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Comments on the Michael Selection Problem
in Hyperconvex Metric Spaces

Sehie Park

Abstract. Let X be a paracompact space, H a hyperconvex metric space, and ® :
X — H al.s.c. multimap with nonempty closed values. Then ® admits a continuous
selection under certain restrictions. Such selection results are applied to obtain fixed
point theorems.
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1. Introduction

Recently, in [23], its author showed that a selection problem raised by Michael
has an affirmative solution for hyperconvex metric spaces and that the lower
semicontinuity of the involved multimap in the problem can be weakened. More-
over, as an application of the selection result in [23], a fixed point theorem for
“locally-uniformly weak” lower semicontinuous multimaps was given.

The notion of hyperconvex metric spaces was introduced by Aronszajn and
Panitchpakdi [1] in 1956. Later, in 1979, independently Sine [19] and Soardi [21]
proved that a bounded hyperconvex metric space has the fixed point property
for nonexpansive maps. Since then many interesting works appeared for hyper-
convex metric spaces.

For a long period, the study of hyperconvex metric spaces concentrated on
the relationship with nonexpansive maps (see [20]). On the other hand, Khamsi
9] established the Knaster-Kuratowski-Mazurkiewicz theorem (in short, KKM
theorem) for hyperconvex metric spaces and applied it to obtain a Schauder
type fixed point theorem. This line of study was followed by Kirk [12], Kirk
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and Shin [13], Kim and Shin [11], and Park [15, 16]. The present author ob-
tained extensions or equivalent forms of the KKM theorem, a Fan-Browder type
fixed point theorem, and other results for hyperconvex metric spaces in [15, 16].
Moreover, Kirk, Sims, and Yuan [14] established the KKM theorem, its equiva-
lent formulations, fixed point theorems, and their applications for hyperconvex
metric spaces. Further related results also appeared in [10, 17, 18].

However, some of the above-mentioned works are simple consequences of
much more general results. In fact, Horvath [3 — 7] initiated the study of
the KKM theory and fixed point theory for C-spaces, which are meaningful
generalizations of convex spaces or convex subsets of topological vector spaces.
Moreover, in [7], he found that hyperconvex metric spaces are particular type
of C-spaces and gave a useful selection theorem on l.s.c. multimaps related
to C-spaces. Later, this selection theorem was extended by Ben-El-Mechaiekh
and Oudadess [2] following some ideas from the celebrated theory on continuous
selections due to Michael.

Our principal aim in the present paper is to show that main results of [23]
are simple consequences of a selection theorem in [2] and a fixed point theorem
in [9, 15]. This simplifies considerably proofs in [23]. Some additional comments
on [23] are also stated.

2. Preliminaries

A metric space (H,d) is said to be hyperconver if

() B(a,7a) # 0

for any collection {B(z,74)} of closed balls in H for which d(z,,z5) < ro+7s.
It is known that the space €(FE) of all continuous real functions on a Stonian
space E (that is, an extremally disconnected compact Hausdorff space) with
the usual norm is hyperconvex, and that every hyperconvex real Banach space
is a space €(E) for some Stonian space E. Therefore, (R™, || - ||o), [*°, and L>
are concrete examples of hyperconvex metric spaces. Recently, there appeared
a number of new examples.

Results of Aronszajn and Panitchpakdi [1, Theorem 1’] and Isbell [8, The-
orem 1.1.] are combined in the following.

Theorem 1. A hyperconvexr metric space is complete and (freely) contractible.

The concepts of C-spaces, LC-spaces, and LC-metric spaces were intro-
duced and extensively studied by Horvath in a sequence of papers [3 — 7]:

A C-space (X,T') is a topological space X with a multimap I' : (X) — X
from the set (X) of all nonempty finite subsets of X into the power set of X
such that
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1. for each A € (X), I'(A) = ' is n-connected for all n > 0; and
2. for all A,B € (X), AC B implies 'y C I'p.

A subset Y C X is said to be I'-convex if A € (Y) implies 'y C Y.

