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A Parabolic Integro-Differential Identification
Problem in a Barrelled Smooth Domain

J. Janno and A. Lorenzi

Abstract. We consider the problem of recovering a space- and time-dependent kernel
in a parabolic integro-differential equation. The related domain is assumed to be
smooth and provided with two bases. Global existence and uniqueness results are
proved.

Keywords. Inverse problem, memory kernel, parabolic equation
Mathematics Subject Classification (2000). Primary 35R30, 45K05, secondary
45N05, 80A23

1. Introduction

Linear heat flow in materials with memory is governed by parabolic equations
of integro-differential type involving time-dependent (in case of inhomogeneity
also space-dependent) memory kernels [17]. These kernels are often unknown in
practice. Identification problems to determine kernels depending only on time
in parabolic integro-differential equations were studied, e.g., in [8, 9, 11 — 14].
Problems to identify space- and time-dependent kernels in parabolic integro-
differential equations for cylindrical domains were studied in [1 — 5] and [15].
In [6, 7] analogous problems were dealt with for spherical coronae and kernels
with spherical symmetries. In [3 — 5] and [15] only local (in time) existence and
uniqueness results were established, while in the more recent papers [1, 2] global
results were obtained.
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In this paper we generalize the global existence and uniqueness results of
[1, 2] from cylinders to more general domains, which however are smooth.
Namely, we consider the problem of identifying a space- and time-dependent
kernel in a parabolic integro-differential equation in a barrelled C*-domain (cf.
Definition (2.1) and Condition (2.3)). The C%-smoothness enables to use proper
semigroups.

In Section 2 we formulate the parabolic identification problem. In Sections 3
and 4 we transform it into a form admitting an abstract formulation, which is
given in Section 5. Sections 6 and 7 contain auxiliary results. The main solv-
ability results for the abstract problem and the parabolic identification problem
are contained in Section 8.

Proving the main results we use the contraction argument in spaces of
Hélder-continuous abstract functions C%, 3 > 0, endowed with norms with
exponential weights. This technique, due to Janno and Wolfersdorf [9, 10], was
so far used in LP- and C-spaces. The extension to C? is not straightforward,
requiring additional operations with C*', 3’ € (0, 3). We have to deal with the
Holder-continuity because of certain semigroup properties.

2. Formulation of the problem

Let © be a 3-dimensional bounded connected open set with a C2-boundary,
admitting the following representation:

0 = {x: (z,y) e R® : |2/| <p(|§—:|,y), y € [O,l]}, (2.1)

where [ > 0 and p € C(O x [0,1]) N C*(O x (0,1)) and —x9D,,p + 21Dyyp €
C(O x [0,1]), where O is the 2-dimensional unit sphere. A further fundamental
requirement concerning p will be listed in the formula (3.1) below. We denote
by I' and I'; the boundary and the lateral surface of €2, respectively. Further,
let us assume that the (Lebesgue) measures of the sections

Qy) = {7 eR?: (¢',y) €Q}, yel0], (2.2)
of Q2 are bounded away from 0, i.e.,
m(Qy)) = m >0 Vy € 0,]. (2.3)

The open set © will be called a barrelled domain of class C?. Let I'(y) stand for
the boundary of Q(y), y € [0,1].

Let us pose the following inverse problem: given a : [0,{] — R, f :[0,7] x
Q>R u : Q2 =R ur:[0,7T] xQ — R, g : [0,7] x[0,]] - R and
go: 10, T] =R, find h:[0,T] x [0,]] > Rand u:[0,T] x 2 — R such that
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Dyu(t,z) — div(a(y)Vu(t,z)) — /0 div(h(t — s,y)Vu(s,z))ds = f(t,z)

(2.4)

tel0,T], = (a',y) € Q,
u(0,z) =up(x), x€ (2.5)
u(t,z) = ur(t,z), tel0,T], zel (2.6)
Ofu(t,)(y) = ai(t,y),  t€[0,T], y€[0,]] (2.7)
Ylu(t,-)] = go(t),  t€[0,T], (2.8)

where

and w : Q@ - R, A\, : © — R being given weight functions. Equation (2.4)
describes the heat flow in domain €2 filled by material with memory, which is
inhomogeneous in y-direction, and u stands for the temperature.

Introducing the new unknowns
U =u— ur, (2.10)

we transform problem (2.3) — (2.7) into the following one involving a homoge-
neous boundary condition:

Dyt z) — div(a(y)Va(t, z))

_/0 div(h(t — s,y)V(@l(s, 7) + ur(s,2))) ds = f(t, ), (2.11)
tel0,T], z=(2',y) €,

u(0,x) =up(x), x€ (2.12)
u(t,z) =0, tel0,T],zel (2.13)
®lu(t,)|(y) =gt y), t€[0,T], yel0,] (2.14)
Wlu(t, )] = go(t), tel0,7], (2.15)
where
f(t,x) = f(t,x) — Dyur(t, z) + div(a(y)Vur(t, z)) (2.16)
Uop(z) = uo(z) — ur(0, x) (2.17)
91(t,y) = g1t y) — @ur(t, )] (y) (2.18)
o(t) = go(t) — ¥[ur(t, )] (2.19)
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3. An equivalent differentiated problem

Let us define the linear differential operators A = div(a(-)V) and B = A, and
the following Banach spaces endowed with usual norms:

X=0Q), Xo=D(A) = {w e \W*?(Q): Aw € X, wlr = o}

Y:C([Oal])a Y :Cl([(),l]), Yy :OZ([()?l])'

In this and next section we will transform problem (2.11) — (2.15) into a form
which is suitable for an abstract formulation. To this end we have to impose
certain basic assumptions on the data a, A, u, ur, f, up, g1 and go, where f, ug, g
and go are defined via f,ug,ur,g; and go by means of the formulas (2.16) —
(2.19). More exactly, let us assume, for some 3 € (0,1), that
a € C*([0,1)), aly) = ap > 0, A € C*(Q), AD,p € C(I) (3
p € WHHQ) | up € CH[0,T); C*(2)), Ty € X (3.
Aty + f(0,) € X, | € C([0,T]; X) (3
Gi € CH(0,T];Y) N CY2([0, T) Ya) , o € C24([0, 1), 3

where I'; denotes the lateral surface of 2. Further, let us introduce the following
functions depending on the data:

vo(x) = Atp(z) + £(0,2), P1(x) = Aug(x), Yo(z) = Dyuo(z) (3.5)
b(t,x) = ADyur(t,x), g(t,x) = D, f(t, x) (3.6)
0(t,y) = Dygi(t,y) + @[Dyur(t, -)](y) (3.7)
¢ (t,y) = Dygi(t,y) + @[Aur(t, -)](y) (3.8)
A = D) = Dyfalw) D)~ [ A@Ftna,  39)

