system

∂t(M, ΩN) +
∑

j

∂xj
(F j, ΩSej) = 0 (27)

of the introduction, consisting of n+d equations in n+d unknowns. As discussed
in the introduction, this should be supplemented with the constraint

curl (ΩN) ≡ 0 (28)

coming from the relation ΩN = ∇xφ.

5. Proof of the main theorem

We now carry out the proof of Theorem 1.1, restricting for readability to the
Laplacian case Bjk = δj

k. The general case follows similarly. We want to see
that the leading order part ∆1 of D, defined in (21), is given by a (nonzero)
constant multiple of λ1−d times

∆̂(ξ, λ) = det

(
λ

∂(M, ΩN)

∂u̇
( ˙̄u) +

∑
j

i ω̄X̄ξj
∂(F j, SΩej)

∂u̇
( ˙̄u)

)
, (29)
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where ˙̄u denotes the orbit class of ū, with ν̄ = (1, 0, . . . , 0) = N( ˙̄u).

Recall the assumption (H2)′ and (17). The tangent space to P at ū is the
β-projection of the kernel of

Z(β, δ, γ) := β0

[
∂u

∂s

]
+

2n∑
1

βl[wl] +
d∑

j=2

δj

[
∂u

∂δj

]
+ γū′(0),

and the tangent space to P at ˙̄u is the β-projection of the kernel of

Z(β0, β2, . . . , β2n, δ2, . . . , δd, γ) := β0

[
∂u

∂s

]
+

2n∑
2

βl[wl] +
d∑

j=2

δj

[
∂u

∂δj

]
+ γū′(0).

We relabel β1 for β0 since we will not use w1 hereafter. Thus,

Z(β, δ, γ) := β1

[
∂u

∂s

]
+

2n∑
2

βl[wl] +
d∑

j=2

δj

[
∂u

∂δj

]
+ γū′(0),

for β ∈ C2n, δ ∈ Cd−1, γ ∈ C. We easily compute (see (19) for dQ) the differen-
tials

dX · (β, δ, γ) = γ = ∂X

dS · (β, δ, γ) = β1 = ∂S

dN · (β, δ, γ) = (0, δ)T = ∂N

dΩ · (β, δ, γ) = −ω̄2γ = ∂Ω

dQ · (β, δ, γ) = (βn+1, . . . , β2n)T = −
2n∑
2

βlL̂wl = ∂Q,

(30)

where, following [8], we use the notation ∂G to indicate the extension to C2n+d of
a differential dG defined on the kernel of Z. (Note: this includes the extension
from real to complex values, of which we shall later make important use in
parametrizations (37) and (38).)

Likewise, XM =
∫ X

0
u(y)dy gives

d(XM)·(β, δ, γ)

= γū(0) + β1

∫ X̄

0

∂u

∂s
dy +

2n∑
2

βl

∫ X̄

0

wldy +
d∑
2

δj

∫ X̄

0

∂u

∂δj
dy

= ∂(XM),

(31)

thus determining
∂M = ω̄

(
∂(XM)− M̄∂X

)
. (32)



Low-Frequency Stability Analysis 17

Finally, variations

d(XF j)(u) = d

∫ X

0

(
f j(u)− νj(u)∂yu

)
dy = ∂(XF j)(u) (33)

for j 6= 1 have the simple form

∂(XF j)(u) = ∂Xf j(u)(0) +

∫ X

0

∂f j(u)dy, (34)

by (25) and periodicity of u, hence

∂F j(u) = ω
(
∂(XF j)− (∂X)F j(u)

)
= ωγf j(u)(0) + ω

∫ X

0

∂f j(u)dy − ωγF j(u). (35)

To find the variation for F 1, note that, by the first-order traveling wave
system (3), ∑

j

νjF
j = MS + Q,

so that
∑

j(∂νj)F
j +

∑
j νj(∂F j) = ∂(MS + Q), hence, for ν = (1, 0, . . . , 0),

s = 0,

∂F 1(u) = ∂(MS + Q)−
∑

j

δjF j(u) = M∂S + ∂Q−
∑
j 6=1

δjF j(u). (36)

