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Long Time Behavior of Solutions
to the Caginalp System with Singular Potential

Maurizio Grasselli, Hana Petzeltová and Giulio Schimperna

Abstract. We consider a nonlinear parabolic system which governs the evolution
of the (relative) temperature ϑ and of an order parameter χ. This system describes
phase transition phenomena like, e.g., melting-solidification processes. The equation
ruling χ is characterized by a singular potential W which forces χ to take values in the
interval [−1, 1]. We provide reasonable conditions on W which ensure that, from a
certain time on, χ stays uniformly away from the pure phases 1 and −1. Combining
this separation property with the  Lojasiewicz-Simon inequality, we show that any
smooth and bounded trajectory uniformly converges to a stationary state and we
give an estimate of the decay rate.
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1. Introduction

Let us consider a material occupying, for any time t ≥ 0, a bounded and
connected domain Ω ⊂ R3 with a smooth boundary Γ. We suppose that the
material under consideration has two phases like, for instance, solid and liquid or
two different magnetization states, which are subject to temperature variations.
Then, we denote by ϑ its (relative) temperature and by χ the order parameter
(or phase-field) describing the proportion of either of the phases. A well-known
system modelling the evolution of ϑ and χ has been proposed by Caginalp [14]
for melting-solidification processes in several classes of materials. Taking all the
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1, I-27100 Pavia, Italy; giusch04@unipv.it



52 M. Grasselli et al.

constants equal to 1 for the sake of simplicity, the resulting differential system
has the following form:

ϑt + λ(χ)t −∆ϑ = f (1.1)

χ
t −∆χ + W ′(χ) = λ′(χ)ϑ. (1.2)

We recall that ϑ is such that ϑ = 0 is the critical value at which the phase
transition takes place. Regarding χ, we observe that χ = ±1 represent the
pure states, while the values inside the open interval (−1, 1) account for local
presence of a mixture (mushy region). Moreover, the function λ(·) stands for a
latent heat density, f is a volumic heat source and W is the potential associated
with the phase configuration.

In [14], λ is assumed to be linear and W is supposed to be a double well
potential (i.e., W (y)=(y2 − 1)2). Initial and boundary problems for (1.1)–(1.2)
with such a W have been widely analyzed in the existing literature (see, e.g.,
[13, 39], cf. also [9, 11, 12, 18, 24, 34, 35, 36]). Some papers have also been
devoted to the treatment of more general potentials (see, for instance, [17, 45] for
well-posedness results). Here we want to give a further contribution along this
direction by examining the longtime behavior of solutions when the potential W
has a domain contained in [−1, 1]. This means that the values outside [−1, 1],
which are not physically meaningful, are excluded by setting W (y) := +∞ for
y 6∈ [−1, 1] so justifying the adjective singular in the title. Our potential W

is the sum of a principal part β̂, assumed to be convex and accounting for
the presence of the barriers at ±1, and of a possibly nonconvex but smooth
remainder γ̂. In this regard, the derivative W ′ in (1.2) has in fact to be intended
as a subdifferential ∂W in the sense of Convex Analysis (see, e.g., [8, 10]) and
relation (1.2) has to be understood as a differential inclusion due to the possibly
multivalued character of ∂W = ∂β̂ + γ̂′. In this general setting, a physically
relevant case is, e.g., the double obstacle potential; namely the convex part β̂
is the indicator function of [−1, 1], which is defined as identically 0 inside that
interval, and +∞ outside. In such a situation, although W is very regular in
the open interval (−1, 1), since it coincides with its smooth part γ̂, we cannot
in general exclude that, at some point (x, t), the variable χ(x, t) might take
either of the values ±1 corresponding to the barriers. As we shall see below,
it would be interesting to know sufficient conditions on W which ensure that
χ stays (uniformly) away from ±1 from a certain time on. This is exactly the
main goal of the present paper. To be more precise, we first endow system
(1.1)–(1.2) with the physically reasonable boundary conditions

ϑ = 0 on Γ× (0, +∞) (1.3)

χ
n = 0 on Γ× (0, +∞), (1.4)
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n being the outward normal to Γ, and the initial conditions

ϑ(0) = ϑ0 in Ω (1.5)

χ(0) = χ
0 in Ω. (1.6)

Our main result will be to find a wide class of data and potentials for which the
following separation property holds:

there exist T > 0 and δ ∈ (0, 1) such that

− 1 + δ < χ(x, t) < 1− δ for all x ∈ Ω, t ≥ T, (S)

where (ϑ, χ) is the unique global solution to problem (1.1)–(1.6). It is worth
mentioning that the importance of this property has already been analyzed
in [40] for the Cahn-Hilliard equation.

In order to understand for which class of potentials we can hope to ob-
tain (S), we introduce the energy functional

E(u, v) :=

∫
Ω

(
(u− λ(v))2

2
+
|∇v|2

2
+ W (v)

)
dx (1.7)

which can be interpreted as a real valued functional, defined on the space
E := H−1(Ω) × L2(Ω), provided that the integral is intended to be +∞ when
either u is not in L2(Ω), or v is not in H1(Ω), or W (u) is not summable. We
notice anyway that E is bounded from below, and can actually be assumed
nonnegative, thanks to the convex character of the principal part of W .