- /F M2)p(x) Dyw(z) do(2) (3.11)

B /Q( ) [2Dy)‘(x)Dyw(x) + Dp(@w(””)} dx’,
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where n = (n1,n9,n3) is the outer normal on I'; do(z’) is the Lebesgue surface
measure on ['(y) and

plw) = p(9) Duo (7. 9){ o (Z7.9)" + o (E.0)

’ 2y -
[ xQD:Ljp( /|7 )+x1D:c2p(|i_/|7y):| }

Remark. In the case of a cylinder we have p = 0, so that the line integral
over I'(y) in (2.11) vanishes for any y € [0,{]. Consequently, we can say that
function p measures the deviation from a cylinder of our barrelled domain (2.

(3.12)

1
2

Proposition 3.1. Assume that the assumptions (3.1) — (3.4) and the following
consistency conditions hold:

90(0) = ¥[ug],91(0,y) = P[uo)(y), y € 10,]] (3.13)
Gi(t.0)=Gi(t1) =0, te 0,7 (3.14)
f1(0,y) — a(y)(Q2u0)(y) — a'(y)(Qito)(y) =0, y€[0,]] (3.15)

~

%@—1ﬁ@mmamumc+memm»V%mm:W[mn,@w>

where D,, denotes the normal derivative on I'. Then the following assertions
are valid:

(i) If (@, h) € {C*MP([0,T]; X) N C*8([0,T]; X2) } x CP([0,T); Y1) solves the
inverse problem (2.11) — (2.15), then (v, h), with v = Dyu, solves the
following problem:

Dyw(t, z) — Av(t, x)

:/0 Bt — 5,)(Bo(s,2) + b(s, ))ds

' (3.17)
—l—/o Dyh(t — s,y) (Dyv(s, x) + Dy Dyur (s, ZL’))dS + h(t,y)ur(z)
+ Dyh(t,y)a(z) + g(t,z), t€]0,T], x=(a',y) €Q
v(0,2) = vo(x), x€Q (3.18)
[(@10)(y) + 1(0,9)] Dyh(t,y) + [(Qato) (y) + ¢2(0, )] h(t, y)
== [ Dbt = ) (@, Do) + D) s
(3.19)

—/hWﬂwW%M&Nw+&M&M@+Dm@w

0

— a(y)(Q2u(t, ) (y) — d'(y)(Qv(t,)(y), y €[04, te[0,T],
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/Fh(t,y)u(a:)Dnuo(as) do — / h(t,y)Vu(z) - Vug(z)dx

Q

o / U h(t = 5,y)1(@) Dn(v(s, %) + Dsur(s, z)) do
_ /Qh(t — 8,y)Vu(x)-V(v(s, x)+Dsur(s,z)) dx] s (3.20)

- /Fa(y),u(x)Dnv(t,x) do + / a(y)Vu(x) - Vou(t,z) dz

Q
+35() = WD f(t,)], t€0,T]
where o is the Lebesque surface measure on I.

(ii) Conwersely, if (v,h) € {C5([0,T); X) N CA([0, T}; Xg)} X Cﬂg[o T); Y1)
solves problem (3.17) — (3.20), then (u, h) with u(t, z) T)+ J, v(s, z)ds
solves the identification problem (2.11) — (2.15).

Proof. (i): Differentiating the parabolic equation (2.11) with respect to ¢ and
using the definitions (3.5) and (3.6), we derive (3.17). Setting ¢t = 0 in (2.11),
we get the initial condition (3.18).

In order to derive equation (3.19) we first recall the identity (cf. (2.1))

2m e ,Y)
/ z(x dx—/ d9/  ayrdr.
Q(y)

Then we note that from such an identity, due to the homogeneous boundary
condition (2.13), the relation I'(y) C I' and the condition (2.14), we easily
deduce the equations

/ D,(N(z)u(t,z)) dz" = Dy/ Az)u(t,z)de’ = Dygi(t,y). (3.21)
Q(y) Q(y)
This implies
b, | [ awp,0@itn)ar| = DawDae). G2
Q(y)

Let us now differentiate the integral fQ(y) a(y)Dy(A(x)u(t, x)) dx’ with respect
to y, taking advantage of definition (2.2). Moreover, the definition (3.12) of 5
and the homogeneous boundary condition for u easily imply

D, {/Q(y) a(y)Dy(A(z)u(t, x)) d:):']
D,(\(z) ))dx'+

- / Diaw)D,
_ /Q ( )Dy(a(y)Dy()\( ))da' +

(Aw)u(t, z))do(y) (3.23)

bl

x)Dyu(t, x)do(y) .

bl

INe
o
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Comparing (3.22) and (3.23) we derive the formula

/ D, (a(y) D, (A(2)i(t, 2))) da’
0w (3.24)
=%@@Q@@M—A$ﬂ@%%@ﬁﬁ@@w@-

Next let us compute
®[div(a(-)Vu(t,-))](y)
_ / Ma)div(a(y)Va(t, z)) de’
Q(y)

= a(y)z |:/F(y))\( x)n; Dy u(t, x)do (' / Dy Nz) Dy u(t, ) da’ (3.25)

+ [ D,(a) Dyt 2)) ~20(0) D) D 2
Q(y)
+ (t, 2)Dy(a(y) DyA(z))] da’.

Using here (3.24) and the definitions (3.10) and (3.11) of operators @); and Qs,
we derive

o[div(aVau(t,-))] = Dy(aDygi(t, ")) + aQou(t,-) + a'Qiu(t, ). (3.26)
Analogously we derive the relation

O[div(h(t —s,-)Vuls, ))I(y) = Dy(h(t = s,y) Dyg1(s,y))
+ h(t = s,y)(Qa2uls, ) (y) (3.27)
+ Dyh(t — s,y)(Q1u(s, ) (y) -

Moreover, due to the condition (2.14) we have
[Dyu(t, -)|(y) = Dega(t,y) - (3.28)

Let us now apply operator ® to both sides in equation (2.11). In view of
(3.26) — (3.28) and definitions (3.7) — (3.9) of ¢, ¢2 and f;, we obtain

a(y)(QaA(t, () + (1) (@, )(y)
+ [ DA =5 [(@:(s, ) 0) + (s, ) s (329
+AMF&M@M&WMM@M%=mw%
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Differentiating this equation with respect to ¢, we derive equation (3.19).

