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The Factorization Method for

Real Elliptic Problems

Bastian Gebauer

Abstract. The Factorization Method localizes inclusions inside a body from mea-
surements on its surface. Without a priori knowing the physical parameters inside
the inclusions, the points belonging to them can be characterized using the range
of an auxiliary operator. The method relies on a range characterization that relates
the range of the auxiliary operator to the measurements and is only known for very
particular applications.
In this work we develop a general framework for the method by considering sym-
metric and coercive operators between abstract Hilbert spaces. We show that the
important range characterization holds if the difference between the inclusions and
the background medium satisfies a coerciveness condition which can immediately be
translated into a condition on the coefficients of a given real elliptic problem. We
demonstrate how several known applications of the Factorization Method are covered
by our general results and deduce the range characterization for a new example in
linear elasticity.
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method
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1. Introduction

Several applications in medical imaging and nondestructive testing of materials
lead to the problem of reconstructing physical parameters inside a body from
measurements on its surface. A common goal is to detect areas where the
parameters significantly differ from that of the known smooth background.

A fairly recent method to localize such inclusions is the Factorization Meth-
od, which was originally developed by Kirsch for problems in Inverse Scatter-
ing [14] and generalized to problems in Electrical Impedance Tomography by
Brühl and Hanke [4, 3]. It was successfully expanded to problems in electrostat-
ics [9], optical tomography [12], also with singular interfaces [2], and to different
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electrode models in Impedance Tomography [13, 10]. In [15], complex diffusion
problems with matrix valued coefficients are treated.

The Factorization Method compares the boundary measurements with those
obtained from a reference body without inclusions. By factorizing the devia-
tion, the range of an auxiliary operator is determined. The inclusion is then
characterized by the fact that certain singular functions belong to this range, if
and only if the location of their singularity is inside the inclusion.

We illustrate these steps using a simpler version of the diffusion equation
in [15]:

Example 1.1 (Diffusion Example). Let B ⊂ R
n be a bounded domain with

smooth boundary T := ∂B. Injection of a particle flux g ∈ H−1/2(T ) into a
reference body with diffusion and absorption parameters κ, c ∈ L∞

+ (B) leads to
a particle density u ∈ H1(B) that solves

−div (κ gradu) + cu = 0 in B

κ∂νu = g on T.
(1)

Measuring the particle density on T for all values of g is described by the
Neumann-Dirichlet operator

Λ0 : g 7→ u0|T , where u0 ∈ H1(B) solves (1). (2)

Now let Ω be another domain with smooth boundary Σ := ∂Ω and Ω ⊂ B as

B = Q ∪ Ω

Ω

T

Σ

Figure 1: Sketch of geometry

in Figure 1. If Ω is an inclusion in the body B with diffusion and absorption
parameters κ− κ1, c− c1 ∈ L∞

+ (Ω), the particle density u ∈ H1(B) solves

−div ((κ− κ1χΩ) gradu) + (c− c1χΩ)u = 0 in B

κ∂νu = g on T,
(3)
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and boundary measurements are described by

Λ1 : g 7→ u1|T , where u1 ∈ H1(B) solves (3). (4)

The problem of locating the inclusion from boundary measurements can now
be formulated mathematically as calculating χΩ from Λ1 − Λ0.

We introduce the auxiliary operator L : H−1/2(Σ) → H1/2(T ), ψ 7→ u|T ,
where u solves

−div (κ gradu) + cu = 0 in Q := B \ Ω,

κ∂νu =

{

ψ on Σ

0 on T.

(5)

This corresponds to virtual measurements of a particle density resulting from
a boundary flux from inside the inclusion. To see that the range of L fully
determines Ω let z ∈ B and uz solve κ∂νuz = 0 on T and

−div (κ gradu) + cu = 0 in B \ {z}. (6)

Furthermore let uz have no continuation that solves (6) in B (e. g. because of a
too strong singularity in z). Then obviously z ∈ Ω implies uz|T ∈ R(L), since
uz|Q solves (5). If the solution is uniquely determined by Cauchy data on T ,
then also the converse is true hence

z ∈ Ω if and only if uz ∈ R(L). (7)

The key result of the Factorization Method is that the range of L (the virtual
measurements) can be calculated from Λ1 and Λ0 (the real measurements) by

R((Λ1 − Λ0)
1/2) = R(L). (8)

Thus the inclusion is found by calculating uz for every point z ∈ B and checking
whether uz ∈ R(L) = R((Λ1 − Λ0)

1/2) (cf. [3] for a numerical implementation
of such a range test using the Picard criterion).

A big challenge in the application of the Factorization Method is the need
for the non-trivial mathematical relation (8). In the above mentioned works the
proof of this range characterization is typically quite involved and apparently
uses very particular properties of the considered problems. In this work we
show that this is not necessary, the range characterization holds in fact under
very weak assumptions on the considered problem. In particular we formulate
an easy criterion how the physical properties of the inclusions must differ from
the reference configuration. This criterion can immediately be translated into
conditions on the coefficients of a given real elliptic equation.
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In spite of the fact that – by considering the problems in a very general set-
ting – the required spaces and operators for the Factorization Method lose their
physical interpretation, the proofs become even simpler and more elementary
than in the mentioned works.

In Section 2 we formulate a general setting for real elliptic problems in a
domain with inclusions using abstract Hilbert spaces. To describe the geometry
of the problem and to define boundary measurements in these abstract spaces we
assume the existence of trace and restriction operators. Real elliptic problems
are then defined by their corresponding symmetric and coercive bilinear forms.

In the third section we formulate and proof our main result: The range
characterization holds if the difference of the inclusion’s bilinear form and the
one of the background medium is coercive. We also give an extension to insu-
lating inclusions (cavities) and to the case where the difference is a compact
perturbation of a coercive bilinear form.

Throughout the first three sections we use Example 1.1 to motivate our
assumptions and to show how our general results apply to a given problem. In
the last section we demonstrate how five other applications fit in our general
framework. While four of them have been considered previously by different
authors, the last one is (to our knowledge) a completely new application for the
Factorization Method.

2. Notations and assumptions

2.1. Spaces and Traces. To apply the Factorization Method to a real elliptic
equation, we do not only need the space of the solutions H(B) of the equation
on B (like H1(B) for Example 1.1), but we also have to restrict the solutions to
the inclusion Ω, its complement Q := B \Ω and to the boundaries T and Σ. For
this we need appropriate function spaces H(Ω), H(Q), H(Σ) and H(T ), e. g.
the spaces H1(Ω), H1(Q), H1/2(Σ) and H1/2(T ) with the well-known restriction
and trace operators for the diffusion example.