It is now not difficult to verify that, introducing the auxiliary variable e :=
ϑ + λ(χ) (i.e., the enthalpy of the system), and setting for the moment f ≡ 0,
our boundary value problem can be restated in the gradient flow form

(e, χ)t = −∂E(e, χ) for t ≥ 0, (1.8)

the symbol ∂ denoting here the subdifferential in the space E . Owing to the
coercivity of E and to the compactness of its sublevels with respect to the E-
norm, it is then apparent that a solution exists at least for initial data (e0, χ0),
e0 = ϑ0 + λ(χ0), of bounded energy, i.e., such that E(e0, χ0) < +∞; more-
over, in absence of an external source, E(t) = E(e(t), χ(t)) tends to decrease
along solution paths. Consequently, if at least one of the pure configurations
corresponding to ±1 is a local minimum of the energy, there is no hope that
the system may tend to move away from it, i.e., to get the separation property.
Conversely, if the leftmost and the rightmost minima of W are well separated
from −1 and +1, respectively (cf. condition (H7w) below for a rigorous state-
ment of this fact), then the variable χ, as it approaches these minima, moves
away from the values ±1, a clear indication that (S) might be valid.
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In this paper we shall show that, if W is sufficiently coercive at the ex-
trema (corresponding, roughly speaking, to the presence of “deep” minima
inside (−1, 1)), in a way compatible with the other data (in particular, with
the source f which has to be not too big as t grows), then the solution moves
away from ±1 in the L∞(Ω)-norm. This implies (S) at least for a sufficiently
large critical time T . We point out that the compatibility condition required
to get (S) does not involve, instead, the initial data, which can have arbitrarily
large energy and influence the critical time T and δ only.

The proof of this result is achieved by means of a very simple argument.
Firstly, we prove uniform parabolic regularization estimates. At this step, we
have to take care of the fact that (S) is not yet known, and it might well happen
that, for instance, χ(t) ≡ 1 in some region of nonzero spatial measure and for
some time t > 0. Thus, the estimates have to respect the upper regularity
threshold imposed by the presence of the barriers. However, the regularizing
effect is sufficiently strong to get, starting from any (arbitrarily small) time
r > 0, a uniform (in time) bound of the L∞(Ω)-norm of both ϑ and χ. This
allows us to compare our χ, for t ≥ r, with the solutions of the ODEs obtained
by suppressing the Laplace operator in (2.13) and replacing the right hand
side with (plus and minus) its L∞(Ω)-norm, which is now a uniformly bounded
quantity. Now, in order that the solution to each ODE has the right profile,
entailing validity of (S), we need λ′(χ)ϑ be small enough in L∞(Ω), in relation to
the coercivity property of W , i.e., the above mentioned compatibility condition.

We have to remark that, when W is “very coercive” at the extrema, i.e.,
the leftmost and rightmost minima are “infinitely deep” (namely, W is +∞
outside the interval (−1, 1)), then no compatibility condition is needed, and the
parabolic regularization property is sufficiently strong to guarantee the validity
of (S) for any choice of the critical time T > 0. Also, no compatibility is
needed when the heat source f is L2 in time. Here the comparison argument
works under very general assumptions on W ; however, in this case T is not
arbitrary and there might be a transient dynamics where χ is not completely
separated from the pure states. If the heat source vanishes after a certain given
time, the property (S) allows us to prove a further result of this note, namely,
the convergence of each bounded solution of (1.1)–(1.6) to a stationary state.
Indeed, it is well known (and actually not difficult to prove) that, as (ϑ0, χ0)
have finite energy, then there exists the ω-limit of the system, all of whose
elements have the form (0, χ∞), χ∞ being one solution of the homogeneous
Neumann problem for the nonlinear elliptic equation (more precisely, inclusion)

−∆v + ∂W (v) 3 0.

However, if W is not convex, as it happens in our case, it is known that such
a problem may have a continuum of solutions (see, e.g., [26, Remark 2.3.13]).
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Consequently, it is a nontrivial question to understand if the ω-limit is a single-
ton χ∞, i.e., if all the trajectory χ(t) converges to this single stationary state as
t ↗∞. This property has been proved in [2] for the Caginalp system (1.1)–(1.2)
with double well potential, subject to homogeneous Dirichlet boundary condi-
tions, provided that W , whose domain is now the whole real line, is analytic
on a sufficiently large interval. More recently, in [49] a similar result has been
obtained in the more difficult case of homogeneous Neumann boundary condi-
tions. The method used in [2, 49] essentially relies on a sharp growth estimate,
originally established by  Lojasiewicz [37, 38] for analytic functions of several
complex variables. It has been then shown by Simon [46] (see also [32]) that
this inequality can be extended to an infinite dimensional setting and used to
characterize the ω-limit sets of various types of evolution systems with analytic
nonlinearities. However, it is worth reminding that if W is just C∞, then the
ω-limit set might be a continuum (see [42], cf. also [7, 41]).

Several (nontrivial) variants of the  Lojasiewicz-Simon method have been
applied in these last years to many other systems of PDEs (see, e.g., [1, 3, 4,
5, 15, 16, 19, 22, 20, 27, 28, 31, 33, 44, 48]), among which phase-field models
are just meaningful examples. It is also worth mentioning that a non-smooth
version of this inequality has been obtained in [21] and applied to a spatially
nonlocal phase-field system. From this point of view, we have to remark that
the singleton property for our Caginalp system with singular potential is just a
consequence of the separation property (S) combined with some results in [2],
provided of course that the restriction of W to the open interval (−1, 1) is ana-
lytic and f(t) goes to zero in an appropriate way. Though we do not claim any
mathematical originality for this step, we believe nonetheless that the property
itself is interesting enough to be stated as a theorem. Moreover, we also give
an estimate of the decay rate to equilibrium.

In the next Section 2 we shall state our hypotheses and we present the main
results which will be proved in Section 3.

2. Main results

Let us set H := L2(Ω) endowed with its standard scalar product (·, ·). The
same notation will be also used for (L2(Ω))3. Then we introduce

V0 := H1
0 (Ω), V := H1(Ω),

and endow them with their standard scalar products, namely

(u, v)V0 := (∇u,∇v), (u, v)V := (∇u,∇v) + (u, v).