In order to complete the proof of (i) we have to derive (3.20). To this end
we apply functional ¥ to the parabolic equation (2.11) and observe that

w[Dyat, )] = Golt). (3.30)

Hence, we get

/Fa(y),u(x)Dnﬂ(t, x)do — / a(y)Vu(x) - Vu(t,z) dx

Q

+/0 [/F h(t — s,y)u(x)Dy(u(s, x) + ur(s, x)) do (3.31)
—/Qh(t s ) V() - V(i(s, 2) + ur(s, 2)) de | ds = Go(8) — U[F(E, )]

Differentiating this relation we get (3.20).

(ii): Integrating both sides of equation (3.17) over (0,¢) and taking advan-
tage of definitions (3.5), (3.6) and of the initial condition (3.18) (cf. (3.5)), we
obtain equation (2.11) for u.

Further, integrating both sides of equation (3.20) over (0, ) and taking the
consistency condition (3.16) into account, we obtain relation (3.31). This, in
view of the equation (2.11) for u and the definition of ¥, can be transformed
into the relation D {W[u(t,-)]—go(t)} = 0. Due to the first consistency condition
in (3.13) we obtain equation (2.15).

It remains to show (2.14). To do this, we first integrate (3.19) over (0, ).
From the consistency condition (3.15) we easily deduce (3.29). Arguments sim-
ilar to those used at the beginning of the proof yield the relations aQ2u(t, -) +
ad@Qiu(t,-) = @[div(aVu(t,-))] — Dy(aD,®[u(t,-)]) and

h(t = s,y)(Q2u(s,-))(y) + Dyh(t —s,y)(Qru(s,-))(y)
= ®ldiv(h(t — s, )Vu(s,-)(y) = Dy(h(t —s,y)Dy®[u(s, )|(y)) -

Using these relations in (3.29) and definitions (3.7) — (3.9) as well as equation
(2.11) for u, we derive the following equation for z(¢,y) = ®[u(t, -)|(y) — g1 (¢, v):

Diz(t,y) — Dy(a(y)Dyz(t,y)) — /0 Dy(h(t —s,y)Dyz(s,y))ds =0 (3.32)

for t € [0,T], y € [0,1]. Due to the consistency conditions (3.13), (3.14) and
the homogeneous boundary condition for @, the solution z to equation (3.32)
satisfies homogeneous initial and boundary conditions. Hence, z = 0, which
implies (2.14). Proposition 3.1 is fully proved. O
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4. Diagonalization of the differentiated problem

The purpose of this section is to transform the subsystem (3.19), (3.20) into a
fixed-point form for the pair (m,n) defined by

m(t) = h(t,0), n(t,y) = Dyh(t,y), te0,7T],yel0]]. (4.1)

In order to perform such a transformation we need the following assumptions
(cf. relations (3.7), (3.10) (3.21) and (2.9), (2.17)):

|[(@1T0)(y) + @1 (0,9)| = >y>0, yel0,] (42)

/ Az) Dyuo(z) da’
Q(y)
and
do 3:/ 11(2) Dyug()e™ Jo #2)4 g —/V,u(:c) Vg (x)e™ Jo #&%de £ (4.3)
r Q
with g1, g2, Q1, Q2 defined by (3.7), (3.8), (3.10), (3.11) and

k(y) = ((Qa10)(y) + 12(0,9)) (Qiio) (y) + @1 (0,)) " . (4.4)

Remark. In (4.2) we implicitly make use of assumption (2.3). Indeed, if (2.3)
did not hold, we should deduce my(€2(0))m2(€2(1)) = 0 since © is a domain. Con-
sequently, from definitions (3.7) and (3.10) it would follow Qquo(j1) = ¢1(0, 51)
for some j € {0,1}, contradicting (4.2).

Remark. Because of assumption (3.1), the kernel A cannot be of the form
A(x) = A1(2")A2(y). Indeed, in this case we would have Ao Dyp € C([0,!]) which
would imply Ay(y) — 0 as y — kI, k = 0,1. Therefore, we would deduce
Jaw M@)Dyuo(x) da’ — 0 as y — ki, k = 0,1 contradicting (4.2).

From (4.1) we deduce the decomposition h(t,y) = m(t) + En(t,y) with

Fuly) = /O " w(z)dz (4.5)
Since assumption (4.2) holds, equation (3.19) writes as
n(t,y) + s(y)En(t, y)
= w0+ [ {5,005 )00)

+ Rafn(t —s,),7(s,)l(y) +m(t = s)[(Pro(s, ) (y) + pa(s, y)]}ds
+ (QBU(t7 ))(y) + f2(t7 y) , Y E [07 l]v te [O7T] )

(4.6)
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where k is defined by (4.4),

Ry[wy, we)(y) = —[(Q1o) (y) + ¢1(0, )]~

{0 () (Qru)(y) + Bon()(Quun)()} 7

and
r(t,y) = (Diqr(t, y), Diga(t, y)) (4.8)
(Prw)(y) = — [(@1T0)(y) + @1 (0,y)] " (Qaw)(y) (4.9)
pi(t,y) = — [(Q1tio)(y) + @1 (0,9)] ™' Diga(t,y) (4.10)
(Qzw)(y) = — [(Q1u0)(y) +q1 (0, )]_ {a(y)(Qow)(y)+d'(y)(Qrw)(y)} (4.11)
fa(t,y) = [(Q1to)(y) + q1(0,y)]” th1(t7y)‘ (4.12)

To solve equation (4.6) with respect to the left-hand side we note that,
for any n € C([0,]), the unique solution to the integral equation w(y) +

k(y)Ew(y) =n(y), y €[0,1] is
w(y) = Lin(y), Li=1-k()L, (4.13)

I being the identity operator and

Y "y
Ln(y) :/ e~ SRy () dz (4.14)

Moreover, w satisfies the relation Fw(y) = Ln(y), y € [0,{]. Consequently,
from (4.6) we get

n(t,y) = —Lik(y)m(t)

[ {Ralin(t = 5.9, 0(6.9000) + Raln(t = 5,975,910

(4.15)
it = )[(Pyu(s, ))(y) + pals, )] bds
+(Quu(t, )W) + fslty), ye0d],te[0,T],
and
En(t,y) = —Lﬁt(y)m(t)
[ { Rl = 5., 05,0+ Rl = 51,05 0) e

- m(t = s)[(Pyu(s, ))(y) + pa(s. )] pds
+ (QSU(tv ))(y) + f4(t7y) ) Yy € [07 l]? te [07 T] )
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where

Ry=IL1Ry, Po=LP, py=Lipr, Qui=1L1Qs, fs=1Lfs
(4.17)
Ry =LR,, P3=LP, p3=1Lp, Qs=LQs, fa=1Lfs.

