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Non-Compact and Sharp Embeddings
of Logarithmic Bessel Potential Spaces

into Hölder-Type Spaces

David E. Edmunds, Petr Gurka and Bohumı́r Opic

Abstract. In our recent paper [Compact and continuous embeddings of logarithmic
Bessel potential spaces. Studia Math. 168 (2005), 229 – 250] we have proved an
embedding of a logarithmic Bessel potential space with order of smoothness σ less
than one into a space of λ(·)-Hölder-continuous functions. We show that such an
embedding is not compact and that it is sharp.
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1. Introduction

In the recent paper [8] we have derived embeddings of Bessel potential spaces
with smoothness σ∈ (0, 1), modelled upon generalized Lorentz-Zygmund spaces,
into spaces of λ(·)-Hölder-continuous functions. Here we discuss non-compact-
ness and sharpness of those embeddings.

To be more specific, we need some notation. Given two (quasi-)Banach
spaces X and Y , we write X ↪→ Y or X ↪→↪→ Y if X ⊂ Y and the natural
embedding is continuous or compact, respectively.

Let p, q ∈ (0,∞], m ∈ N, α1, . . . , αm ∈ R and let Ω be a measurable
subset of Rn (with respect to n-dimensional Lebesgue measure). The generalized
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Lorentz-Zygmund (GLZ) space Lp,q;α1,...,αm(Ω) consists of all measurable (real
or complex) functions f on Ω such that the quantity

‖f‖p,q;α1,...,αm :=

∥∥∥∥t 1
p
− 1

q

( m∏
j=1

`
αj

j (t)

)
f ∗(t)

∥∥∥∥
q,(0,∞)

is finite. Here `1, . . . , `m are (logarithmic) functions defined on (0,∞) by

`1(t) = `(t) = 1 + | log t|, `j(t) = 1 + log `j−1(t) (j > 1),

f ∗ denotes the non-increasing rearrangement of f given by

f ∗(t) = inf
{
λ > 0 ;

∣∣{x ∈ Ω ; |f(x)| > λ
}∣∣

n
≤ t}, t ≥ 0,

|G|n stands for the n-volume of a measurable subset G of Rn and ‖ · ‖q,(a,b) is
the usual Lq-(quasi-)norm on an interval (a, b) ⊆ R. (For more details about
the spaces Lp,q;α1,...,αm(Ω) see [2]–[7], [9], and [11].)

The Bessel kernel gσ, σ > 0, is defined to be that function on Rn whose
Fourier transform ĝσ is

ĝσ(ξ) = (2π)−
n
2

(
1 + |ξ|2

)−σ
2 , ξ ∈ Rn,

where by the Fourier transform f̂ of a function f we mean

f̂(x) = (2π)−
n
2

∫
Rn

e−ixyf(y) dy, x ∈ Rn.

Let σ > 0, p ∈ (1,∞), q ∈ [1,∞], α1, . . . , αm ∈ R. The logarithmic Bessel
potential space HσLp,q;α1,...,αm(Rn) is defined by

HσLp,q;α1,...,αm(Rn) :=
{
u = gσ ∗ f ; f ∈ Lp,q;α1,...,αm(Rn)

}
,

and is equipped with the (quasi-)norm

‖u‖σ;p,q;α1,...,αm := ‖f‖p,q;α1,...,αm . (1)

(By f ∗ g we mean the convolution of functions f and g.)

Let L be the class of all continuous functions λ : (0,∞) → (0,∞) which are
increasing on some interval (0, δ), with δ = δ(λ)> 0, and satisfy limλ→0+λ(t)= 0.
Let λ ∈ L and let Ω be a domain in Rn. The space C0,λ(·)(Ω) of λ(·)-Hölder-
continuous functions consists of all those functions u ∈ C(Ω) for which the
norm

‖u‖C0,λ(·)(Ω) := sup
x∈Ω

|u(x)|+ sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
λ(|x− y|)
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is finite. Here C(Ω) stands for the family of all functions which are bounded
and uniformly continuous on Ω. (For more information about such spaces see
[1] or [10].)

We write A . B (or A & B) if A ≤ cB (or cA ≥ B) for some positive
constant c independent of appropriate quantities involved in the expressions A
and B, and A ≈ B if A . B and A & B. If p ∈ [1,∞], the conjugate number p′

is defined by 1
p

+ 1
p′ = 1 with the understanding that 1′ = ∞ and ∞′ = 1.