We recall that V0 ↪→ V ↪→ H ≡ H ′ ↪→ V ′ ↪→ V ′
0 , where V ′

0 = H−1(Ω). Let us
now consider the linear operators

A : V → V ′, 〈Av, z〉 := (∇v,∇z) for all z ∈ V (2.1)
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B : V0 → V ′
0 , 〈Bv, z〉 := (∇v,∇z) for all z ∈ V0. (2.2)

Note that A is weakly elliptic, while B is strongly elliptic thanks to the Poincaré
inequality

‖v‖H ≤ cΩ‖∇v‖H for all v ∈ V0, (2.3)

where cΩ is a suitable positive constant only depending on Ω. We also consider
the domains of the H-realizations of the operators A and B

D(A) =
{
v ∈ H2(Ω) : vn = 0 on Γ

}
, D(B) = H2(Ω) ∩ V0,

and we endow them with their graph norms.

Our basic hypotheses on the data are the following:

λ ∈ C2(R), γ ∈ C1(R) (H1)

ϑ0 ∈ H (H2)

β ⊂ R× R is a maximal monotone graph such that 0 ∈ β(0) (H3)

dom(β) = [−1, 1]. (H4)

We let
L := sup

y∈[−1,1]

{
γ(y), γ′(y), λ(y), λ′(y), λ′′(y)

}
. (2.4)

Next, we denote by γ̂ a primitive of γ that is nonnegative in [−1, 1], and by
β̂ : R → [0, +∞] the convex and lower semicontinuous function such that
β̂(0) = 0 and β = ∂β̂. Then, we set W := β̂ + γ̂, so that ∂W = β + γ. Thanks
to (H4), W is identically +∞ outside [−1, 1] and it is never +∞ inside (−1, 1).
Thus, our assumptions (H3)–(H4) are just a reformulation of what we required
to W in the Introduction. Also, observe that, thanks to (H1) and (H3), there
exists a constant cγ > 0 such that

0 ≤ γ̂(y) ≤ cγ, 0 ≤ W (y) ≤ β̂(y) + cγ ≤ W (y) + cγ ∀ y ∈ [−1, 1], (2.5)

and
zy ≥ β̂(y) ∀ y ∈ [−1, 1], ∀ z ∈ β(y). (2.6)

We can now state our assumptions on the initial datum χ
0, namely,

χ
0 ∈ V, β̂(χ0) ∈ L1(Ω). (H5)

Of course, the second condition is equivalent to requiring W (χ0) ∈ L1(Ω). It
is apparent that the coupling of (H2) and (H5) is a restatement of the finite
energy assumption E(e0, χ0) < +∞ mentioned in the Introduction.

Finally, let us detail our assumptions on the heat source. We introduce the
Banach space of L2

loc-translation bounded functions with values in a Banach
space X:

T 2(X) :=
{

g ∈ L2
loc([0, +∞); X) : ‖g‖2

T 2(X) := sup
t≥0

∫ t+1

t

‖g(s)‖2
X ds < +∞

}
,
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and we suppose that
f ∈ T 2(V ). (H6)

This assumption is satisfied when f is time-independent (i.e., f is a fixed element
of V ) and it is essential for getting uniform-in-time estimates, since it does not
allow the L∞(Ω)-norm of ϑ to get too large.

Let us now state our first theorem, which is devoted to the well-posedness
of the weak formulation of problem (1.1)–(1.6) as well as to some parabolic
regularization properties of its solution. The first part of the result is basically
known; thus, the proof will be mainly concerned with the second part.

Theorem 2.1. Let (H1)–(H6) hold. Then there exists a unique triplet (ϑ, χ, ξ)
such that

ϑ ∈ H1
loc([0, +∞); V ′

0) ∩ C0([0, +∞); H) ∩ L2
loc([0, +∞); V0) (2.7)

χ ∈ H1
loc([0, +∞); H) ∩ C0([0, +∞); V ) ∩ L2

loc([0, +∞); D(A)) (2.8)

ξ ∈ L2
loc([0, +∞); H) (2.9)

− 1 ≤ χ ≤ 1 a.e. in Ω× (0, +∞), (2.10)

β̂(χ) ∈ L∞(0, +∞; L1(Ω)), (2.11)

which satisfies, for almost all t ∈ (0, +∞),

ϑt + λ(χ)t + Bϑ = f in V ′
0 (2.12)

χ
t + Aχ + ξ + γ(χ) = λ′(χ)ϑ in V ′ (2.13)

ξ ∈ β(χ) a.e. in Ω, (2.14)

together with the initial conditions

ϑ(0) = ϑ0, χ(0) = χ
0, a.e. in Ω. (2.15)

Moreover, for all r ∈ (0, 1], there exists a constant K0 depending on ϑ0, χ0, f ,
γ, λ, on r, but neither on β nor on t, such that, for any t ≥ 3r,

‖ϑ(t)‖C(Ω̄) + ‖ϑ(t)‖V0 + ‖χ(t)‖D(A) + ‖χt(t)‖H + ‖β0(χ(t))‖H ≤ K0. (2.16)

Here by β0 we denote the minimal section of β (see, e.g., [10]).

Let us examine now the separation property. We have to refine our assump-
tions on the potential W . We set

R± :=

{
β0(±1) + γ(±1) if ± 1 ∈ dom(β)

±∞ otherwise.
(2.17)

Then, our weak coercivity assumption on W can be stated as

R := min
{
R+,−R−}

> 0. (H7w)
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Correspondingly, we say that W is strongly coercive if

R := min
{
R+,−R−}

= +∞, (H7s)

which is of course equivalent to requiring that dom(β) = (−1, 1).