Next let us deal with equation (3.20). Since h = m + En, we can rewrite
(3.20) in the form

L(m(t) + En(t,-))
= [ {8l 5005, 4 Bfnte = 5., ) (119

Fmlt = 5)[Pos, ) + ()] b s+ Qu(t, ) + f2(), 1 e[0T,

where
Lw = /Fu(x)Dnuo(x) w(y) do — /va(a:) -Vuo(z)w(y)de  (4.19)
RYwy, w,) = —/FEwl(y)u(x)anQ(x) do (4.20)
wr(t, z) = Dyurp(t, x) (4.21)

Plw = —/Fu(:c)an(:C) do + /Q Vu(z) - Vw(z)dx (4.22)
p(t) = —/F/ub(x)DnDtUr(t,%) do + /Qv,u(x) - VDur(t,z)dx  (4.23)

Y = — / a(y)p(z)Dyw(z) do + / a(y)Vu(z) - Vw(x)dx (4.24)
r Q
F(t) =G5 (t) — PIDf (L, )] (4.25)
Our next step consists in replacing the expression for En from (4.16) into the
left-hand side of (4.18) and express m in terms of integrals containing n,m,v.
To this end we use assumption (4.3). We note that

do = L(1 — Lkx(")). (4.26)

Hence, inserting (4.16) into the left-hand side of (4.18) and taking relation (4.26)
for dy into account, we arrive at the following equation, where t € [0, T7:

m(t) = /0 {Ro[n(t —5,-),0(s,)] + R[n(t —s,-),7(s,-)]

(4.27)
+mit = )[Pu(s, ) +p°(s)] fds + Q(t, ) + £,
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where
R°lwy, wo] = dy* { Ry [wi, wa] — LR3[wy, w(-) } (4.28)
Plw = dy' {P/w — L(Psw)(-)} (4.29)
p’(t) = dy* {p](t) — Lps(t,-)} (4.30)
Q°w = dy' {QYw — L(Qsw)(-) } (4.31)
o) =dg " {f7(t) = Lfa(t, )} - (4.32)

Finally, substituting m from (4.27) into the first addend in the right-hand
side of (4.15), we derive the equation for n:

) = [ {Rnt =500 000 + (R'ale = 55,9
ot =) [(Po(s,)(y) + p'(5,9)] Jds (4.33)

+(QM(t, )y + fi(ty), telo,T], yelo,],

where
R'[wy, wo](y) = Rafwr, ws](y) — R°[wi, wa] Lik(y) (4.34)
(PHw])(y) = (P2[w])(y) — PPw Lk(y) (4.35)
p'(t,y) = pa(t,y) — p°(t) Lik(y) (4.36)
(Q'[w)(y) = (Qu[w])(y) — Q"w Lix(y) (4.37)
Fity) = fs(t,y) — ft) Lar(y) .- (4.38)
The parabolic equation (3.17) can be rewritten in the form
Dw(t,x) — Av(t, x)
= [ {Rintt ~ 5., 065 (a) + (Falt = 5.) (5.
0 (4.39)
+ m(t — ) [(Bu(s, ) (x) + b(s, 2)] }ds
+m(t)r(x) + (Sn(t,))(x) +g(t,x), tel]0,T], ze,
where
Rlwy, we](x) = Ews (y)Bwa(x) + wi(y)Dyws(z) (4.40)
(Rw)(t,z) = Ew(y)b(t, z) + w(y) Dy Dsur(t, z) (4.41)
(Sw)(z) = Fw(y)r(x) + w(y)a(x) . (4.42)

Summing up, we have proved the following proposition, where the spaces X, Xy
and Y are defined at the beginning of Section 3.
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Proposition 4.1. Let assumptions (3.1) — (3.4) and (4.2), (4.3) be fulfilled.
Then the following assertions hold:

(i) If (v,h) € {CP([0,T]; X) N CP([0,T]; X2) } x CP([0,T); Y1) solves prob-
lem (3 17) — (3.20), then (v,m,n) with m(t) = h(t,0) and n(t,y) =
Dyh(t,y) solves problem (4.39), (3.18), (4.27), (4.33).

(i) Conversely, if (v,m,n) € {C*([0,T]; X) N CP([0,T]; X2)} x CP[0,T]x
C’ﬁ([O T] Y) Solves problem (4.39), (3.18), (4.27), (4.33), then (v, h) with
h(t,y )+ [) n(t, z)dz solves problem (3.17) — (3.20).

Let us introduce the following intermediate space between X and Xs: X; =
Cy™(Q2) = {w € C*(Q) : w|r = 0} where ¢ is some number from the interval
[O, 3)- Accordlng to the definitions of operators and functions introduced in
(4.20) — (4.25), (4.28) — (4.32), (4.40) — (4.42) and (3.5), (3.6), we immediately

deduce the following proposition.
Proposition 4.2. Let assumptions of Proposition 4.1 be fulfilled. Then:

R, R', RY are continuous bilinear operators such that

R:YxXo—X, R :YxXi—=Y R :YxX, —R (4.43)
B € L(Xy X), P1,Q" € L(X1;Y)

P°Q% € L(X;R), S € L(V;X) (4.44)
b e C([0,T); X), p* € C0,T], p' € C(0,T];Y)

g € C%([0,T]; X), f° € C¢?0,1], f' € C%(0,T];Y) (4.45)
vo € Xo and Y1 € X. (4.46)

5. Abstract formulation of the identification problem

Let X and A be a Banach space and a linear closed operator in X, respectively.
We define X, = D(A) and endow it with the graph-norm ||w|x, = ||w|x +
| Awl||x. We assume that

(i) there exists a 6 € (5, m) such that the resolvent set of A
contains 0 and the open sector 3y = {{ € C\ {0} : |arg&| < 0}

(ii) there exists an M > 0 such that [|[(A] — A)~!|zx) < M|A|™?
for any A € Xy.