Remark 2.1. The reader may skip the technical details and proceed directly
to the main result in the next section using the following more intuitive ideas
and notations:

Having in mind Figure 1 we denote by E(·) and γ(·)→(·) restriction and trace
operators on the specified subsets and boundaries. We assume that two real
elliptic differential operators Ai, describing a body with inclusions (i = 1) resp.
without (i = 0), coincide on Q but differ on Ω. Their restrictions are denoted
by AQ resp. AΩ,i, and the corresponding bilinear forms by a(·).

In the general case H(·) might not be spaces of functions or distributions on
B, Ω, Q, Σ and T . We will therefore proceed one step further and treat B, Ω, Q,
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Σ and T only as indices for abstract real Hilbert spaces with abstract restriction
and trace operators. This generalization may hamper readability on the first
glance, but has advantages when treating factor spaces (see Application 4.1) or
the case T 6= ∂B (see Application 4.4).

Assumption and Definition 2.2. Let H(B), H(Q), H(Ω), H(T ) and H(Σ)
be real Hilbert spaces with inner products (·, ·)H(·) and continuous linear oper-
ators

γQ→T : H(Q) → H(T ), EQ : H(B) → H(Q)

γQ→Σ : H(Q) → H(Σ), EΩ : H(B) → H(Ω)

γΩ→Σ : H(Ω) → H(Σ).

We define continuous linear operators

γB→T : H(B) → H(T ), γB→T := γQ→TEQ

γB→Σ : H(B) → H(Σ), γB→Σ := γQ→ΣEQ

and make the following assumptions:

(V1) There exists k > 0 such that for all u ∈ H(B)

(u, u)H(B) ≤ k
(

(EQu,EQu)H(Q) + (EΩu,EΩu)H(Ω)

)

,

thus together with the continuity of EQ and EΩ the bilinear form

(u, v) 7→ (EQu,EQv)H(Q) + (EΩu,EΩv)H(Ω)

is an inner product on H(B), which induces a norm equivalent to the
original one.

(V2a) γQ→ΣEQ = γΩ→ΣEΩ.

(V2b) EΩ and EQ possess continuous right inverses E−

Ω resp. E−

Q such that for
all u ∈ H(Ω) and v ∈ H(Q)

EQE
−

Ωu = 0 if γΩ→Σu = 0

EΩE
−

Qv = 0 if γQ→Σv = 0.

(V3) γQ→Σ and γΩ→Σ have continuous right inverses γ−Q→Σ and γ−Ω→Σ.

As we already stated above in the diffusion example, a possible choice are
the Hilbert spaces (compare Remark 3.6 for the choice of H(T ))

H(B) := H1(B), H(T ) := H1/2(T )

H(Q) := H1(Q), H(Σ) := H1/2(Σ), H(Ω) := H1(Ω).

E(·) are the restrictions to the subsets Q resp. Ω, and γ(·) are the traces on T and
Σ. Then assumption (V1) is trivial, (V2b) is a consequence of [16, Lemma 6.85]
and [16, Theorem 6.88], (V3) can be found in [16, Theorem 6.108] and (V2a) is
easily shown by approximation with a sequence of smooth functions.
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Lemma 2.3.

(a) Assume (V1) and (V3) hold, then (V2a) and (V2b) are equivalent to

(V2*) For every uQ ∈ H(Q) and uΩ ∈ H(Ω) there exists u ∈ H(B) with
uQ = EQu and uΩ = EΩu if and only if γQ→ΣuQ = γΩ→ΣuΩ.

In particular E−

Ω and E−

Q can be chosen such that

EQE
−

Ω = γ−Q→ΣγΩ→Σ and EΩE
−

Q = γ−Ω→ΣγQ→Σ, (9)

which we will assume from now on.

(b) Choosing E−

Ω and E−

Q according to (9) we have E−

Qγ
−

Q→Σ = E−

Ωγ
−

Ω→Σ.

Proof. (a1): Let (V1), (V2a), (V2b) and (V3) hold. Let uQ ∈ H(Q) and
uΩ ∈ H(Ω).

(α): If there exists u ∈ H(B) with uQ = EQu and uΩ = EΩu, then (V2a)
yields γQ→ΣuQ = γQ→ΣEQu = γΩ→ΣEΩu = γΩ→ΣuΩ.

(β): Conversely let γQ→ΣuQ = γΩ→ΣuΩ, then

u := E−

QuQ − E−

Ω

(

EΩE
−

QuQ − uΩ

)

∈ H(B)

satisfies EΩu = uΩ. Using (V2a) we derive

γΩ→Σ

(

EΩE
−

QuQ − uΩ

)

= γQ→ΣEQE
−

QuQ − γΩ→ΣuΩ = 0,

so (V2b) yields EQE
−

Ω

(

EΩE
−

QuQ − uΩ

)

= 0 and thus EQu = uQ.

(a2): Now let (V1), (V2*) and (V3) hold, then (V2a) is obvious. To verify
(V2b) we define E−

Ω : H(Ω) → H(B) by E−

ΩuΩ := u, where u ∈ H(B) solves
EΩu = uΩ and EQu = γ−Q→ΣγΩ→ΣuΩ. (Note that (V2*) yields the existence

of this u and (V1) yields that it depends continuously of uΩ.) E−

Q is defined

analogously. Then it is easily seen that E−

Ω and E−

Q satisfy (V2b) and (9).

(b): Using (9) we have

EΩ

(

E−

Qγ
−

Q→Σ

)

= γ−Ω→ΣγQ→Σγ
−

Q→Σ = γ−Ω→Σ = EΩ

(

E−

Ωγ
−

Ω→Σ

)

EQ

(

E−

Qγ
−

Q→Σ

)

= γ−Q→Σ = γ−Q→ΣγΩ→Σγ
−

Ω→Σ = EQ

(

E−

Ωγ
−

Ω→Σ

)

.

With (V1) this yields E−

Qγ
−

Q→Σ = E−

Ωγ
−

Ω→Σ.

2.2. Bilinear forms and operators. For operators between real Hilbert
spaces we rigorously distinguish between the dual operator (denoted by ′) and
the adjoint operator (denoted by ∗). The inner product on a real Hilbert space
H is denoted by (·, ·) and the dual pairing on H ′ × H by 〈·, ·〉. They are re-
lated by the isometry ιH : H → H ′ that ”identifies H with its dual”, i. e.,
〈ιHu, ·〉 := (u, ·) for all u ∈ H .
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A bilinear form a : H ×H → R is called symmetric if a(u, v) = a(v, u) for
all u, v ∈ H and coercive if there exists α > 0 such that a(u, u) ≥ α ‖u‖2 for
all u ∈ H . An operator A ∈ L(H,H ′) is called symmetric resp. coercive if the
associated bilinear form a : (u, v) 7→ 〈Au, v〉 is symmetric resp. coercive.