We may now compute the determinant (29), i.e., the determinant of the
restriction to ker Z of the linear map

Hλ,ξ(β, δ, γ) =

(
H1

λ,ξ(β, δ, γ)

H2
λ,ξ(β, δ, γ)

)

:=

(
λ(Ω̄∂N + N̄∂Ω) +

∑
j i ξjβ

1Ω̄ej

λ∂M + i ω̄X̄ξ1

(
M̄∂S + ∂Q−

∑
j 6=1 δjF̄ j

)
+
∑

j 6=1 iω̄X̄ξj∂F j

)
,

which can be evaluated using an ingenious trick of [8] as

det(Hλ,ξ|kerZ) = C1 det

 H1
λ,ξ

H2
λ,ξ

Z

 = C1C2(ξ, λ) det

(
H2

λ,ξ

Z

) ∣∣∣∣
kerH1(λ,ξ)

,

where C1 = det
(
Z|kerZ⊥

)−1
is well-defined thanks to full rank of Z, assump-

tion (H2)′, and independent of (ξ, λ), by the corresponding property of Z, but
C2(ξ, λ) = det H1|ker(H1)⊥

and

det

(
H2

λ,ξ

Z

) ∣∣∣∣
kerH1(λ,ξ)
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both depend on the specific dependence on (ξ, λ) of the basis chosen for kerH1.

Note that determinant (29) is in the first place defined only up to a constant
factor depending on the parametrization of P , so that we need only take care
of the (ξ, λ) dependence of C2. Rewriting

H1
λ,ξ(β, δ, γ) = λ

( d∑
2

ω̄δj − ω̄2γe1

)
+

d∑
1

iξjβ
1ω̄ej = 0

as iξ1ω̄β1 = λω̄2γ, and λω̄δj = −iξjω̄β1, j 6= 1, and setting as in [8]1

β1 = −λρ, γ = −iX̄ξ1ρ, (37)

ρ ∈ C, giving also the (new, multi-dimensional) relations

δj = iξjρ, (38)

and leaving β` free for ` 6= 1, determines a choice of basis for kerH1, for which
C2(ξ, λ) has the simple form λd−1.

This fact is most easily verified by right-multiplying

det

 H1
λ,ξ

H2
λ,ξ

Z


by the determinant one matrix

0 α λρ 0
02n−1 02n−1 02n−1 I2n−1

Id−1 0d−1 iξ̃ 0d−1

0 β iX̄ξ1ρ 0

 ,

αiX̄ξ1ρ− βλρ = 1, to obtain(
N1 02n

* N2

)
, N1 :=

(
1 0
0 ωλId−1

)
,

where N2 is the 2n×2n matrix corresponding to linear operator
(

H2

Z
)

operating

on (ρ, β2, . . . , β2n) through the compositions (37) and (38), and thus

∆̂(ξ, λ) = C1λ
d−1 det N2.

Alternatively, we may observe that H1 is full rank whenever λ 6= 0. Observ-
ing also a posteriori that det N2 is homogeneous degree n + 1, we may conclude

1We make the inessential change ρ → −ρ for convenience in later calculations.
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that C(ξ, λ) = det H1|ker(H1)⊥
as the ratio of n + d and n + 1 degree homo-

geneous polynomials must be a constant times λd−1. This discussion repairs a
minor omission in [8], where the dependence of C2 on (ξ, λ) is not explicitly
discussed.