A C-space (X,T') is called an LC-space (or a locally H-convex space [22]) if
X is a Hausdorff uniform space and there exists a basis {V) } ¢ for the uniform
structure such that for each A € I, {x € X : DN V,[z] # 0} is I'-convex
whenever D C X is ['-convex, where

Wzl ={2" € X : (z,2") e )}

For example, any nonempty convex subset X of a locally convex Hausdorff
topological vector space is an LC-space with I'y = co A, the convex hull of
A e (X).

A triple (X, d;T) is called an LC-metric space whenever (X, d) is a met-
ric space and (X, TI") is a C-space such that open balls are I'-convex, and any
neighborhoods {z € X : d(z,Y) < r} of a I'-convex set Y C X is also I'-convex.

Horvath [7, Theorem 9] obtained the following

Theorem 2. Any hyperconvexr metric space H is a complete LC'-metric space
with Ty = ({B : B is a closed ball containing A} for each A € (H).

Note that I', itself is hyperconvex. From now on, a hyperconvex metric
space (H,d;T") is simply denoted by H or (H,d). An admissible subset of H
is a nonempty intersection of closed balls in H (see [9]). Moreover, in [23], a
['-convex subset of H is said to be sub-admissible.

The following is due to Ben-El-Mechaiekh and Oudadess [2, Theorem 3].

Theorem 3. Let X be paracompact, (Y,d; ") a complete LC-metric space, Z C
X with dimx Z <0, and ® : X — Y a lower semicontinuous (l.s.c.) multimap
with nonempty closed values such that ®(x) is T'-convex for x ¢ Z. Then ®
admits a continuous selection f: X — Y such that f(z) € ®(z) for allx € X.

Recall that dimyx Z < 0 means that the covering dimension of Y is < 0 for
every set Y C Z which is closed in X (see [2]).

It is known that if X is paracompact, (Y,T") is a C-space, and & : X —o Y
is a multimap such that

1. ®(z) is nonempty and I'-convex for each xz € X; and
2. (y):={r € X :ye P(x)} is open for each y € Y (hence ® is l.s.c.),

then ® admits a continuous selection (see Horvath [7, Theorem 3]).

A multimap ® satisfying 1. and 2. is usually called a Browder map. The-
orem 3 tells us that if (Y,I') is a complete LC-metric space, the above result
holds for a slightly different class of multimaps.
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3. Main results

Combining Theorems 1 — 3, we have the following result.

Theorem 4. Let X be a paracompact space, (H,d) a hyperconvex metric space,
Z C X with dimx Z < 0, and ® : X — H a l.s.c. multimap with nonempty
closed values such that ®(x) is I'-convex for x & Z. Then ® admits a continuous
selection f: X — H.

Example 1. Recall that the set R of reals with the usual Euclidean metric is
hyperconvex. Define a multimap ® : R —o R by ®(z) =R for all z € R\ Z and
®(x) is any nonempty subset of R for each integer x € Z. Then ®~(y) is open
for each y € R, and hence ® is l.s.c. It can be seen that ® has a continuous
selection by observation.

Example 2. For L define a multimap ® : R — L* by &(x) = L* for all
x € R\ Z and ®(z) is any nonempty closed subset of L> for each integer x € Z.
Then ®~(y) is open for each y € L*, and hence ® is lL.s.c. Then ¢ has a
continuous selection by Theorem 4.

For Z = (), Theorem 4 reduces to the following

Corollary 1. [23, Theorem 2.3] Let X be a paracompact topological space,
(M,d) a hyperconver metric space and Y a nonempty sub-admissible subset
of M. Further, let T : X —o 'Y be a multimap such that:

(i) For each x € X,T(x) is a nonempty closed sub-admissible subset of M.
(i) T is lower semicontinuous.

Then there ezists a continuous function f: X — M such that f(z) € T(z) for
allx € X.

Note that, in [23], its author deduced Corollary 1 from a proximate selection
theorem [23, Theorem 2.1]. For a topological space X and a metric space (Y, d),
the author of [23] defined a quasi-lower semicontinuous multimap 7' : X — Y
and a locally-uniformly weak lower semicontinuous multimap T : X —o Y.