Example 2.4 (Diffusion Example, continued). An equivalent variational defi-
nition for the Neumann-Dirichlet operator

Λ1 : H−1/2(T ) → H1/2(T )

is Λ1g = u|T , where u ∈ H1(B) solves

a1(u, v) = 〈g, v|T 〉T for all v ∈ H1(B). (10)

Due to our assumption on the coefficients the bilinear form

a1(u, v) :=

∫

B

{(κ− κ1χΩ)∇u∇v + (c− c1χΩ)uv} dx

is continuous, coercive and symmetric on H1(B).

Lax-Milgram’s theorem grants continuous invertibility of the operator

A1 : H1(B) → (H1(B))′, A1u := a1(u, ·)

and thus the unique existence of a solution of (10) that depends continuously
on g. Using this operator Λ1, can be written as

Λ1 = γB→TA
−1
1 γ′B→T . (11)

An analogous statement holds for Λ0 using the bilinear form

a0(u, v) :=

∫

B

{κ∇u∇v + cuv} dx.

a0 and a1 share a common part on Q, i. e.,

a0(u, v) = aQ(u|Q, v|Q) + aΩ,0(u|Ω, v|Ω), (12)

a1(u, v) = aQ(u|Q, v|Q) + aΩ,1(u|Ω, v|Ω), (13)

with

aQ(u, v) :=

∫

Q

{κ∇u∇v + cuv} dx

aΩ,0(u, v) :=

∫

Ω

{κ∇u∇v + cuv} dx

aΩ,1(u, v) :=

∫

Ω

{(κ− κ1)∇u∇v + (c− c1)uv} dx.
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To generalize the Factorization Method we postulate the existence of coer-
cive bilinear forms aQ, aΩ,0 and aΩ,1, then we use them to compose a0 and a1

according to (12) and (13) and finally we define (abstract) Neumann-Dirichlet
operators according to (11).

Assumption and Definition 2.5. Let

aQ : H(Q) ×H(Q) → R

aΩ,0, aΩ,1 : H(Ω) ×H(Ω) → R

be continuous, coercive and symmetric bilinear forms. Define ai : H(B) ×
H(B) → R (i = 0, 1) by setting for all u, v ∈ H(B)

ai(u, v) := aQ(EQu,EQv) + aΩ,i(EΩu,EΩv). (14)

Due to (V1) they are continuous, coercive and symmetric bilinear forms.

Let H ′(B) be the dual space of H(B) and 〈·, ·〉B the dual pairing onH ′(B)×
H(B) (an analogous notation is used for Q, Ω, T and Σ). The bilinear form aQ

canonically induces the operator

AQ : H(Q) → H ′(Q), 〈AQu, ·〉Q := aQ(u, ·).

Due to the assumptions on aQ, AQ is continuous, coercive and symmetric, in
particular continuously invertible. The same holds for the analogously defined
operators

AΩ,i : H(Ω) → H ′(Ω) and Ai : H(B) → H ′(B) (i = 0, 1).

Equation (14) then becomes

Ai = E ′

QAQEQ + E ′

ΩAΩ,iEΩ (i = 0, 1). (15)

The operators Λi : H ′(T ) → H(T ) (i = 0, 1) are now defined by setting

Λi := γB→TA
−1
i γ′B→T . (16)

3. The Range Characterization

3.1. Formulation of the main result.

Theorem 3.1. Let the Assumptions and Definitions 2.2 and 2.5 hold. If
aΩ,0 − aΩ,1 is coercive, then

R((Λ1ιH(T ) − Λ0ιH(T ))
1/2) = R(L),

where L : H ′(Σ) → H(T ) is given by L := γQ→TA
−1
Q γ′Q→Σ.

In the Diffusion Example 1.1 and 2.4 this definition of L obviously complies
with (5) and we have coerciveness of aΩ,0 − aΩ,1 if κ1, c1 ∈ L∞

+ (Ω). Thus, under
this condition Theorem 3.1 yields (8). (Note that ιH(T ) is typically omitted for
convenience.)
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3.2. Proof of the main result. We start with a short sketch of the proof
ignoring any difference between dual and adjoint operators and identifying every
space with its dual:

1. We show that Λ1 − Λ0 = LFL′, with a symmetric operator F . (This is
the factorization the method is named after.)

2. Using an auxiliary result from functional analysis the coercivity of
aΩ,0 − aΩ,1 is shown to imply that F is coercive and thus possesses a
surjective square root F 1/2.

3. With another result from functional analysis the factorization Λ1 − Λ0 =
LF 1/2F 1/2L′ yields that R((Λ1 −Λ0)

1/2) = R(LF 1/2). The assertion then
follows from the surjectivity of F 1/2.

Lemma 3.2. Λ1 − Λ0 can be factorized as

Λ1 − Λ0 = LFL′,

where F : H(Σ) → H ′(Σ) is given by

F := (γ−Q→Σ)′AQEQ

(

A−1
1 − A−1

0

)

E ′

QAQγ
−

Q→Σ.

Proof. We first observe that
(

A−1
1 −A−1

0

)

E ′

QAQ =
(

A−1
1 −A−1

0

)

E ′

QAQEQE
−

Q

(15)
=

(

A−1
1 (A1 − E ′

ΩAΩ,1EΩ) −A−1
0 (A0 − E ′

ΩAΩ,0EΩ)
)

E−

Q

=
(

A−1
0 E ′

ΩAΩ,0 − A−1
1 E ′

ΩAΩ,1

)

EΩE
−

Q

(9)
=

(

A−1
0 E ′

ΩAΩ,0 − A−1
1 E ′

ΩAΩ,1

)

γ−Ω→ΣγQ→Σ.

Thus
(

A−1
1 − A−1

0

)

E ′

QAQγ
−

Q→ΣγQ→Σ =
(

A−1
1 − A−1

0

)

E ′

QAQ.

By using this equation and its dual the assertion follows from the definitions of
γB→T , F and L.