Remark 2.2. A meaningful example of potential W satisfying (H7s) is the
so-called logarithmic potential, namely,

W (y) = k1

(
(1 + y) ln(1 + y) + (1− y) ln(1− y)

)
− k2

2
y2 + k3y + k4,

for y ∈ (−1, 1), where ki ∈ R, i = 1 ÷ 4, with k1 and k2 positive. In this case,
our model can be viewed as a linearized version (with respect to the absolute
temperature around the critical one) of the Penrose-Fife system analyzed in
[30] (see also [43]). There, a separation property is established on a finite time
interval.

Our main result is

Theorem 2.3. Assume (H1)–(H6) and let (ϑ, χ) be the solution to (2.7)–(2.15).
There exists R0 ≥ 0, depending on Ω, λ, γ, f such that, if (H7w) holds with
R > R0, then the separation property (S) takes place.

Remark 2.4. As it will appear clear in the proof, the separation time T as well
as the distance δ actually depend on R, R0 and on the initial data.

Next, as mentioned in the Introduction, we have the following couple of
consequences related to particular (but significant) cases.

Corollary 2.5. Let (H1)–(H6) and (H7s) hold. Then, the property (S) holds
for any time T > 0 and for a suitable δ > 0 depending on T and on all the
other data.

Corollary 2.6. Let (H1)–(H6) and (H7w) hold. If

f ∈ L2([0, +∞); H), (H8)

then Theorem 2.3 is valid with R0 = 0.

Finally, we state the result concerning the long time behavior.

Theorem 2.7. Assume (H1)–(H6) and (H8). Then, as t tends to +∞, we
have

ϑ(t) → 0 strongly in V ∩ C(Ω̄),

and the ω-limit set of the χ-trajectory is contained in the set of solutions to the
equation

Av + ∂W (v) 3 0. (2.18)
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If (H7w) holds, the restriction of W to (−1, 1) is real analytic, and f ≡ 0, then
the ω-limit set consists of a single point χ∞, i.e., as t goes to +∞,

χ(t) → χ∞ strongly in V ∩ C(Ω̄). (2.19)

Moreover, there exist ρ ∈ (0, 1
2
), t∗ > 0, and a constant c depending on ρ, λ, γ, L

and Ω such that, for any t > t∗,

‖ϑ(t)‖H + ‖χ(t)− χ∞‖H ≤ c(1 + t)−
ρ

1−2ρ . (2.20)

Remark 2.8. Theorem 2.7 still holds when f is asymptotically autonomous in
the following sense (see [16, 31]):

sup
t≥0

t1+$

∫ ∞

t

‖f(s)‖2 ds < ∞,

for some $ > 0. One can argue, for instance, as in [25]. Of course, the decay
rate will also depend on $.

Remark 2.9. Let f ≡ 0 for the sake of simplicity. It is worth observing that
the estimates obtained in the subsequent proof of Theorem 2.1 (see Section 3)
along with the arguments used in [43, Section 4] allow us to construct a strongly
continuous semigroup S(t) on the phase space

X :=
{

(u, v) ∈ H × V : β̂(v) ∈ L1(Ω)
}

,

endowed with the complete metric

dX ((u1, v1), (u2, v2)) := ‖u1 − u2‖H + ‖v1 − v2‖V +

∫
Ω

|β̂(v1)− β̂(v2)|,

such that (ϑ(t), χ(t)) = S(t)(ϑ0, χ0) solves (2.12)–(2.15). Moreover, still argu-
ing as in [43], we can prove that S(t) is dissipative (i.e., it admits a bounded
absorbing set in X ) and it possesses a (compact and connected) global attrac-
tor A which is bounded in H = V0 ×D(A). Moreover, since the system has a
global Lyapunov functional (see below (3.1)), then it is well known that

A =

(ϑ0, χ0) ∈ H :

the trajectory z(t) originated from (ϑ0, χ0) is

complete and bounded, and lim
t→−∞

z(t) = (0, χ∞)

in X , for some χ∞ satisfying (2.18).


Thus, if W satisfies the assumptions of Theorem 2.7, we can conclude that
A consists of all the pairs (ϑ0, χ0) ∈ H which originate either constant or
heteroclinic orbits.
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Remark 2.10. As it will be clear from the proof, the singleton property (2.19)
for the ω-limit does not directly depend on Theorem 2.3, since the properties
of the solutions to (2.18) (cf. (3.42) below) and the precompactness in C(Ω̄)
of χ-trajectories (which follows from (2.8) and (2.16)) are enough to get (S)
at least from a sufficiently large T . Nevertheless, Theorem 2.3 permits to get
a quantitative estimate of the time T after which the trajectories start being
separated and, consequently, the  Lojasiewicz-Simon inequality can be applied.
We also remark that, in the statement of Theorem 2.7, analyticity of W might
be required only in an open interval containing all the zeros of W ′. We supposed
it holds in (−1, 1) just to avoid further technicalities in the proof.

3. Proofs

3.1. Proof of Theorem 2.1. If λ is linear, existence and uniqueness follows
from [45, Theorem 5.1]. On the other hand, the arguments used to get the
quoted result can be extended to the case of a nonlinear λ satisfying (H1)
with no essential difficulties. Therefore, in the sequel we focus on the proof of
property (2.16). For the sake of simplicity, we shall perform only formal a priori
estimates. However, these can be justified rigorously by using, for instance, a
suitable approximation scheme based on the Faedo-Galerkin method combined
with a Yosida regularization of β.

First estimate. Let us test (2.12) by ϑ, (2.13) by χ
t, and take the sum.