From the proof of Theorem 2.4 in [23], we get the following

Theorem 5. Let X be a paracompact space, (H,d) a hyperconvex metric space,
and T : X —o H a locally-uniformly weak l.s.c. multimap with nonempty closed
['-convex values. Then there exists a l.s.c. multimap Ty : X — H with nonempty
closed I'-convex values such that To(x) C T(x) for all x € X.

In fact, in the proof of [23, Theorem 2.4], for each r > 0, a multimap
T, : X —o Y is defined. Let Ty(z) := (),o(Tr(x) for each x € X. Then it is
shown that T : X —o Y is the required selection of T'.

Combining Corollary 1 and Theorem 5, we obtain
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Corollary 2. [23, Theorem 2.4] Let X, (H,d), and T' be the same as in Theo-
rem 5. Then there exists a continuous selection f : X — H of T.

Note that in view of Theorem 5, Corollaries 1 and 2 are actually equivalent.
Recall the following fixed point theorem due to the present author et al. [9, 15].

Theorem 6. [15, Theorem 5| Let H be a hyperconvex metric space, X a compact
admissible subset of H, and f : X — H a continuous function. Then f has a
fixed point if one of the following conditions holds for all x € Bd X such that
v # f(@):

(i) There exists a y € X such that

d(z, f(x)) > d(y, f(z))-
(ii) There exists a 5 € (0,1) such that
X NB(f(x),pd(x, f(x)) # 0.

(iii) There ezists an o € (0,1) such that
X B(a, ad(z, [(2))) 0 B((2), (1 - a)d(z, [(2))) £ 0.
(iv) f(x) € X.

Corollary 3. Let H be a hyperconvex metric space and X a compact admissible
subset of H. Then every Browder map ® : X — H satisfying $(Bd X) C X
has a fized point.

Proof. Since X is paracompact and H is a C-space, ® has a continuous selec-
tion f : X — H by [7, Theorem 3] mentioned above at the end of Section 2.
Moreover, for x € Bd X, we have f(z) € ®(z) C &(Bd X) C X. Therefore by
Theorem 6 (iv), f has a fixed point zy € X, that is, xy = f(xg) € (o). |

For a Browder map ® : X — X, Corollary 3 reduces to the Fan-Browder
type fixed point theorem for hyperconvex metric spaces (see [18]).

Corollary 4. Let H be a hyperconvexr metric space, X a compact admissible
subset of H, and ® : X — H a (locally-uniformly weak) l.s.c. multimap having
nonempty closed sub-admissible values. Then ® has a fixed point if one of the
following conditions holds for all x € Bd X such that x & ®(z):

(i) There exists a y € X such that
d(z,z) > d(y,z) forall z € ®(z).
(ii) For each z € ®(x), there exists a € (0,1) such that
X N B(z,pd(z,2)) # 0.
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(iii) For each z € ®(x), there ezists an « € (0,1) such that
X N B(z,ad(x,2)) N B(z, (1 —a)d(x, z)) # 0.
(iv) @(x) C X.

Proof. By Corollaries 1 and 2, there exists a continuous selection f: X — H
of ® satisfying the requirements of Theorem 6. Then f has a fixed point. This
completes our proof. [ |

In [23, Theorem 2.5 and Corollary 2.6], particular forms of Cases (iii)
and (iv) of Corollary 4 were obtained for a sub-admissible subset X. Recall
that every compact sub-admissible subset X of a hyperconvex metric space is
admissible (see [24, Proposition 1.4]).

Finally, the author of [23] noted that his results are different from the
corresponding results of Horvath [6, 7] on selection problems and fixed point
problems. However, we found that Theorem 2 of Horvath is the original source
of the whole results in this paper.

References

[1] Aronszajn, N. and P. Panitchpakdi: FEztensions of uniformly continuous
transformations and hyperconvex metric spaces. Pacific J. Math. 6 (1956),
405 — 439.

[2] Ben-El-Mechaiekh, H. and M. Oudadess: Some selection theorems without con-
verxity. J. Math. Anal. Appl. 195 (1995), 614 — 618.