A symmetric operator A ∈ L(H,H ′) on a real Hilbert space H is called
positive semidefinite, A ≥ 0, if 〈Av, v〉 ≥ 0 for all v, consequently we write
A ≥ B if A−B ≥ 0. The operator F is obviously symmetric and its definiteness
essentially depends on the factor A−1

1 − A−1
0 . The following lemma relates the

definiteness of A−1
1 − A−1

0 to that of A0 − A1 = E ′
Ω(AΩ,0 − AΩ,1)EΩ.

Lemma 3.3. Let H be a real Hilbert space and A,B ∈ L(H,H ′) be symmetric.
If A is coercive, then

BA−1B −B ≥ B −A. (17)

In particular this yields that if B is also bijective, then

A−1 −B−1 = B−1(BA−1B − B)B−1 ≥ B−1(B − A)B−1.
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Proof. Let w ∈ H and set v := A−1Bw.

−
1

2
〈Av, v〉 =

1

2
〈Aw,w〉 −

1

2
〈A(w − v), (w − v)〉 − 〈Av,w〉

≤
1

2
〈Aw,w〉 − 〈Av,w〉

=
1

2
〈Aw,w〉 − 〈Bw,w〉,

hence −1
2
BA−1B ≤ 1

2
A− B which implies (17).

Note that for real reflexive Banach spaces the definitions of symmetric,
positive and coercive make sense and the lemma stays valid with the same
proof.

Now we can use Lemma 3.3 to show coerciveness of F .

Lemma 3.4. If aΩ,0 − aΩ,1 is coercive, then also F is coercive.

Proof. Lemma 3.3 yields

A−1
1 − A−1

0 ≥ A−1
0 (A0 − A1)A

−1
0 = A−1

0 E ′

Ω(AΩ,0 − AΩ,1)EΩA
−1
0 ,

thus by setting v := EΩA
−1
0 E ′

QAQγ
−

Q→Σφ we obtain

〈Fφ, φ〉Σ ≥ 〈(AΩ,0 − AΩ,1)v, v〉Ω. (18)

Given that aΩ,0−aΩ,1 and thus AΩ,0−AΩ,1 is coercive, the assertion follows
if the operator EΩA

−1
0 E ′

QAQγ
−

Q→Σ possesses a continuous left inverse. Such a

left inverse is given by γQ→ΣA
−1
Q (E−

Q)′E ′
ΩAΩ,0 + γΩ→Σ, because

(

γQ→ΣA
−1
Q (E−

Q)′E ′

ΩAΩ,0 + γΩ→Σ

) (

EΩA
−1
0 E ′

QAQγ
−

Q→Σ

)

= γQ→ΣA
−1
Q (E−

Q)′ (E ′

ΩAΩ,0EΩ)A−1
0 E ′

QAQγ
−

Q→Σ + γΩ→ΣEΩA
−1
0 E ′

QAQγ
−

Q→Σ

= idH(Σ) − γQ→ΣEQA
−1
0 E ′

QAQγ
−

Q→Σ + γΩ→ΣEΩA
−1
0 E ′

QAQγ
−

Q→Σ

= idH(Σ),

where we used (15) to replace (E ′
ΩAΩ,0EΩ) and assumption (V2a) from Sec-

tion 2.1 in the last equality.

The following lemma can be found in an equivalent form in [8], for the sake
of completeness we give an elementary proof.

Lemma 3.5. Let Hi, i = 1, 2, be Hilbert spaces with norms ‖· ‖i and X be
a third Hilbert space with scalar product (·, · )X and operators Ai ∈ L(X,Hi).
Then A∗

1A1 = A∗
2A2 implies R(A∗

1) = R(A∗
2).
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Proof. Of course it suffices to show R(A∗
1) ⊆ R(A∗

2). Let z ∈ R(A∗
1), by

orthogonal projection of its preimage we obtain y1 ∈ N (A∗
1)

⊥ with A∗
1y1 = z.

As N (A∗
1)

⊥ = R(A1) there exists a sequence (xn)n∈N ⊂ X such that A1xn →
y1. The convergence implies boundedness of {‖A1xn‖1 : n ∈ N} and along with

‖A2xn‖2 = (A∗

2A2xn, xn)X = (A∗

1A1xn, xn)X = ‖A1xn‖1

we achieve boundedness of {‖A2xn‖2 : n ∈ N}. Therefore (A2xn)n∈N possesses
a weakly convergent subsequence (A2xnk

)k∈N with weak limit y2 ∈ H2. Thus the
subsequence (A∗

2A2xnk
)k∈N converges weakly against A∗

2y2, but as A∗
2A2xnk

=
A∗

1A1xnk
it also converges (strongly) against A∗

1y1 = z. Hence A∗
2y2 = z and

thus z ∈ R(A∗
2).

Note that the lemma stays valid (with analogous proof) if the Hilbert space
X is replaced by a reflexive Banach space and A∗

i by A′
iιHi

(cf. [15, Lemma 2.4]
for the case of injective and compact operators).

Now we can prove our main result.

Proof of Theorem 3.1. We have

(Λ1 − Λ0)ιH(T ) = LιH(Σ)ι
−1
H(Σ)FL

′ιH(T ).

Setting F̃ := ι−1
H(Σ)F ∈ L(H(Σ), H(Σ)), we have for all φ1, φ2 ∈ H(Σ):

(F̃φ1, φ2)H(Σ) = (ι−1
H(Σ)Fφ1, φ2)H(Σ) = 〈Fφ1, φ2〉Σ = 〈Fφ2, φ1〉Σ

= (ι−1
H(Σ)Fφ2, φ1)H(Σ) = (φ1, F̃φ2)H(Σ),

so F̃ is selfadjoint. As

(F̃φ1, φ1)H(Σ) = 〈Fφ1, φ1〉Σ ≥ c ‖φ1‖
2
H(Σ) ,

F̃ is positive definite and bijective, thus it possesses a bijective selfadjoint square
root F̃ 1/2 (cf. e. g. [17, Theorem 12.33]).

Now setting L̃ := LιH(Σ) ∈ L(H(Σ), H(T )), we have L̃∗ = L′ιH(T ) and
conclude that

(Λ1 − Λ0)ιH(T ) = L̃F̃ L̃∗ = L̃F̃ 1/2(F̃ 1/2)∗L̃∗,

hence (Λ1 − Λ0)ιH(T ) is selfadjoint and positive, thus possesses a selfadjoint
square root (Λ1ιH(T ) − Λ0ιH(T ))

1/2 and Lemma 3.5 yields

R((Λ1ιH(T ) − Λ0ιH(T ))
1/2) = R(L̃F̃ 1/2) = R(LιH(Σ)F̃

1/2).

Now the assertion follows from the surjectivity of ιH(Σ) and F̃ 1/2.
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3.3. Remarks and Extensions.