In [8] we have extended Theorem 4.9 of [5] (to the range σ ∈ (0, 1)) and
proved the following embedding.

Theorem 1. Let 0 < σ < 1, n
σ
< p < ∞, 1 < q < ∞, m ∈ N, α1, . . . , αm ∈ R

and let

λ(t) = tσ−
n
p

m∏
j=1

`
−αj

j (t), t > 0.

Then
HσLp,q;α1,...,αm(Rn) ↪→ C0,λ(·)(Rn). (2)

The aim of this paper is to show that the embedding of HσLp,q;α1,...,αm(Rn)
into C0,λ(·)(Ω), where Ω is a nonempty domain in Rn, cannot be compact and
that the embedding (2) is sharp with respect to the function λ.

2. Main result and proofs

Our main result reads as follows.

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Let n ≥ 2 and
Ω ⊆ Rn be a nonempty domain. Then the embedding

HσLp,q;α1,...,αm(Rn) ↪→ C0,λ(·)(Ω) (3)

is not compact. Moreover, if a function µ ∈ L satisfies µ
λ
∈ L, then the embed-

ding
HσLp,q;α1,...,αm(Rn) ↪→ C0,µ(·)(Ω)

does not hold.

To prove Theorem 2, we need some preliminary work. We modify the idea
from [7] to construct suitable test functions. Assume that G is a function with
the following properties:

G is positive and continuous on (0, 1]; (4)

tG(t) is nonincreasing on (0, r0], where r0 ∈ (0, 1] is a fixed number; (5)

G( t
2
) . G(t), t ∈ (0, 1] (6)
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(notice that the assumption (5) is stronger than (4.2) of [7]). We use mollifiers
to assign to the function G a family of functions {Gr}. Let ϕ ∈ C∞

0 (R) be
a non-negative function such that

∫
R ϕ = 1 and suppϕ = [−1, 1]. We define the

function ϕε, ε > 0, by

ϕε(t) := 1
ε
ϕ
(

t
ε

)
, t ∈ R,

and we put

ψ := χ[−2+ 1
16

, 3
4
− 1

16
] ∗ ϕ 1

16
.

Now, we extend G by zero outside the interval (0, 1] and we define functions Gr,
r ∈ (0, 1), by

Gr(t) :=
(
(χ[r,∞) ψ G) ∗ ϕ r

4

)
(t) , t ∈ R. (7)

For any r ∈ (0, 1
4
), let ar be a positive number, let

hr(x) := ar Gr

(
|x|

)
, x ∈ Rn, (8)

and

ur(x) := x1 (gσ ∗ hr)(x), x = (x1, . . . , xn) ∈ Rn. (9)

Our first aim is to show that the functions ur belong to the source space
in (3). To this end, we shall need the following result.

Lemma 1 (cf. Lemma 4.1 of [7]). Let r ∈ (0, 1
4
) and let Gr be the functions

defined by (7), where G satisfies (4)–(6). Then

Gr ∈ C∞
0 (R) , suppGr ⊂ [ r

2
, 1] and Gr ≥ 0. (10)

Moreover, there are positive constants C1 and C2 (independent of r and t) such
that

Gr(t) ≤ C1 G(t) χ[ r
2
,1](t), t ∈ (0, 1] (11)

Gr(t) ≥ C2G(t), t ∈ [2r, 1
2
].

We shall make use of the next assertions.

Lemma 2. Let h belong to the Schwartz space S, σ ≥ 0, j ∈ {1, . . . , n} and
let Rj be the Riesz transform. Then there exists a finite measure ν on Rn such
that, for any x = (x1, . . . , xn) ∈ Rn,

xj (gσ ∗ h)(x) = −σ (2π)−
n
2

[
gσ ∗ (Rj(ν ∗ g1 ∗ h))

]
(x) +

[
gσ ∗ (yj h(y))

]
(x).