Noting that a couple of terms cancels out and using Young and Poincaré in-
equalities, we then get

d

dt

(
‖ϑ‖2

H

2
+
‖∇χ‖2

H

2
+

∫
Ω

W (χ) dx

)
+
‖ϑ‖2

V0

2
+ ‖χt‖2

H ≤ c2
Ω

2
‖f‖2

H . (3.1)

Let us now test (2.13) by χ. Using (H1), (2.5), (2.6), the uniform bound
−1 ≤ χ ≤ 1, and, again, Young and Poincaré inequalities, we obtain

d

dt

‖χ‖2
H

2
+ ‖∇χ‖2

H +

∫
Ω

W (χ) dx ≤
‖ϑ‖2

V0

4
+ c. (3.2)

We point out that, here and below, the symbol c will be used to denote a
generic positive constant, which may vary from line to line (even within the
same formula), which depends on λ, γ, L, Ω at most. The generic constant
additionally depending on ‖f‖T 2(V ) will be indicated by cf .

Adding together (3.1) and (3.2), using once more the Poincaré inequality,
and adding to both sides the H-norm of χ (which is uniformly bounded), we
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get

d

dt

(
‖ϑ‖2

H

2
+
‖∇χ‖2

H

2
+

∫
Ω

W (χ) dx

)
+
‖ϑ‖2

V0

8

+
1

8c2
Ω

‖ϑ‖2
H + ‖χt‖2

H + ‖χ‖2
V +

∫
Ω

W (χ) dx ≤ c
(
1 + ‖f‖2

H

)
.

(3.3)

Denoting now (cf. (1.7))

E(t) :=
‖ϑ‖2

H

2
+
‖∇χ‖2

H

2
+

∫
Ω

W (χ) dx, (3.4)

we can rewrite (3.3) as

d

dt
E(t) + εE(t) +

‖ϑ(t)‖2
V0

8
+ ‖χt(t)‖2

H ≤ c
(
1 + ‖f(t)‖2

H

)
, (3.5)

where we have set ε := min{1, 1/4c2
Ω}. Hence, using the Gronwall Lemma in

differential form (cf., e.g., [23, Lemma 2.5]), we deduce, for any t > 0,

E(t) ≤ E(0)e−εt + c
(
ε−1 +

∫ t

0

‖f(s)‖2
V e−ε(t−s) ds

)
≤ E(0)e−εt + cf . (3.6)

Furthermore, integrating (3.5) between t and t + r, where t ≥ 0 and r ∈ (0, 1],
and taking (3.6) into account, it is not difficult to infer

E(t + r) +

∫ t+r

t

(
1
8
‖ϑ(s)‖2

V0
+ ‖χt(s)‖2

H

)
ds

≤ E(t) + c
(
r + ‖f‖2

L2(t,t+r;H)

)
≤ E(0)e−εt + cf .

(3.7)

Second estimate. Let us now test (2.12) by ϑt. We easily obtain

‖ϑt‖2
H

2
+

d

dt

‖ϑ‖2
V0

2
≤ 1

2

∫
Ω

(
f − λ′(χ)χt

)2
dx, (3.8)

so that, recalling (3.7), the uniform Gronwall Lemma (cf., e.g., [47, Lemma
III.1.1]) yields

‖ϑ(t + r)‖2
V0
≤ c

(
E(0)e−εt + cf

)(
1 + r−1

)
for all t ≥ 0. (3.9)

Next, integrating (3.8) over (t, t + r), we also get∫ t+r

t

‖ϑt(s)‖2
H ds ≤ c

(
E(0)e−εt + cf

)(
1 + r−1

)
for all t ≥ r. (3.10)
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Third estimate. A formal differentiation with respect to time of (2.13) gives

χ
tt + Aχ

t + W ′′(χ)χt = λ′′(χ)χtϑ + λ′(χ)ϑt, (3.11)

where, of course, the second derivative W ′′ does not make sense in the present
setting, but still the procedure can be made rigorous by regularizing β. Now,
let us test (3.11) by χ

t. Thanks to the monotonicity of β, we have

d

dt

‖χt‖2
H

2
+ ‖∇χ

t‖2
H ≤

∫
Ω

(
− γ′(χ)χ2

t + λ′′(χ)χ2
t ϑ + λ′(χ)ϑt

χ
t

)
dx. (3.12)

Using (H1), estimating the second term as follows,∫
Ω

λ′′(χ)χ2
t ϑ dx ≤ ‖χt‖2

V

2
+ c‖ϑ‖2

V0
‖χt‖2

H , (3.13)

and adding 1
2
‖χt‖2

H to both sides of (3.12), we easily deduce

d

dt
‖χt‖2

H + ‖χt‖2
V ≤ c

(
1 + ‖ϑ‖2

V0

)
‖χt‖2

H . (3.14)

Thus, on account of (3.7) and (3.9), a further use of the uniform Gronwall
Lemma gives

‖χt(t + r)‖2
H ≤ c

(
E(0)e−εt + cf

)[
r−1 + c

(
E(0)e−εt + cf

)(
1 + r−1

)]
≤ c

(
E(0)e−εt + r−1 + cf

)2
for all t ≥ r, (3.15)

and integrating (3.14) over (t, t + r) for t ≥ 2r, thanks to (3.15) we have∫ t+r

t

‖χt(s)‖2
V ds ≤ c

(
E(0)e−εt + r−1 + cf

)2
for all t ≥ 2r. (3.16)

Fourth estimate. A comparison argument in relation (2.12), together with
(3.7), (3.10), (3.16), and well-known elliptic regularity results, immediately
yields∫ t+r

t

‖ϑ(s)‖2
D(B) ds ≤ c

(
E(0)e−εt + r−1 + cf

)2
, for all t ≥ 2r. (3.17)

Fifth estimate. Testing (2.13) by Aχ, using the monotonicity of β, and re-
lying on estimates (3.6) and (3.15), we easily get

‖χ(t)‖2
D(A) ≤ c

(
E(0)e−εt + r−1 + cf

)2
for all t ≥ 2r. (3.18)
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Next, a comparison in (2.13) immediately permits us to obtain

‖β0(χ(t))‖2
H ≤ c

(
E(0)e−εt + r−1 + cf

)2
for all t ≥ 2r. (3.19)

Let us point out that this comparison argument, which is rigorous as far as β is
a smooth function (so that β ≡ β0), is just formal when β is multivalued. This
procedure is fully justified, e.g., in [43, Proof of Theorem 2.16], where it is also
explained why the minimal section β0 appears.