Remark 3.6. (a) Though we have chosen Λ0 to belong to the domain without
inclusion (and we will continue to do so in the applications), this choice was
completely arbitrary. By simply interchanging Λ1 and Λ0 we can extend the
assertion of Theorem 3.1:

If aΩ,1 − aΩ,0 or aΩ,0 − aΩ,1 is coercive then

R(|Λ1ιH(T ) − Λ0ιH(T )|
1/2) = R(L),

where |A| = (A∗A)1/2 for an operator A ∈ L(H) on a real Hilbert space H .
(Note that here |Λ1ιH(T ) −Λ0ιH(T )| is either (Λ1 −Λ0)ιH(T ) or (Λ0 −Λ1)ιH(T ) as
one of these expressions is positive definite.)

(b) Theorem 3.1 can also be used to compare a domain with a certain
inclusion to one where the inclusion has different physical properties.

(c) The operators γQ→T resp. γB→T do not have to be surjective, e. g. in the
diffusion example one can choose H(T ) = L2(T ) or a space of functions defined
only on part of the boundary.

In the diffusion example another important case is that of insulating inclu-
sions (cavities), i. e., inclusions with zero boundary flux. In this case Λ1 is given
by Λ1g = u|T , where u solves

div (κ gradu) − cu = 0 in Q

κ∂νu =

{

0 on Σ

g on T.

The elliptic problem describing such a body with cavities is now only defined
on the inclusion’s complement Q. We can generalize this idea to our abstract
setting by leaving out the bilinear form aΩ,1 in Assumption 2.5 and replacing
the definition of Λ1 by Λ1 = γQ→TA

−1
Q γ′Q→T . The range characterization can

now be proven analogously to Theorem 3.1.

Theorem 3.7. Let the Hilbert spaces H(·) be as in Assumption 2.2 and bilinear
forms aQ, aΩ,0 as in Assumption 2.5. Let AQ and AΩ,0 be the induced operators
and define

Λ0 := γB→TA
−1
0 γ′B→T and Λ1 := γQ→TA

−1
Q γ′Q→T .

Then R((Λ1ιH(T ) − Λ0ιH(T ))
1/2) = R(L), where L is given as in Theorem 3.1.

Proof. We have

Λ1 − Λ0 = γQ→TA
−1
Q γ′Q→T − γB→TA

−1
0 γ′B→T

= γQ→T

(

A−1
Q − EQA

−1
0 E ′

Q

)

γ′Q→T

= γQ→TA
−1
Q (E−

Q)′
(

E ′

QAQEQ −E ′

QAQEQA
−1
0 E ′

QAQEQ

)

E−

QA
−1
Q γQ→T .
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Using E ′
QAQEQ = A0−E ′

ΩAΩ,0EΩ twice, the parenthesized term can be written
as

E ′

QAQEQ − E ′

QAQEQA
−1
0 E ′

QAQEQ = E ′

QAQEQA
−1
0 E ′

ΩAΩ,0EΩ

= E ′

ΩAΩ,0EΩ − E ′

ΩAΩ,0EΩA
−1
0 E ′

ΩAΩ,0EΩ,

thus

E ′

QAQEQ −E ′

QAQEQA
−1
0 E ′

QAQEQ

= E ′

Ω(E−

Ω )′
(

E ′

QAQEQ − E ′

QAQEQA
−1
0 E ′

QAQEQ

)

E−

ΩEΩ,

which yields the factorization

Λ1 − Λ0 = γQ→TA
−1
Q (E−

Q)′E ′

Ω(E−

Ω )′
(

E ′

QAQEQ − E ′

QAQEQA
−1
0 E ′

QAQEQ

)

E−

ΩEΩE
−

QA
−1
Q γQ→T

(9)
= γQ→TA

−1
Q γ′Q→Σ(γ−Ω→Σ)′(E−

Ω )′
(

E ′

QAQEQ − E ′

QAQEQA
−1
0 E ′

QAQEQ

)

E−

Ωγ
−

Ω→ΣγQ→ΣA
−1
Q γQ→T

= L(γ−Ω→Σ)′(E−

Ω )′E ′

QAQ

(

A−1
Q − EQA

−1
0 E ′

Q

)

AQEQE
−

Ωγ
−

Ω→ΣL
′

(9)
= LFL′,

where now F := (γ−Q→Σ)′AQ

(

A−1
Q − EQA

−1
0 E ′

Q

)

AQγ
−

Q→Σ. Applying Lemma 3.3

on A−1
Q and EQA

−1
0 E ′

Q we have

EQA
−1
0 E ′

QAQEQA
−1
0 E ′

Q −EQA
−1
0 E ′

Q ≥ EQA
−1
0 E ′

Q −A−1
Q

and thus

A−1
Q −EQA

−1
0 E ′

Q ≥ EQA
−1
0 E ′

Q −EQA
−1
0 E ′

QAQEQA
−1
0 E ′

Q.

For F this implies

F ≥ (γ−Q→Σ)′AQ

(

EQA
−1
0 E ′

Q −EQA
−1
0 E ′

QAQEQA
−1
0 E ′

Q

)

AQγ
−

Q→Σ

= (γ−Q→Σ)′AQEQA
−1
0

(

A0 −E ′

QAQEQ

)

A−1
0 E ′

QAQγ
−

Q→Σ

= (γ−Q→Σ)′AQEQA
−1
0 E ′

ΩAΩ,0EΩA
−1
0 E ′

QAQγ
−

Q→Σ.

In the proof of Lemma 3.4 we showed, that the mapping EΩA
−1
0 E ′

QAQγ
−

Q→Σ has
a continuous left inverse. Thus the coercivity of AΩ,0 yields coercivity of F and
the rest of the proof is identical to the proof of Theorem 3.1.

If in the diffusion example only the diffusion coefficient differs in the inclu-
sion, that is if the absorption coefficient equals c throughout B, then

〈(AΩ,0 − AΩ,1)u, u〉Ω =

∫

Ω

κ1∇u∇u dx.
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Thus AΩ,0 − AΩ,1 is not coercive anymore but AΩ,0 − AΩ,1 + I ′ιL2(Σ)I is, where
I is the compact imbedding of H1/2(Σ) into L2(Σ). The following extension of
Theorem 3.1 enables us to also treat such compact perturbations of coercive
operators.