(5.1)

Then (see [16]) operator A generates an analytic semigroup in X, {e!4}>o,
e’ = I, possibly discontinuous at ¢t = 0.

We will make use of the following interpolation spaces D 4(«, 00) related to
operator A:

Dy(a,0)={we X :n— HnlfaAe”Aw” € L*>(0,1)},
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where 0 < o < 1. In particular, Ds(0,00) = X and Da(l,00) = X,. The
spaces D4 (o, 00) for 0 < o < 1 are endowed with the norms ||w||p,(a,c) =
[wllx + supgep< Hnl_aAenAwa'

Let # and € be two given real numbers such that
0<pf<i, 0<e<i-g, (5.2)
and let
X1 = Du(5+e,0) . (5.3)

Moreover, assume that we are given a Banach space Y, the continuous bilinear
operators

R:YxXy,—X, R :YxX —Y, R :YxX —R, (5.4)
the linear operators
B € L(X; X), PLQ' € L(X;Y), P*,Q° € L(X;;R), Se€ L(Y;X), (5.5)
the functions
be C([0,T]; X), p’eC(o,T]), p'elC(0,T}Y)
geCO0.TLX), [ eCi,T) .ﬂe@%mﬂmy>} >0
and the elements
vg € Xo, Y € X. (5.7)

We can now formulate the following abstract problem: findv : [0,7] — X5,
m:[0,7] - Rand n:[0,T] — Y satisfying the equations

(1) — Av(t) = /0 {Rln(t — ).0(s)] + (Bnlt - 5))(s)
- m(t = )[Bu(s) + b(s)] pds + m()er + Sn(t) + g(t)
v(0) = vy (5.9)

t

m(t) = [ {Rinit = s).0(0)]+ Fnie = 5))

+mit = )[Pu(s) + p°(s)] fds + Qv () + °(¢)

(5.8)

(5.10)

t

n(t) = /0 [Rn(t — 5). o(s)] + (Bt — )(s)

(5.11)
+ m(t = $)[P'o(s) + p'(s)] fds + Q'o(t) + (1)



Parabolic Integro-Differential Identification Problem 117

We note that from (5.10), (5.11), in view of the initial condition (5.9), we get
the following explicit formulae for m(0) and n(0):

m(0) = Q% + f°(0), n(0) = Qv+ £1(0). (5.12)

Our aim is to transform system (5.8) — (5.11) into a fixed-point form. To this end
we need the following well-known theorem concerning parabolic equations [18].

Theorem 5.1. If ¢ € CP([0,T); X), vo € Xo and Avy + f(0) € D4(3,00)
then the Cauchy problem v'(t) — Av(t) = ¢(t), t € [0,T], v(0) = vy admits a
unique solution v in C*9([0,T]; X) N CA([0,T]; X3) represented by the formula
v(t) = fot et=94¢(s)ds + evg.  Moreover, if ¢(0) = 0, e x ¢ satisfies the
estimate

le" % pllosoyxa < Clidllesorix), (5.13)
the positive constant C' being independent of ¢.

In order to apply Theorem 5.1 to the Cauchy problem (5.8), (5.9) we have
to introduce the further assumption

Avg + g(0) + (Q"vo + f2(0)¥1 + S(Q'vo + f1(0)) € Da(B,00).  (5.14)
The relations (5.12) and (5.14) imply

Now we observe that, due to Theorem 5.1 and property (5.14), the Cauchy prob-
lem (5.8), (5.9) for (v,m,n) € {CP([0,T}; X) N C?([0,T]; X2)} x C?([0,T])
x C?([0,T);Y) is equivalent to the operator equation

v(t) = / e K v, m, n](s)ds + / e DA fim(s)ahy + Sn(s)} ds
0 0 (5.16)

+ /Ot e(t’S)Ag(s)ds + ey, te[0,T],
where
Ko, m, n)(t) = /0 t{R[n(t —8),0(s)] + (Bn(t = 5))(s) + m(t—s) [Bv(s) +b(s)]} ds.
Next we substitute the right-hand side in (5.16) for v into the terms Q% and

Qv of the equations (5.10) and (5.11), respectively. We obtain the fixed-point
equations

3
—~
~
SN—
I

Nv,m,n](t) +mi(t), te€l[0,T], (5.17)
N'v,m,n](t) +ni(t), tel0,T], (5.18)

3
—~

~
N—

Il
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where

N°w,m,n|(t) = K°[v,m,n](t) + Q° l/o e K v, m, n](s)ds

t (5.19)
+ /0 =4 L (s)ahy + Sn(s)} ds}
K®v,m,n](t) = /0 {R n(t —s),v(s)] + (R n(t —s))(s) (5.20)
+m(t —s) [P'v(s) + p°(s)] }ds
nh(w::<QOLZ:e@—ﬂAg@gds-+ aAva+f0@) (5.21)
N'v,m,n|(t) = K'[v,m,n](t) + Q* [/ e DK v, m, n)(s)ds
: 0 (5.22)
+ /0 e =4 Im(s)hy + Sn(s)} ds}
K [v,m,n|(t) = /0 {R n(t —s),v(s)] + (R n(t —s))(s) (529

+m@—s”P%@)+#@ﬂ}%
t
ni(t) = Q* [/ et g(s)ds + etAvo} + (). (5.24)
0
Finally, we substitute the right-hand sides in (5.17) and (5.18) into the term
fot et=94 Im(s)y, + Sn(s)} ds in equation (5.16). We derive the relation
v(t) = N[v,m,n|(t) + vi(t), te€]0,17], (5.25)
where
¢
Nlv,m,n](t) = / e K v, m,n](s) ds
0

t (5.26)
—l—/o eI IN v, m, n] ()1 + SN [v,m,n](s)] ds,

and
¢ ¢
v1(t) :/ e my (s + Sna(s)] ds —l—/ e =D g(s)ds + vy, (5.27)
0 0

Conversely, it is an easy task to show that any solution (v, m,n) to (5.17),
(5.18), (5.25), with the stated regularity, solves (5.8) — (5.11). Consequently,
we have proved the following proposition.