It remains to compute, under the compositions (37), (38), the 2n × 2n
determinant det N2, which, transposing first and second n-row blocks, may be
expressed as

det

(
β1
[

∂u
∂s

]
+
∑2n

2 βl[wl] + γū′(0) +
∑d

2 δj
[

∂u
∂δj

]
λ∂M + iω̄X̄ξ1

(
M̄∂S + ∂Q−

∑
j 6=1 δjF̄ j

)
+
∑

j 6=1 iω̄X̄ξj∂F j

)
. (39)

Substituting from (37), (38) and the variational formulae (30)–(36), and ex-
pressing N2 as a matrix taking (ρ, β2, . . . , β2n) → C2n, we obtain, similarly as
in [8], that det N2 = ∆̂λ1−d is ω̄n times the determinant ∆1 defined in (21),
giving the desired relation ∆1 = ω̄−nλ1−d∆̂, and completing the proof.

Namely, the first line of (39) becomes

−λρ

[
∂u

∂s

]
+

2n∑
2

βl[wl]− iX̄ξ1ρū′(0) +
d∑
2

iξjρ

[
∂u

∂δj

]
.

The second line of (39) becomes

λω̄

(
γū(0) + β1

∫ X̄

0

∂u

∂s
dx1 +

2n∑
2

βl

∫ X̄

0

wldx1 +
d∑
2

δj

∫ X̄

0

∂u

∂δj
dx1 − M̄γ

)

+ iω̄X̄ξ1

(
M̄β1 −

2n∑
2

βlL̂wl −
d∑
2

δjF j(ū)

)
+
∑
j 6=1

iω̄X̄ξj

(
ω̄γf j(ū)(0) + ω̄

∫ X̄

0

∂f j(ū)dx1 − ω̄γF j(ū)

)

= λω̄

(
− iX̄ξ1ρū(0)− λρ

∫ X̄

0

∂u

∂s
dx1 +

2n∑
2

βl

∫ X̄

0

wldx1

+
d∑
2

iξjρ

∫ X̄

0

∂u

∂δj
dx1 + M̄iX̄ξ1ρ

)

+ i ω̄X̄ξ1

(
− M̄λρ−

2n∑
2

βlL̂wl −
d∑
2

iξjρF j(ū)

)
+
∑
j 6=1

iω̄X̄ξj

(
− ω̄iX̄ξ1ρf j(ū)(0) + ω̄

∫ X̄

0

∂f j(ū)dx1 + ω̄iX̄ξ1ρF j(ū)

)
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= − ω̄ρ

(
λiX̄ξ1ū(0) + λ2

∫ X̄

0

∂u

∂s
dx1 − λi

d∑
2

ξj

∫ X̄

0

∂u

∂δj
dx1

− X̄ξ1

d∑
2

ξjf
j(ū)(0)

)
+ ω̄

2n∑
2

βl

(
λ

∫ X̄

0

wldx1 − iX̄ξ1L̂wl

)

+ ω̄i
d∑
2

ξj

∫ X̄

0

∂f j(ū)dx1

= − ω̄ρ

(
− λiX̄ξ1L̂(

∂u

∂s
)(0) + λ2

∫ X̄

0

∂u

∂s
dx1 − λi

d∑
2

ξj

∫ X̄

0

∂u

∂δj
dx1

− X̄ξ1

d∑
2

ξjL̂(
∂u

∂δj
)(0)

)
+ ω̄

2n∑
2

βl

(
λ

∫ X̄

0

wldx1 − iX̄ξ1L̂wl

)

+ ω̄i

d∑
2

ξj

(
− λρ

∫ X̄

0

∂f j

∂u

∂u

∂s
dx1 +

2n∑
2

βl

∫ X̄

0

Ajwldx1

+
d∑

k=2

iξkρ

∫ X̄

0

∂f j

∂u

∂u

∂δk
dx1

)
(40)

with (32) and other identities. Denoting by N the matrix in (21) for which
∆1 = detN , we find, comparing term by term, that the first n rows of N2 are
equal to the first n rows of N , while the last n rows of N2 are equal to ω̄ times
the last n rows of N . Thus, det N2 = ω̄n detN = ω̄n∆1 as claimed, and we are
done.
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