Theorem 3.8. Let the Assumptions 2.2 and 2.5 hold and define L as in
Theorem 3.1. Suppose that there exists a compact and symmetric operator
K : H(Ω) → H ′(Ω), such that AΩ,0 − AΩ,1 + K is coercive. If we further
assume that γΩ→Σ(A−1

Ω,1 −A−1
Ω,0)γ

′
Ω→Σ is injective, then

R(|Λ1ιH(T ) − Λ0ιH(T )|
1/2) = R(L).

Proof. We note that this proof has been inspired by the one of Theorem 3.3 in
[15]. Lemma 3.2 yields the factorization Λ1 − Λ0 = LFL′, and by following the
lines of the proof of Lemma 3.4 we immediately obtain coerciveness of F +K2

with compact and symmetric K2 : H(Σ) → H ′(Σ). Thus F is bijective if it is
injective.

To show that injectivity of γΩ→Σ(A−1
Ω,0 − A−1

Ω,1)γ
′
Ω→Σ yields injectivity (and

thus bijectivity) of F we introduce auxiliary operators (i = 0, 1)

Fi := (γ−Q→Σ)′
(

AQEQA
−1
i E ′

QAQ −AQ

)

γ−Q→Σ.

We have

AQEQA
−1
i E ′

QAQ − AQ = AQEQA
−1
i (Ai − E ′

ΩAΩ,iEΩ)E−

Q −AQ

= −AQEQA
−1
i E ′

ΩAΩ,iEΩE
−

Q

(9)
= −AQEQA

−1
i E ′

ΩAΩ,iγ
−

Ω→ΣγQ→Σ,

thus
(

AQEQA
−1
i E ′

QAQ −AQ

)

γ−Q→ΣγQ→Σ = AQEQA
−1
i E ′

QAQ − AQ

and
FiγQ→ΣA

−1
Q γ′Q→Σ = (γ−Q→Σ)′AQEQA

−1
i E ′

Qγ
′

Q→Σ − idH′(Σ).

Furthermore

FiγΩ→ΣA
−1
Ω,iγ

′

Ω→Σ

(9)
= (γ−Q→Σ)′AQEQA

−1
i E ′

QAQEQE
−

ΩA
−1
Ω,iγ

′

Ω→Σ

− (γ−Q→Σ)′AQEQE
−

ΩA
−1
Ω,iγ

′

Ω→Σ

(15)
= (γ−Q→Σ)′AQEQA

−1
i (Ai − E ′

ΩAΩ,iEΩ)E−

ΩA
−1
Ω,iγ

′

Ω→Σ

− (γ−Q→Σ)′AQEQE
−

ΩA
−1
Ω,iγ

′

Ω→Σ

= − (γ−Q→Σ)′AQEQA
−1
i E ′

Ωγ
′

Ω→Σ

= − (γ−Q→Σ)′AQEQA
−1
i E ′

Qγ
′

Q→Σ,
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so
Fi

(

γQ→ΣA
−1
Q γ′Q→Σ + γΩ→ΣA

−1
Ω,iγ

′

Ω→Σ

)

= −idH′(Σ),

and along with the symmetry of the operators we conclude that Fi is bijective
with F−1

i = −γQ→ΣA
−1
Q γ′Q→Σ − γΩ→ΣA

−1
Ω,iγ

′
Ω→Σ. Thus

F = F1 − F0 = F1

(

F−1
0 − F−1

1

)

F0 = F1γΩ→Σ

(

A−1
Ω,1 − A−1

Ω,0

)

γ′Ω→ΣF0,

and the injectivity (and hence bijectivity) of F follows from the assumed injec-
tivity of the operator γΩ→Σ(A−1

Ω,1 − A−1
Ω,0)γ

′
Ω→Σ.

Just as in the proof of Theorem 3.1 we obtain Λ̃ := (Λ1−Λ0)ιH(T ) = L̃F̃ L̃∗,

with bijective self-adjoint F̃ that is the sum of a coercive self-adjoint operator
and a compact self-adjoint operator.

Let E be the spectral decomposition of Λ̃ (cf., e. g., [17, Theorem 12.23]).
Set

P− := E((−∞, 0)), P+ := E([0,∞)),

then |Λ̃| = Λ̃(P+ − P−).

Since 〈F̃ v, v〉 < 0 for all v ∈ R(L̃∗P−), the space R(L̃∗P−) is of finite
dimension. Thus it is closed and there exists c > 0 such that

〈F̃ v, v〉 < −c ‖v‖2 for all v ∈ R(L̃∗P−).

For 〈F̃ v, v〉 ≥ 0 for all v ∈ R(L̃∗P+), R(L̃∗P+) ∩R(L̃∗P−) = {0}.

Since R(L̃∗P+) + R(L̃∗P−) is closed (cf., e. g., [17, Theorem 1.42]), there
exists a continuous projection

Q− : R(L̃∗P+) + R(L̃∗P−) → R(L̃∗P−) with N (Q−) = R(L̃∗P+)

(cf., e. g., [17, Theorem 5.16]). By setting it to zero on the orthogonal com-
plement, Q− can be extended to a continuous projection on H(Σ). Setting
Q+ := id −Q− on H(Σ) we have L̃∗P− = Q−L̃

∗ and L̃∗P+ = Q+L̃
∗. Hence

|Λ̃| = Λ̃(P+ − P−) = L̃F̃ (Q+ −Q−)L̃∗,

where F̃ (Q+ −Q−) is bijective, self-adjoint (since P+ and P− commute with Λ̃)
and positive. The assertion now follows from the arguments in the proof of
Theorem 3.1.

For the diffusion example with c1 = 0 it remains to show the injectivity of
γΩ→Σ(A−1

Ω,1 − A−1
Ω,0)γ

′
Ω→Σ, which is just the difference of the Neumann-Dirichlet

operators on the inclusion. Let g be in its kernel, then Lemma 3.3 yields

A−1
Ω,1 − A−1

Ω,0 ≥ A−1
Ω,0(AΩ,0 −AΩ,1)A

−1
Ω,0

and since the kernel of (AΩ,0 −AΩ,1) only contains constant functions, we have
that the function A−1

Ω,0γ
′
Ω→Σg is constant, which easily yields that g = 0.
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4. Applications

We already showed that our general result yields the range characterization
for the diffusion equation originally proven by Kirsch in [15]. In this section
we will show how five other applications fit in our general framework. The
range characterization for the first two are already known: the first (impedance
tomography) was treated by Brühl [4], the second (optical tomography) was
recently treated by Hyvönen [12], who also achieved a similar factorization
result [13] for the third application (complete electrode model of impedance
tomography). For the fourth application (electrostatics) our general results
extend the results of Hähner [9], who treated the case of an insulating inclusion
and the fifth (linear elasticity) is a new application for the factorization method.