Proof. The equality can be derived analogously to (4.48) in [7].
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Lemma 3 (cf. Cor. 4.12 of [7]). Let 1 < p <∞, 1 ≤ q ≤ ∞, α1, . . . , αm ∈ R
and let ν be the measure from Lemma 2. Then, for all f ∈ Lp,q;α1,...,αm(Rn),

‖gα ∗ f‖p,q;α1,...,αm . ‖f‖p,q;α1,...,αm , α ≥ 0,

‖Rjf‖p,q;α1,...,αm . ‖f‖p,q;α1,...,αm , j = 1, . . . , n,

‖ν ∗ f‖p,q;α1,...,αm . ‖f‖p,q;α1,...,αm

We shall also need the following estimate.

Lemma 4. Let n ≥ 2, p > n
n−1

, q ∈ [1,∞], 1
p

= 1
p̃
− 1

n
, α1, . . . , αm ∈ R. Then,

for all f ∈ Lp̃,q;α1,...,αm(Rn),

‖g1 ∗ f‖p,q;α1,...,αm . ‖f‖p̃,q;α1,...,αm .

Proof. The assumption p > n
n−1

and the equality 1
p

= 1
p̃
− 1

n
imply that p̃ ∈ (1, n).

Thus, the result follows on applying Theorem 3.1 of [7].

Lemma 5. Let p, q ∈ (1,∞), α1, . . . , αm ∈ R. Let g be a positive function
which is continuous in (0, 1] and nonincreasing in some interval (0, r0] ⊂ (0, 1].
Then, for all r ∈ (0, r0),

‖ g(|y|)χ[r,1](|y|) ‖p,q;α1,...,αm . V1(r) + V2(r),

where

V1(r) :=

∥∥∥∥tn
p
− 1

q

( m∏
j=1

`
αj

j (t)

)
g(t)

∥∥∥∥
q;(r,1)

V2(r) := r
n
p

( m∏
j=1

`
αj

j (r)

)
g(r).

Proof. The estimate can be proved analogously to the estimate (4.3) in
Lemma 4.1 of [4].

The next lemma provides the upper estimate of ‖ur‖σ;p,q;α1,...,αm , where ur

are the functions given by (9).

Lemma 6. Let n ≥ 2, p > n
n−1

, q ∈ (1,∞), α1, . . . , αm ∈ R. Then the functions
ur, r ∈ (0, r0), defined by (9) (with G given by (4)–(6)), satisfy

‖ur‖σ;p,q;α1,...,αm . ar

(
W1(r/2) +W2(r/2)

)
,

where

W1(r) :=

∥∥∥∥tn
p
+1− 1

q

( m∏
j=1

`
αj

j (t)

)
G(t)

∥∥∥∥
q;(r,1)

W2(r) := r
n
p
+1

( m∏
j=1

`
αj

j (r)

)
G(r).
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Proof. Since ur ∈ S (cf. (10) and the fact that gσ ∗ f ∈ S for f ∈ S and σ > 0),
we can use Lemma 2 and the definition in (1) to get

‖ur‖σ;p,q;α1,...,αm

. ‖gσ ∗ R1(ν ∗ g1 ∗ hr)‖σ;p,q;α1,...,αm + ‖gσ ∗ (y1 hr(y))‖σ;p,q;α1,...,αm

= ‖R1(ν ∗ g1 ∗ hr)‖p,q;α1,...,αm + ‖y1 hr(y)‖p,q;α1,...,αm .

(12)

Applying Lemma 3, Lemma 4, (8) and (11) to the first term, we obtain

‖R1(ν ∗ g1 ∗ hr)‖p,q;α1,...,αm . ‖g1 ∗ hr‖p,q;α1,...,αm

. ‖hr‖p̃,q;α1,...,αm

. ar ‖G(|y|)χ[ r
2
,1](|y|)‖p̃,q;α1,...,αm .

Moreover, using Lemma 5 with g = G (observe that this function satisfies the
assumptions of Lemma 5) and the identity n

p̃
= n

p
+ 1, we arrive at

‖G(|y|)χ[ r
2
,1](|y|)‖p̃,q;α1,...,αm . W1(r/2) +W2(r/2).

Consequently,

‖R1(ν ∗ g1 ∗ hr)‖p,q;α1,...,αm . ar

[
W1(r/2) +W2(r/2)

]
. (13)

Furthermore, we use (8), (11) and Lemma 5 with g(t) = tG(t) to get

‖y1 hr(y)‖p,q;α1,...,αm ≤ ‖ |y|hr(y)‖p,q;α1,...,αm

. ar‖ |y| G(|y|)χ[ r
2
,1](|y|)‖p,q;α1,...,αm

. ar

[
W1(r/2) +W2(r/2)

]
.