Sixth estimate. Let us observe that ϑ solves

ϑt + Bϑ = g a.e. in Ω× (0, +∞),

where g := f−λ′(χ)χt. Recalling (H6) and using (3.7), (3.16), (3.18), and (2.4)
it is not difficult to get∫ t+r

t

‖g(s)‖2
V ds ≤ cf + c

∫ t+r

t

‖χt(s)‖2
V

(
1 + ‖χ(s)‖V ‖χ(s)‖D(A)

)
ds

≤
(
E(0)e−εt + r−1 + cf

) 7
2 for all t ≥ 2r. (3.20)

Thus, g(·) is in V . However, in general it does not belong to V0 = D(B1/2).
Nevertheless, if σ ∈ (0, 1

4
), V ⊂ D(Bσ) with continuous embedding. Thus,

testing (2.12) by B2σϑ and using (H6), (3.17), and the uniform Gronwall lemma,
we infer

‖ϑ(t)‖2
D(B(1+2σ)/2) ≤ c

(
E(0)e−εt + r−1 + cf

) 7
2 for all t ≥ 3r. (3.21)

Let us point out that, as σ ∈ (0, 1
4
), it is

D
(
B(1+2σ)/2

)
⊂ V with compact embedding. (3.22)

However, in three dimensions of space D(B(1+2σ)/2) is not included into C(Ω̄).
Thus, a further bound is required.

Seventh estimate. Here we estimate ‖ϑ(t)‖C(Ω̄) for sufficiently large t. Let
us recall (3.20) and notice that, by (3.7) and (2.4) it is also∫ t+r

t

‖g(s)‖2
H ds ≤ E(0)e−εt + cf for all t ≥ 0. (3.23)

Then, let us take, just for the sake of simplicity, r = 1 and consider t ≥ 3. Let
N = N(t) ∈ N such that t ∈ (N, N + 1] and decompose ϑ = ϑ1 + ϑ2, where

ϑ1
t + Bϑ1 = g1, ϑ1(0) = ϑ0 (3.24)

ϑ2
t + Bϑ2 = g2, ϑ2(0) = 0. (3.25)
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Here

g1 := gζ([0, N − 1]), g2 := gζ((N − 1, N + 1)),

ζ(J) denoting the characteristic function of the interval J . For the solution of
the equation (3.24) we have the representation formula

ϑ1(t) = eBtϑ0 +

∫ N−1

0

eB(t−s)g1(s) ds.

Let Xα = D(Bα) endowed with the graph norm ‖ · ‖α. Then Xα ⊂ C(Ω̄) for
α > 3

4
and the following estimate holds:

‖BαeBtu‖H ≤ κt−αe−µt‖u‖H , (3.26)

for some κ > 0 and some µ > 0. It is now sufficient to estimate ‖Bαϑ(t)‖H , the
H-norm being estimated by (2.3) and (3.9). We have

Bαϑ1(t) = BαeBtϑ0 +

∫ N−1

0

BαeB(t−s)g1(s) ds.

The first term decays exponentially by (3.26). Concerning the second, on ac-
count of (3.23) and (3.26), we infer

∫ N−1

0

‖BαeB(t−s)g1(s)‖H ds ≤ c

N−2∑
n=0

∫ n+1

n

e−µ(t−s)‖g1(s)‖H ds

≤ c
N−2∑
n=0

e−µ(N−n−1)

∫ n+1

n

‖g1(s)‖H ds

≤ c
N−2∑
n=0

e−µ(N−n−1)
(
E(0)e−εn + cf

) 1
2

≤ cE(0)e−µ(N−1) e
(µ− ε

2
)(N−1) − 1

eµ−ε − 1
+ cf

≤ cE(0)e−mt + cf ,

(3.27)

where we have set m := min{µ, ε
2
} and the last constants c, cf depend, of course,

also on ε, µ. Therefore, for any t ≥ 3 we deduce

‖ϑ1(t)‖2
Xα ≤ cE(0)e−mt + cf . (3.28)

Consider now equation (3.25) and observe that (3.20) implies

‖g2‖L2((N−1,N+1);L6(Ω)) ≤ c
(
E(0)e−εt + cf

) 7
4 .
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Thus we can apply the maximal regularity result [29] to obtain

‖ϑ2‖L2((0,N+1);W 2,6(Ω)) + ‖ϑ2
t‖L2((0,N+1);L6(Ω)) ≤ c‖g2‖L2((N−1,N+1);L6(Ω))

≤ c
(
E(0)e−εt + cf

) 7
4 .

Then, the embedding theorem [6, Chapter III, Theorem 4.10.2] entails

‖ϑ2‖BUC([0,N+1];(L6(Ω),W 2,6(Ω))1/2,2) ≤ c
(
E(0)e−εt + cf

) 7
4 . (3.29)

We recall that the interpolation space (L6(Ω), W 2,6(Ω))1/2,2 = B1
6,2(Ω) is contin-

uously embedded into C(Ω̄). This gives a bound for ‖ϑ2(t)‖C(Ω̄) which is still
independent of N . Taking α > 3

4
and summing up (3.28) and (3.29), we finally

deduce
‖ϑ(t)‖C(Ω̄) ≤ M1E(0)

1
2 e−

mt
2 + M2E(0)

7
4 e−

7εt
4 + Mf , (3.30)

for some constant M1, M2, Mf > 0, among which only Mf depends on f , and
for any t ≥ 3. This completes the proof of Theorem 2.1 in the case of r = 1
(cf. (2.16)). The modifications required to deal with a general r > 0 will be
outlined below.