Proposition 5.2. Let the assumptions (5.1) — (5.7) and (5.14) be fulfilled.
Then system (5.8) — (5.11) for (v,m,n) € {C*#([0,T]; X) N C?([0,T]; X2) }
x CP([0,T]) x CP([0,T);Y) is equivalent to the system (5.17), (5.18), (5.25).
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6. Preliminary lemmas

Let us introduce some notation. With any Banach space Z we associate the
function Banach space C*([0,T7]; Z), 0< <1, normed by ||w||s0.2z = ||w|lo0.2+
wlsoze w € C3(0,T]: Z) where [wlooz = maozicr [w(®)]lz and [u]goz =
SUPg<r<per(t —7) P|lw(t) —w(7)||z. Moreover, we introduce in C?([0,T}]; Z) the
following weighted norm, equivalent to the previous one and depending on a
non-negative parameter v: [|wllg,,z = e wll 54, = [[wllo,,z + [w]g4,2z Where
[wllonz = e wlog 7+ lanz = el

In the sequel we will denote by C' any non-negative constant, which may
vary from line to line.

Lemma 6.1. Let 0 < 3 < 1 and let Z, Z1, Zy be three Banach spaces. Moreover,
let M be a continuous bilinear operator from Zy X Zs to C([0,T); Z). Then for
any wy € CP([0,T]; Z1), we € CP([0,T); Zs) the following estimates hold:

‘ < { (T +T') w5020, 2
B,v.Z

YL+ ) [l g,z [wllo0.0,2-
Proof. Using the simple relations fg ds < T and fot e ds <y L 0<t<T,
we eagsily obtain the estimate

f%AnMwurw»m@muw

(6.1)

| Mt = 5).watogas

t
<C [ eIt = 9)lze sl zads
0
; (6.2)
< Cllwrllon [ € ua(s)lz, ds
0

<C Z\|w1|!o,7,zl||wz|!o,7,z2
Y ||w1||0mzl||w2||0,0,z2-

Further, using the following relations, where 0 <7 <t <T and 0 < § < 1,

t
(t — T)ﬂ/ ds <T'°

t t B8 +oo 1-3 (6'3)
(t — 7_)—6/ e Vds < (t — T)—B (/ ds) (/ 6—7(1—6)1sd8) < C'yﬁ_l,
we easily get the estimate
t T
(t—71)" e_”’t/ Mwy(t — s),wy] ds — 6_77/ Mwy (T — s),ws(s)] ds
0 0 z

T

t
gmmﬂm&{u—ﬂ%/?ﬂww@w@w+/eﬂww@w@w}.
T 0
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This, in turn, implies

' T+T'08
/M[wl( . S),UJQ(S)]dS < C ; S + ) ||w1||ﬁv’Y7Z1||w2||0,%Z2 (64)
1) lwillsaz lwslloo,z-
0 B Z V(4 187,21 |W21l0,0,2,

The inequalities (6.2) and (6.4) yield (6.1). O

Lemma 6.2. Let Z be a Banach space and let w € C*([0,T];Z), 0 < a < 1.
Then

[w]laqy.z < C 1+ wlaoz - (6.5)
If, in addition w(0) = 0 and o’ € [0, ], then for any positive v

lwllar,z < CH* (L +77) [w]ao,z - (6.6)
Proof. Note that

|wl]lay.z < max He‘”tw(t)HZ + sup (t—7)¢ He‘”t[w(t) — w(T)]HZ

0<t<T 0<T<t<T

- 6.7
b oswp (=) || [ — e w(@)]),. (67)
0<7<t<T

Since 0 < 2 < 1 and (1—7) e~ —e] = 4(1—7) [Leds < O,
from (6.7) we immediately obtain ||w||a~,z < ||w]l0,0,z+[W]a02+CY*|wllo0,z <
C(1+v*)||w||a0.z. This proves (6.5).

Let now w(0) = 0. Then replacing a with o/ in (6.7), we derive

ooz < {7_a sup (e +’Ya/_a[ sup (¢ =€) e
0<(<+o0 0<E<C<+o00

+osup (=€) TVEN (et ) } }[w]a,o,z-

0<é<(<+o0

(6.8)

Here we have denoted 7 and ~t by & and (, respectively. Since (%e ¢ < C,
(=8 et < et <Cand ((— & " (et —e) = (-
(1—e (69 < C, from (6.8) we derive (6.6). O

Lemma 6.3. Let 0 < a < 1,0 < 3 < 1—« and let A satisfy property (5.1).
Then, for any f € C([0,T]; X) and v € [1,+00),

‘ / e("s)Af(s)ds

0
the positive constant C' being independent of .

<O+ (=D flloqx s (6.9)
B»V’DA(QVOO)
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Proof. First we recall that from the first part of the proof of Proposition 2.2.7
in [16], with § being replaced with «, we get the estimate

HthraAketAHE(X;DA(Q,OO)) < Ck(Oé) Vt € (0, +OO), ke N, (610)

since the semigroup {e}>¢ is uniformly bounded. Hence, we deduce the esti-
mates, for all t € (0, +00),

[tettA=7D) |l 2(x:Da(a00)) < Co

a)e (6.11)
||t1+a(A _ ,Y])et(A—’YI)||L(X;DA(a,OO)) < )

(6.12)

From the previous inequalities we easily deduce the following estimates, where
0<r<t<T:

t t
‘ / =AM e™0 f(5)ds < [flloqx / e £ D00 ds
0 0

D 4 (a,00
A(a,00) +oo o r—1)s (6.13)
<Clfllosx [ 57 07ds
0
=C(y =17 flloqx »
and
t T
‘/e(t_s)(A_'ﬂ)e_st(S)ds—/ e(T—S)(A—’ﬂ)e—’YSf(S)dS
o 0 D4 (a,00)
<||f||07x{ / e A e oods (6.14)

/ Het s)(A—~I) e(T_S)(A_’yI)Hﬁ(X;DA(Oé,OO))dS}
— )7 =) flloqx -

We have thus proved that etA*f € CA([0, T); Da(a, 00)) for any f€ CA([0,T]; X)
and estimate (6.8) holds. O

Lemma 6.4. Let 0 < 3 < 1 and A satisfy (5.1). Moreover, let f € CP([0,T]; X)
and f(0) =0. Then

/. et =94 f(5)ds
0

Proof. We have

’ /-e('_s)Af(s)ds
0

<C(1+97") [flsnx - (6.15)

+ ’A/e(_
0

B, X

ﬁ?’YaXQ

/.e('_s)Af(s)ds
0

. (6.16)
By7,X

S ‘
B}’Y?XQ
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For the first addend in the right-hand side of (6.16) we derive the estimate