4.1. Impedance Tomography. In impedance tomography an electric cur-
rent g is applied to the boundary T of a body B with an inclusion Ω, and this
leads to an electric potential u that satisfies the equation (cf. e. g. [5])

div ((κ− κ1χΩ) gradu) = 0 in B

κ∂νu = g on T,
(19)

where κ is the conductivity coefficient in B and κ1 is the change of conductivity
in the inclusion.

Our task is to identify Ω by measuring the potential u on the boundary
for different applied currents for a body with and without inclusion, that is we
assume knowledge of the operators Λi : g → ui|T , where ui solves (19) with
(i = 1) the term κ1χΩ and without (i = 0).

We assume B,Ω ⊂ R
n to be bounded domains with Ω ⊂ B and C1-

boundaries T := ∂B, Σ := ∂Ω, where Q := B \ Ω is connected and Ω consists
of m connected components Ωj with C1-boundaries Σj (j = 1, . . . , m).

Let the conductivity coefficients satisfy

κ ∈ L∞

+ (B), κ− κ1 ∈ L∞

+ (Ω).

The appropriate solution spaces are

H(B) := H1(B)/span{1B}

H(Q) := H1(Q)/span{1Q}

H(T ) := L2(T )/span{1T}

H(Ω) := H1(Ω)/span{1Ωj
: j = 1, . . . , m}

H(Σ) := H1/2(Σ)/span{1Σj
: j = 1, . . . , m},
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where 1X denotes the constant function u(x) = 1 ∀x ∈ X . These quotient
spaces are isomorphic to the orthogonal complements of their factors in the
corresponding H1 resp. L2 spaces and inherit their Hilbert space structure, e. g.

(u+ span{1B}, v + span{1B})H(B) = (P
1
⊥

B
u, P

1
⊥

B
v)H1(B),

where P
1
⊥

B
is the orthogonal projection on span{1B}

⊥.

The restriction and trace operators from the diffusion example (see our
remark below Assumption and Definition 2.2) can be canonically restricted to
these spaces, e. g.

EΩ(u+ span{1B}) := u|Ω + span{1Ωj
| j = 1, . . . , m}.

Assumption (V1) then follows from Poincaré’s inequality. (V2a),(V2b) and
(V3) are easily carried over from the diffusion example.

The bilinear forms for the variational formulation of (19) are

aQ(u, v) :=

∫

Q

κ∇u∇v dx for u, v ∈ H(Q) (20)

aΩ,0(u, v) :=

∫

Ω

κ∇u∇v dx for u, v ∈ H(Ω) (21)

aΩ,1(u, v) :=

∫

Ω

(κ− κ1)∇u∇v dx for u, v ∈ H(Ω), (22)

where we used the canonical restriction of the gradient to the above factor
spaces.

With our assumptions to the coefficients it is well known that these satisfy
Assumption 2.5 and that aΩ,0−aΩ,1 is coercive if κ1 ∈ L∞

+ (Ω). Thus Theorem 3.1
gives the range characterization from [4]. (The case of an insulating inclusion
is covered by Theorem 3.7.)

4.2. Optical Tomography. The propagation of near-infrared light through
a strongly scattering medium can be modeled by the diffusion equation with
Robin boundary condition (cf. [11, 12]):

−div ((κ− κ1χΩ) gradu) + (c− c1χΩ)u = 0 in B

u+ κ∂νu = g on T.
(23)

For this example, the coefficients and solution spaces can be chosen as in the
diffusion example. For the sake of using the bilinear forms from the diffusion
example we left out some constants in the Robin boundary condition.

Again our measurements are given by the operators Λi : g → ui|T , where
ui solves (23) with (i = 1) the term κ1χΩ and without (i = 0). Note that it
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makes no difference for Λ1 − Λ0 if we map g to u|T or to the physically more
relevant (u− κ∂νu)|T .

The Robin boundary conditions are treated by adding a boundary integral
term in the variational formulation of (23), aΩ,0 and aΩ,1 stay the same as in
the diffusion example, aQ changes to

aQ(u, v) :=

∫

Q

{κ∇u∇v + cuv} dx+

∫

T

u|Tv|T dx.

Obviously Assumption 2.5 is still satisfied. aΩ,0 − aΩ,1 is coercive if we
assume κ1, c1 ∈ L∞

+ (Ω) (resp. a compact perturbation of a coercive bilinear
form if we allow c1 to vanish). Thus Theorem 3.1 (resp. Theorem 3.8) gives
the range characterization from [12]. (Note that the additional assumption of
Theorem 3.8 is the same as in the diffusion case and has already been verified
in Section 3.3.)

4.3. Complete electrode model of impedance tomography. An exten-
sion of the model of impedance tomography is to assume that electric currents
are induced into a domain B by attaching perfectly conducting electrodes to
pieces Tk of the boundary T with positive contact impedance z. This extends
the equations (19) to the equations of the so-called complete electrode model
of impedance tomography (cf. [18, 13])

div ((κ− κ1χΩ) gradu) = 0 in B

κ∂νu = g on T0

u+ zκ∂νu = Uk1Tk
on Tk

∫

Tk
κ∂νu = Ik.

(24)

In (24) Ik is the current that is applied through the k-th electrode and Uk is
the measured potential of the k-th electrode. Thus the operators that represent
the measurements are extended to

Λi : (g, I1, . . . , IK) 7→
(

ui|T0
, U

(i)
1 , . . . , U

(i)
K

)

,

with Λ1 denoting the case with inclusion (i. e., with the term κ1χΩ) and Λ0

without the inclusion (i. e. without this term).

We make the same assumptions on B, Ω, Q := B \ Ω, κ and κ − κ1 as
in Section 4.1. Furthermore let T be divided into K + 1 open pieces T =
T0 ∪ T1 ∪ . . . ∪ Tk and z ∈ L∞

+ (T ).
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The solution spaces are extended by the unknown potentials (Uk)k ∈ R
K :

H(B) := (H1(B) × R
K)/span{(1B, 1, . . . , 1)}

H(Q) := (H1(Q) × R
K)/span{(1Q, 1, . . . , 1)}

H(T ) := (L2(T0) × R
K)/span{(1T0

, 1, . . . , 1)}

H(Ω) := H1(Ω)/span{1Ωj
: j = 1, . . . , m}

H(Σ) := H1/2(Σ)/span{1Σj
: j = 1, . . . , m},

where the extended spaces and their factor spaces are equipped with the usual
Hilbert space structure and the restriction and trace operators are appropriately
extended, e. g.