3.2. Proof of the separation property (Theorem 2.3). Recalling (2.4),
we set

R0 = LMf . (3.31)

Then, if R > R0, i.e., the compatibility condition holds, on account of (3.30)
we can choose T0 ≥ 3 such that

LM1E(0)
1
2 e−

mT0
2 + LM2E(0)

7
4 e−

7εT0
4 < R−R0. (3.32)

Therefore the function

u 7→ φ(u) := L max{|ϑ(x, t)|, x ∈ Ω̄, t ≥ T0

}
− ∂W (u) (3.33)

is strictly negative in a left neighborhood of u = 1. We remark once more
that φ is actually a multifunction. Nevertheless, we shall still reason as if φ
were smooth, since considering the general (multivalued) case gives notation
problems only, but no further technical complications.

Consequently, if 1 ∈ D(β), then we can compare χ with the solution u to
the Cauchy problem {

u′ = φ(u)

u(T0) = 1,
(3.34)

and the comparison principle immediately entails, for any t ≥ T0,

χ(x, t) ≤ u(t) ∀x ∈ Ω̄. (3.35)
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If (H7s) holds, then (3.34) can be modified by taking instead{
u′ = φ(u)

u(T0) = max{|χ(x, t)|, x ∈ Ω, t ≥ T0},
(3.36)

where the right hand side of the last equation is a uniformly bounded quantity
in view of estimate (3.18). In both cases, thanks to the properties of φ, it is
clear that the upper bound in (S) holds by choosing any T > T0 and

δ = δ+ := 1−
(

max{u : φ(u) = 0} ∨ u(T )
)
. (3.37)

Next, the procedure can be repeated (with obvious adjustments) in order to
get the lower bound in (S) with respect to a possibly different number δ− > 0.
Coupling the two bounds leads exactly to (S) with δ := min{δ+, δ−}. This ends
the proof.

Proof of Corollary 2.5. We proceed along the same lines as before. However,
we have to refine the Seventh Estimate in the proof of Theorem 2.1 by making
explicit the dependence on r > 0 (and not just take r = 1). We do not give
the technical details. The main difference is that now one has to take a generic
t ≥ 3r and choose N ∈ N such that t ∈ (Nr, (N + 1)r]. Then, one replaces the
domains of integration accordingly and repeats all the subsequent procedure,
taking care of the dependence on r of the various constants. The evident con-
clusion is that the constant R0 defined in (3.31) is itself depending on r as well
(and, of course, it blows up as r ↘ 0). Nevertheless, since we now have the
strong coercivity (H7s), the function φ defined in (3.33) will be strictly negative
in a left neighborhood of u = 1 whatever is the value taken for T0 > 0 (namely,
we do not need to make the choice (3.32)). At this point, we conclude as before
by a comparison argument with respect to the system (3.36).

Proof of Corollary 2.6. The assertion follows by repeating once more the argu-
ment from (3.33) and noting that ϑ(t) → 0 as t → +∞ in the space C(Ω̄),
which is proved in the next Lemma 3.1.

3.3. Proof of Theorem 2.7. Recalling (3.1) and using (H8) together with
(3.6), we deduce

‖ϑ‖L2(0,+∞;V0) + ‖χt‖L2(0,+∞;H) ≤ cf . (3.38)

Then, thanks to (2.16) and (3.38), from equation (2.12) we infer

ϑt, Bϑ ∈ L2((1, +∞); H).

Thus, using the uniform bound (3.21) and the compact immersion (3.22), it is
not difficult to deduce that

ϑ(t) → 0 in V as t → +∞. (3.39)
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Furthermore, on account of (3.28) and (3.29) it is

ϑ ∈ C([3, +∞); Xα + B1
6,2(Ω)).

Since both the spaces Xα (for α > 3
4
) and B1

6,2(Ω) are compactly embedded into
C(Ω̄) we readily obtain

ϑ(t) → 0 in C(Ω̄) as t → +∞.

On account of the above considerations and keeping (3.18) in mind, one easily
realizes that the following lemma holds.

Lemma 3.1. Let the hypotheses (H1)–(H6) and (H8) be satisfied. Then

ϑ(t) → 0 in V0 ∩ C(Ω̄) as t → +∞. (3.40)

Moreover, any sequence of times tn → +∞ contains a subsequence (not rela-
beled) such that

χ(tn) → χ∞ strongly in V ∩ C(Ω̄), (3.41)

where χ∞ is a solution to (2.18).

Hence, to conclude the proof we have to show, thanks to the analyticity
of W , the whole convergence of χ(t) to χ∞ (not just along subsequences). Recall
that we assume f ≡ 0 just for the sake of simplicity (cf. Remark 2.8, however).
We proceed in the same way as in [2], so we just outline the argument.

We first observe that the separation property (S) holds with R0 = 0, due to
Corollary 2.6, for some T > 0 and some δ > 0. On the other hand, a comparison
argument entails

max
x∈Ω

|χ∞(x)| < 1.

More precisely, since the set of all stationary solutions is compact in C(Ω̄), then
there exists δ0 > 0 such that

max
x∈Ω

|χ∞(x)| ≤ 1− δ0, (3.42)

for any stationary solution χ∞, and |W ′(y)| > 0 for |y| > 1 − δ0. We can thus
modify W ′ outside of (−1+ δ1

2
, 1− δ1

2
), with δ1 := min{δ, δ0}, in such a way that

F(y) = W ′(y) ∀ y ∈ [−1 + δ1, 1− δ1],

|F(y)| ≤ c, |F ′(y)| ≤ c ∀ y ∈ R.