‘/e('S)Af(s)ds
0 By X

t
/6 (ts)(tseWSf()
0

+ sup (t— 7')_’6{
0<r<t<T

t X (6.17)
/ e Vet e ) £t — 5)ds
N

Due to HetAHE(X) < C for 0 <t < T and the relations, for 7 < s < ¢,

X

+

/T e et eI f(t —5) — e T f (7 — 5)] ds
0

et = )| < (¢ = ) [l < (6= 1) [Flsx
He—'y(t—é’)f(t —5) —e T (1 —s) | < =7)[flprx

following from f € CP([0,T]; X) and f(0) = 0, from (6.17) we obtain

H / A f(s)ds
0

t
< C{Tﬁ max/ e~ 7=9) s
0

B X 0<t<T

t T
+ sup (Tﬁ/e_wsds +/ e_vsds)}[f]ﬁmx (6.18)
0<T<t<T T 0

< 07_1 [f]ﬁmX'

In order to estimate the second addend in (6.16) we will make use of the
following relation (see [5, Theorem 4.1 (ii)]):

A [ 94
H /Oe f(s)ds

where § and M are the constants in (5.1) and C is a positive function. Let
us denote A, = A —/[. It is easy to check that if A satisfies (5.1) with the
parameters 6 and M, then the operator A, for v > 0 satisfies (5.1) with the
parameters 6, = 6 and M; = M|cos(f — 5)]~'. Hence, using (6.19) we obtain

< C(B,0, T)M[flp0.x (6.19)

/6707X

H(A — 1) /0 et f(s)ds

H el S)A”e‘”f(s)ds

By, X 8,0,X

<03, 91, T)My[e™ flaox (6.20)
[flpAx -

Q
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Combining (6.20) with (6.19) we have

HA/. eI f(s5)ds

0

< Cflpax - (6.21)

Byv,X

Finally, from (6.16), (6.19) and (6.21) we derive the estimate (6.15). O

7. Estimates of basic operators

We start by proving the following lemma.

Lemma 7.1. Let assumptions (5.1) — (5.3), (5.5) — (5.7) and (5.14) hold. Then
the functions my, ny and vy defined by (5.21), (5.24) and (5.27), respectively, sat-
isfy my € CP[0,T], ny € C°([0,T);Y) and vy € CYA([0,T]; X)NCP([0, T); Xs).

Proof. First we prove m; € C?([0,T]), ny € C?([0,T];Y). Since, by assump-
tion, 0 € CA([0,7]), Q° € £(X,,B) and 1 € CA(0.7):Y), Q' € L(X1,Y), we
have to show that

/‘ et =g (s)ds + e vy € CP([0,T); X1) . (7.1)

Since g € C([0,T]; X) C C([0,T]; X), Lemma 6.3 with o = 1 + ¢ implies
Joet™4g(s)ds € CP([0,T); Da(3 +¢&,00)) = C?([0,T]; X;). To show (7.1) it
remains to prove the relation

ey € CP([0,T]; X1) . (7.2)

In view of the assumption vy € X, since 0 < B+ ¢ < %, we obtain

[edvlpox, = sup (t—7)77 sup nlfé’sAe”A (etA — eTA) UOH
0<r<t<T 0<n<1 X
t
= sup (t—71)77 sup 7755/ Ae2)A Ay dz
0<r<t<T 0<n<1 . .
t
< CllAulx sup (t=7) sup o} [ (+2) s
0<T<t<T 0<n<1 . (7.3)

t
< C sup (t—T)ﬂ/ PR

0<r<t<T
<CO(t—7)r0

< CT>75¢,

So, estimate (7.3) yields (7.2). Therefore, m; € C?([0,T]), ny € C?([0,T];Y).
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Next let us prove the assertion v; € C*2([0,T7]; X)NCP([0,T]; X2). Due to
the assumptions S € L(Y; X) and g € CP([0,T]; X) and the proved inclusions
my € CP([0,T]) and ny € CP([0,T];Y), the relation

my1Sny + g € CP([0,T]; X) (7.4)

holds. Further, relation (5.15) is implied by the assumption (5.14) and formulas
(5.12). Due to (5.14), (7.4) and Lemma 5.1 the function v; is a unique solution
in C*4([0,T]; X) N C8([0,T]; X3) to the Cauchy problem v/ (t) — Av,(t) =
m1<t>1/11 + Snl(t) + g(t), U(O) = Vp- ]

Let us now introduce the Banach spaces
U = {CMF([0,T]; X) N CP([0,T); X2) } x CP([0,T]) x CP([0,T];Y) (7.5)

depending on the pair of parameters (3,7) € (0,1) x (0, +00). We endow U?Y
with the weighted norm ||U||g, = ||v]|g~.x, + M grr+ 7] g4y, U = (v,m,n).
Moreover, let A stand for the space of non-negative functions w(y) continuous
on (1,00) and satisfying the condition w(y) — 0 as v — +o0.

Our next task consists in estimating the operators K, K° and K' defined
by (5.17), (5.20) and (5.23), respectively.

Lemma 7.2. Let assumptions (5.1) — (5.7), (5.14) hold. Then, for any triplet
U= (v,m,n), U= (vi,m,n1) and U = (0,m,n) in U, the following esti-
mates hold for any v > 1 and some wy,ws € A:

||K[U> m, n] H/@,%X + ”KO[U’ m, TL] ||B,%R + ||K1[U7 m, TL] HﬂmY

(7.6)
<ONU = U3, +wi(v) (IU = Uhllsy + 1),

1K [v,m, n] = K[0, 0, 7| 5.0.x + 1K [v,m,n] — K°[0, i, 71| 5.0,m
+ K o, m, 0] — KMo, 0,71 5,0,y (7.7)
< C{IU = Uillgy + IU = Uillpy + w2 () HIU = Ullg,s -

Proof. Note that
/0 Rln(t — s),v(s)]ds = / [Rl(n = m)(t = 5). (v —v1)(s)

+ R[(v —v1)(t —5),n1(s)] + R[(n — nq1)(t — s),v1(s)]
+ R[ny(t — s), Ul(s)]}ds ,

where R[wy, wy] = R[ws, w]. Observing that R is a continuous bilinear operator
from Y x X5 to X, from Lemma 6.1, estimate (6.5) in Lemma 6.2 with o = £,
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and the inequality 3 < % we obtain the following estimates for some w3 € A:

n(-—s),v(s)|ds

By X
< C{lln=nll gy llo—villon.xa
+97 A+ ) [lv= villsaxelnlooy 78
+ lln = malls lorllog, e + (L+ ) Imallsoxllorloo.x.] §
< CU = Uil +ws() (IU = sl +1)
Likewise, from (7.8) with v = r, we deduce the following estimate for some

wy € A:

<wy(y) (U = Urllgy +1) . (7.9)
By, X

| it = 9).1(9)

Analogously, for some ws € A, we derive the estimate

/Olm(-—s)(Bv(s) T b(s))ds

< CIU = U3, +ws(7)(IU = Un]lg, +1).