[3] Horvath, C. D.: Points fizes et coincidences dans les espaces topologiques com-
pacts contractiles (in French). C. R. Acad. Sci. Paris Sér. I Math. 299 (1984),
519 — 521.

[4] Horvath, C. D.: Some results on multivalued mappings and inequalities with-
out convexitity. In: Nonlinear Analysis and Convex Analysis (Santa Barbara,
Calif., 1985; eds.: B. L. Lin and S. Simons). Lecture Notes in Pure and Appl.
Math. 107. New York: Dekker 1987, pp. 99 — 106.

[5] Horvath, C. D.: Convexité généralisée et applications. Méthodes Topologiques
en Analyse Convexe (Montréal (QC) 1986; ed.: A. Granas), Sém. Math. Sup.
110. Montréal (QC): Press. Univ. Montréal 1990, pp. 81 — 99.

[6] Horvath, C. D.: Contractibility and generalized convezity. J. Math. Anal. Appl.
156 (1991), 341 — 357.

[7] Horvath, C. D.: Extension and selection theorems in topological spaces with a
generalized convezity structure. Annal. Fac. Sci. Toulouse 2 (1993), 253 — 269.

[8] Isbell, J. R.: Siz theorems about injective metric spaces. Comment. Math. Helv.
39 (1964), 65 — 76.



Comments on the Michael Selection Problem 893

9] Khamsi, M. A.: KKM and Ky Fan theorems in hyperconvex metric spaces. J.
Math. Anal. Appl. 204 (1996), 298 — 306.

[10] Kim, J.-H. and S. Park: Comments on some fized point theorems in hypercon-
vex metric spaces. J. Math. Anal. Appl. 291 (2004), 154 — 164.

[11] Kim, T.-H. and S.-S. Shin: Fized point theorems on metric spaces. Comm.
Appl. Nonlinear Anal. 4 (1997), 77 — 85.

[12] Kirk, W. A.: Continuous mappings in compact hyperconvex metric spaces.
Numer. Funct. Anal. Optimiz. 17 (1996), 599 — 603.

[13] Kirk, W. A. and S. S. Shin: Fized point theorems in hyperconvez spaces. Hous-
ton J. Math. 23 (1997), 175 — 188.

[14] Kirk, W. A., B. Sims, and G. X.-Z. Yuan: The Knaster-Kuratowski and
Mazurkiewicz theory in hyperconvex metric spaces and some of its applications.
Nonlinear Anal. 39 (2000), 611 — 627.

[15] Park, S.: Fized point theorems in hyperconver metric spaces. Nonlinear Anal.
37 (1999), 467 — 472.

[16] Park, S.: The Schauder type and other fized point theorems in hyperconvex
spaces. Nonlinear Anal. Forum 3 (1998), 1 — 12.

[17] Park, S.: Fized points of lower semicontinuous multimaps in LC-metric spaces.
J. Math. Anal. Appl. 235 (1999), 142 — 150.

[18] Park, S. and B. Sims: Remarks on fized point theorems on hyperconvex spaces.
Nonlinear Funct. Anal. Appl. 5 (2000), 51 — 64.

[19] Sine, R. C.: On linear contraction semigroups in sup norm spaces. Nonlinear

Anal. 3 (1979), 885 — 890.

[20] Sine, R. C.: Hyperconvezity and nonerpansive multifunctions. Trans. Amer.
Math. Soc. 315 (1989), 755 — 767.

[21] Soardi, P.: Ezistence of fized points of nonexpansive mappings in certain Ba-
nach lattices. Proc. Amer. Math. Soc. 73 (1979), 25 — 29.

[22] Tarafdar, E.: Fized point theorems in locally H-convex uniform spaces. Non-
linear Anal. 29 (1997), 971 — 978.

[23] Wu, X.: Michael selection problem in hyperconvexr metric spaces. Z. Anal. An-
wendungen 22 (2003), 505 — 516.

[24] Wu, X., B. Thompson, and G. X. Yuan: Fized point theorems of upper semicon-
tinuous multivalued mappings with applications in hyperconver metric spaces.
J. Math. Anal. Appl. 276 (2002), 80 — 89.

Received 03.03.2004; in revised form 07.02.2005