To conclude the proof it suffices to show that there exists T1 > T such that
χ

t ∈ L1(T1, +∞; H). In fact, consider first the energy inequality (3.1). It is
clear that E defined by (3.4) is non-increasing in (0, +∞). Therefore, on account
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of (3.40), we have that E(t) converges, as t goes to +∞, to I∞ := I(χ∞), where
I is the functional defined by

I(v) :=
1

2
‖∇v‖2

H +

∫
Ω

W (v) dx.

Integrate now the energy inequality (3.1) with respect to time from t > 0 to +∞.
This gives∫ +∞

t

(‖ϑ(s)‖2
V0

2
+ ‖χt(s)‖2

H

)
ds ≤ ‖ϑ(t)‖2

H

2
+ I(χ(t))− I∞. (3.43)

Since χ∞ is smooth enough, we can estimate I(χ(t))−I∞ by a modified version
of the  Lojasiewicz-Simon inequality. Indeed, following [2, Proposition 4.2], we
have that, for any P > 0, there exist ρ ∈ (0, 1

2
) and δ2 = δ2(P ) ∈ (0, δ1), cP > 0

such that
‖A(χ̄) + ∂W (χ̄)‖V ′ ≥ cP |I(χ̄)− I(χ∞)|1−ρ, (3.44)

for all χ̄ ∈ V such that ‖χ̄− χ∞‖H < δ2 and |I(χ̄)− I(χ∞)| < P .

Thus, from (3.43) we infer (cf. also (2.3))∫ +∞

t

(
‖χt(s)‖2

H + ‖ϑ(s)‖2
V0

)
ds ≤ c

(
‖χt(t)‖2

H + ‖ϑ(t)‖2
V0

) 1
2−2ρ ,

for any t ∈ M := {t > 0 : ‖χ(t) − χ∞‖H < δ2}. This implies (see [19,
Lemma 7.1], cf. also [2, Lemma 5.1]) ‖χt(·)‖H ∈ L1(M), which combined
with (3.41) and a simple contradiction argument yields (T1, +∞) ⊂ M for
some T1 > T large enough. Hence, we obtain ‖χt(·)‖H ∈ L1(T1, +∞) which
entails

χ(t) → χ∞ strongly in H, as t → +∞.

Thus, on account of (3.41), the second assertion of Theorem 2.7 follows.

To prove the decay rate estimate, we adapt an argument used, for instance,
in [28]. On account of (3.1), we have

d

dt
E(t) ≤ −c(‖ϑ(t)‖2

H + ‖χt(t)‖2
H) ∀ t ≥ 0. (3.45)

Using again (3.44), recalling (2.4), and taking advantage of equation (2.13) and
(3.39), we have, for t > 0 large enough,

E(t)− I∞ ≤ c
(
‖ϑ(t)‖2

H + ‖Aχ(t) + ∂W (χ(t))‖
1

1−ρ

H

)
≤ c

(
‖ϑ(t)‖H + ‖λ′(χ(t))ϑ(t)− χ

t(t)‖H

) 1
1−ρ

≤ c
(
‖ϑ(t)‖H + ‖χt(t)‖H

) 1
1−ρ .
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Thus, we deduce

(E(t)− I∞)2(1−ρ) ≤ c(‖ϑ(t)‖2
H + ‖χt(t)‖2

H). (3.46)

Inequalities (3.45) and (3.46) then yield d
dt

(E(t)− I∞) + c(E(t)− I∞)2(1−ρ) ≤ 0,
so that

E(t)− I∞ ≤ c(1 + t)−
1

1−2ρ . (3.47)

On the other hand, we have − d
dt

(E(t)− I∞)ρ = −ρ d
dt

E(t)(E(t)− I∞)ρ−1. Thus,
thanks to (3.45) and (3.46), we infer

− d

dt
(E(t)− I∞)ρ ≥ c(‖ϑ(t)‖H + ‖χt(t)‖H).

This entails 1
c
(E(t) − I∞)ρ ≥

∫ +∞
t

(‖ϑ(s)‖H + ‖χt(s)‖H) ds, and (2.20) follows
from (3.47).
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[3] Aizicovici, S. and Petzeltová, H., Compactness and long-time stabilization
of solutions to phase-field models. In: Analysis and optimization of differ-
ential systems (Constanta, 2002). Boston (MA): Kluwer Acad. Publ. 2003,
pp. 1 – 12.
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dans les Espaces de Hilbert. Amsterdam: North-Holland Math. Studies 5, 1973.

[11] Brochet, D., Chen, X. and Hilhorst, D., Finite dimensional exponential attrac-
tor for the phase-field model. Appl. Anal. 49 (1993), 197 – 212.

[12] Brochet, D. and Hilhorst, D., Universal attractor and inertial sets for the
phase-field model. Appl. Math. Lett. 4 (1991), 59 – 62.

[13] Brokate, M. and Sprekels, J., Hysteresis and Phase Transitions. New York:
Springer 1996.

[14] Caginalp, G., An analysis of a phase field model of a free boundary. Arch.
Rational Mech. Anal. 92 (1986), 205 – 245.

[15] Chill, R., On the  Lojasiewicz-Simon gradient inequality. J. Funct. Anal. 201
(2003), 572 – 601.

[16] Chill, R. and Jendoubi, M. A., Convergence to steady states in asymptoti-
cally autonomous semilinear evolution equations. Nonlinear Anal. 53 (2003),
1017 – 1039.

[17] Damlamian, A., Kenmochi, N. and Sato, N., Subdifferential operator approach
to a class of nonlinear systems for Stefan problems with phase relaxation.
Nonlinear Anal. 23 (1994), 115 – 142.

[18] Elliott, C. M. and Zheng, S., Global existence and stability of solutions to the
phase field equations. In: Free boundary value problems (Oberwolfach, 1989).
Internat. Ser. Numer. Math. 95. Basel: Birkhäuser 1990, pp. 46 – 58.
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