(14)

Finally, by (12), (13) and (14) we obtain the result.

To prove the non-compactness of the embedding (3), we shall need the
following assertion.

Lemma 7. Let σ ∈ (0, n), R ∈ (0, 1
4
) and let

ar ≤ C for all r ∈ (0, 1
4
) with some C ∈ (0,∞). (15)

Moreover, let the function G from (4)–(6) and the numbers ar satisfy

ar

∫ R
2

2r

tσ−1 G(t) dt→∞ as r → 0+. (16)

Then there exist ε = ε(σ) ∈ (0, 1
2
), r1 = r1(R) ∈ (0, R

4
) and a positive constant c

(independent of R and r1) such that for the functions ur defined by (9), (8)
and (7), ∣∣ [ur(x)− uR(x)]− [ur(0)− uR(0)]

∣∣ ≥ c r ar

∫ R
2

2r

tσ−1G(t) dt (17)

for every r ∈ (0, r1) and x = (εr, 0, . . . , 0) ∈ Rn.
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Proof. The result immediately follows from Lemma 4.5 of [7].

Now, we are ready to prove the main result.

Proof of Theorem 2. We can suppose without loss of generality that

B := {x ∈ Rn; |x| ≤ 1} ⊂ Ω. (18)

Let r ∈ (0, 1
4
). Take γ < 0 and put

G(t) = tγ−1−n
p

m∏
j=1

`
−αj

j (t), t ∈ (0, 1], and ar = r−γ.

The function G satisfies (4)–(6). Thus, by Lemma 6,

‖ur‖σ;p,q;α1,...,αm . r−γ

[( ∫ 1

r
2

tγq dt
t

) 1
q

+ rγ

]
. 1 for all r ∈ (0, r0), (19)

where ur are the functions given by (9). (Observe, that the assumptions
σ ∈ (0, 1) and n ≥ 2 yield p > n

σ
> n > n

n−1
.)

Taking R ∈ (0, 1
4
), we can see that the conditions (15) and (16) are satisfied

and so, by Lemma 7, there exists ε ∈ (0, 1
2
) and r1 ∈ (0, R

4
) and a positive

constant c (independent of R and r1) such that∣∣ [ur(x)− uR(x)]− [ur(0)− uR(0)]
∣∣

≥ c r1−γ

∫ R
2

2r

tσ−1+γ−1−n
p

m∏
j=1

`
−αj

j (t) dt ≈ rσ−n
p

m∏
j=1

`
−αj

j (r) = λ(r)

for every r ∈ (0, r1) and x = (εr, 0, . . . , 0). Consequently, for any fixedR ∈ (0, 1
4
)

and every sufficiently small positive r,

‖ur − uR‖C0,λ(·)(Ω) ≥
∣∣[ur(x)− uR(x)]− [ur(0)− uR(0)]

∣∣
λ(εr)

≥ c
λ(r)

λ(εr)
≥ c0, (20)

where c and c0 are positive constants independent of R and r.

Finally, consider the sequence of functions {u1/k}∞k=k0
with k0 sufficiently

large. By (19), this sequence is bounded in HσLp,q;α1,...,αm(Rn) however, in view
of (20), it has no Cauchy subsequence in C0,λ(·)(Ω). Therefore, the embed-
ding (3) is not compact.

To prove sharpness, suppose that there is a function µ ∈ L such that µ
λ
∈ L

and HσLp,q;α1,...,αm(Rn) ↪→ C0,µ(·)(Ω) for some nonempty domain Ω in Rn. Take
a ball B ⊂ Ω. Then

HσLp,q;α1,...,αm(Rn) ↪→ C0,µ(·)(B). (21)
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Moreover, by Lemma 4.15 (iv) of [5], the condition µ
λ
∈ L implies that

C0,µ(·)(B) ↪→↪→ C0,λ(·)(B).

Combining this embedding with (21), we arrive at

HσLp,q;α1,...,αm(Rn) ↪→↪→ C0,λ(·)(B),

which contradict the non-compactness of the embedding (3) with Ω = B.
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