γB→T : (u, U1, . . . , UK) + span {(1B, 1, . . . , 1)}

7→ (u|T0
, U1, . . . , UK) + span {(1T0

, 1, . . . , 1)} .

Assumptions (V1), (V2a), (V2b) and (V3) are easily shown as in Section 4.1.
The bilinear forms aΩ,0 and aΩ,1 are chosen as in Section 4.1, aQ is the canonical
restriction of

((u, (Uk)k), (v, (Vk)k)) 7→

∫

Q

κ∇u∇v dx+
K

∑

k=1

∫

Tk

1

z
(Uk − u)(Vk − v) dx.

to the factor space H(Q).

With the above assumptions on the coefficients they satisfy Assumption 2.5
and aΩ,0 − aΩ,1 is coercive if κ1 ∈ L∞

+ (Ω). Thus Theorem 3.1 yields the desired
range characterization (cf. [13] for a similar result).

4.4. Electrostatics. The electrostatic potential u of charges arranged along a
closed surface T with density g(y), y ∈ T , solves

div ((κ− κ1χΩ) gradu) = 0 in R
3 \ T

[κ∂νu]T = g on T,
(25)

where again κ is the conductivity coefficient in R
3 and κ1 is the change of

conductivity in an inclusion Ω that is surrounded by T . [κ∂νu]T denotes the
jump in the normal derivative on T . In order to localize the inclusion we measure
the potential on T for different charge configurations, thus our measurements
are given by the operators Λi : g → ui|T , where ui solves (25) with (i = 1) the
term κ1χΩ and without (i = 0).

We assume Ω ⊂ B := R
3 to be a bounded domain with C1-boundary

Σ := ∂Ω, where Q := R
3 \ Ω is connected and Ω consists of m connected

components Ωj with C1-boundaries Σj (j = 1, . . . , m). Let further T be the
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smooth surface of a simply connected bounded domain containing Ω (note that
T 6= ∂B), κ ∈ L∞

+ (R3) and κ− κ1 ∈ L∞
+ (Ω).

The appropriate solution spaces are (cf. [7, Chapter XI, B, §2])

H(B) :=
{

u : (1 + |x|2)−
1

2u ∈ L2(R3), ∂iu ∈ L2(R3), i = 1, 2, 3
}

H(Q) :=
{

u : (1 + |x|2)−
1

2u ∈ L2(Q), ∂iu ∈ L2(Q), i = 1, 2, 3
}

H(T ) := L2(T )

H(Ω) := H1(Ω)/span{1Ωj
: j = 1, . . . , m}

H(Σ) := H1/2(Σ)/span{1Σj
: j = 1, . . . , m}.

Assumptions (V1)–(V3) stay valid if the restriction and trace operators are
chosen as in Application 4.1. Also the bilinear forms are chosen as in (20)–(22).
(aQ is now defined by the integral over the unbounded domain Q = R

3 \Ω.) In
the spaces given above they satisfy Assumption 2.5 (cf. [7]).

Again aΩ,0 − aΩ,1 is coercive if κ1 ∈ L∞
+ (Ω). Thus Theorem 3.1 yields

the desired range characterization and thus extends the result in [9] (which is
covered by Theorem 3.7).

4.5. Linear elasticity. We conclude our work with a (at least to our knowl-
edge) new application for the Factorization Method, namely an inverse problem
in linear elasticity (cf. [1] where the problem of detecting cavities is treated with
level set methods). If forces g are applied to the boundary T of an elastic body
B, they result in a displacement u, that satisfies in the state of equilibrium the
equations of linear elasticity (cf. [6, Sect. 6.3])

div ((λ− λ1χΩ)(tr e(u))I + 2(µ− µ1χΩ)e(u)) = 0 in B

(λ(tr e(u))I + 2µe(u)) ν = g on T,
(26)

where λ and µ are the Lamé-constants, ν is the unit normal on T , e(u)ij =
1
2
(∂iuj + ∂jui), Iij = δij (i, j = 1, 2, 3), tr denotes the trace of a matrix and the

divergence of a matrix is the vector whose components are the divergences of
the transposes of the row vectors of the matrix.

We try to localize the inclusion Ω by applying different forces g to the
body and measuring the resulting displacements on the boundary. Thus our
measurements are given by the operators Λi : g → ui|T , where ui solves (26)
with (i = 1) the terms λ1χΩ, µ1χΩ (Λ1) and without (i = 0).

Again we assume B,Ω ⊂ R
3 to be bounded domains with Ω ⊂ B and C1-

boundaries T := ∂B, Σ := ∂Ω, where Q := B \ Ω is connected and Ω consists
of m connected components Ωj with C1-boundaries Σj (j = 1, . . . , m).

Let the Lamé-constants satisfy

λ, µ ∈ L∞

+ (B), λ− λ1, µ− µ1 ∈ L∞

+ (Ω).
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If we define for a connected set X ⊂ R
3 the space of rigid deformations on X

NX := {u : X → R
3, u(x) = a + b ∧ x, ∀x ∈ X , a, b ∈ R

3}

(note that this is the space of all u with e(u) = 0), then the appropriate solution
spaces are

H(B) := H1(B; R3)/NB, H(Ω) := H1(Ω; R3)/
m
⊕

j=1

NΩj

H(Q) := H1(Q; R3)/NQ , H(Σ) := H1/2(Σ; R3)/
m
⊕

j=1

NΣj

H(T ) := L2(T ; R3)/NT . ,

Assumptions (V1), (V2a), (V2b) and (V3) are shown analogously to the
diffusion example (with Korn’s inequality taking the place of Poincaré’s in-
equality). The bilinear forms for (26) are

aQ(u, v) :=

∫

Q

(

λ tr e(u) tr e(v) + 2µe(u) : e(v)
)

dx

aΩ,0(u, v) :=

∫

Ω

(

λ tr e(u) tr e(v) + 2µe(u) : e(v)
)

dx

aΩ,1(u, v) :=

∫

Ω

(

(λ− λ1) tr e(u) tr e(v) + 2(µ− µ1)e(u) : e(v)
)

dx,

where B : C denotes the inner product
∑

ij bijcij for matrices B, C and we used
the canonical restriction of e(·) to the above factor spaces.

With the above assumptions on the coefficients it is well-known that the
bilinear forms satisfy Assumption 2.5 and that aΩ,0 − aΩ,1 is coercive if λ1 ≥ 0
and µ1 ∈ L∞

+ (Ω). Thus under this conditions Theorem 3.1 gives the desired
range characterization. Again the case of cavities is covered by Theorem 3.7.
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