Byv,X

Taking advantage of this relation and (7.8) — (7.9) in (5.17), we obtain the
assertion (7.6) for K.

Consider now the identity
/0 {R[n(t — s),v(s)] = Rn(t — s),0(s)]} ds
= [ {0 =)t = ). (0 = )(s) + Rl =t = ), ()]

4 R[(7 — n1)(t — 8), (v —T)(s) + R[(v — t)(t — S),nl(s)]} ds

where R [wy, we] = R[ws, w;], again. Using Lemma 6.1, we obtain

-+ —s),v(s)] — R[n(- — s),0(s)] } ds

B, X
scﬂm—ﬁmmﬂw—mmm&
+7 1+ ) = Al loalloox, (7.10)
+[n = nllgay v = 0llos,x
+77 7 1+ ) - 5||ﬁ,v,Xz||”1||0,o,Y}

< C{IIU = Uillgs + 11T = Ullgy +ws(3) } 1U = Tl
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for some wg € A. Proceeding as above, we easily derive

H/’ n(t — 5),7(s)] + m(- — 5) [Bo(s) + b(s)]
Rt — s),7(s)] — (- — 5) [Ba(s)+b(s)]}ds - (7.11)

< C{IU = Uillgy + 1T = Usllgy +wr(n) } 1U = Tl

with some wy; € A. Estimates (7.10), (7.11), in view of (5.17), yield (7.7) for K.
The assertions (7.6), (7.7) for K° and K! are proved in a similar manner. [J

Finally, we derive estimates for the operators N°, N! and N defined by
(5.19), (5.19) and (5.26), respectively.

Lemma 7.3. Let assumptions (5.1) — (5.7), (5.14) hold. Then for any triplet
U= (v,m,n), U= (vi,mi,n1) and U = (0,m,n) in U?" the following esti-

mates hold for any v > 1 and some wg,wy € A:

IV [v,m, n]llg..x, + IN?[0,m, | + [N [v,m, 1]l

) (7.12)
< CO\U = Uil +ws() (IU = Uillgy +1)
IN [v,m,n] = N[, M, 7[|5,,x, + [|N°[v,m, n] = N[5, m, 7[| 5,1
[N v, m,n] — N2, m, 7|5,y (7.13)

< C{IU = Uillgy +11T = Ullgy + o) } 10 = Tl

Proof. First we deal with operator N° defined by (5.19). Observing that Q° €
L(X1,R), S € L(Y,X), X1 = Da(3 +¢,00) and ¢ < 1 — 3, by virtue of

2
Lemma 6.3 with a = % + ¢, Lemma 6.2 with a = 0 and Lemma 7.2, we obtain

the following estimates for any v > 0 and some wyg, w1 € A:

N[, 70, ]l < [0, ]
QN e mCy 2 (14772 4777
x LN, monlllax + (lm =l + lmaoom) 1lx
+ 192l (I = mallaay + Imallooy) }

< CIU = Ullz, +wioM(IU = Uillg +1)
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and

||N0|:/U7 m7 n] - NO[:J? m7ﬁ]||ﬁ>7)R
< HKO[Uamvn] - Ko[ijﬁvﬁ]l‘ﬁﬁﬂ
_1 _1_ _
Q) cximCy 2 (147727 +477)
< {1 K [v,m, n] = KT5, 7, ) 1a.x

+llm = mllgqmllvnllx + 1152l cvixlln = ﬁHmy}

< C{IU = Uillgs + 110 = Utllgy + i () }IU = Tlgy

Hence we have proved the estimates (7.12) and (7.13) for N°. The estimates
(7.12) and (7.13) for N! can be proved in a similar manner.

Next let us consider the operator N defined by (5.26). Since K[v, m,n](0)=0,
N°w,m,n](0) = 0 and N'[v,m,n](0) = 0 (see (5.17), (5.19), (5.22)), we can
make use of Lemma 6.4 and relations (7.11) for N and N to estimate the
operator N. We find the following estimates for any v > 1 and some wis € A:

IN[o,m,n)lls 5 < LK, m, 1]l 0,5 + N[, 61 L x
+11Sall e 1N o, m, )l gy |
< CU = Uill3,, +win(n) (IU = Uslls +1).

Thus we have proved (7.11). Estimate (7.12) for N can be proved similarly by
means of Lemma 6.4 using the estimates (7.12) for N° and N*. O

8. Main results

In this section we formulate and prove the main existence and uniqueness results
of the paper. Firstwe deal with the abstract identification problem (5.8) — (5.11).

Theorem 8.1. Let the assumptions (5.1) — (5.7), (5.14) hold. Then the abstract
problem (5.8) — (5.11) has a solution (v,m,n) in UP. The solution is unique

in U0 for any B' € (0, 3).

Proof. By Proposition 5.1 problem (5.8) — (5.11) is equivalent to system (5.17),
(5.18), (5.25), which we rewrite in the operator form U = F(U) where, as before,
U = (v,m,n) and F = (Fy, F5, F3) with Fy(U) = Nv,m,n] + vy, F5(U) =
N°v,m,n] +my, F3(U) = N'[v,m,n] + ny.
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Let us now define the following balls in U?7: B(8,v,r) = {U € U’ :
\U — Ullgy < 1}, where v > 1 and » > 0. By the definitions of F'(U), Uy,
B(3,v,r) and estimate (7.11) of Lemma 7.3 we deduce the estimate

IF(U) = Uillg, < Cr2 +3(7) (r+1) YU € B(B,7,7), (8.1)

for some positive constant C' and some function & € A.

Choose now r, = C~1. Since &(7) — 0 as 7 — 400, we can find, for any
r < ri, a number v, (r) > 1 such tlriat o(y) < % for all v > ~,(r). According
to this definition, the inequality C'r? + &(7) (r +1) < 7 holds for any r < rq
and v > 71 (r). Hence, by virtue of (8.1), we can conclude that

F(B(B,~,r)) C B(B,v,r) if r<ryandy > y(r). (8.2)

Further, by estimate (7.12) in Lemma 7.3 we get the estimate
|FU) = F(O)ll5y < C {2r + B}V = Ullay YU, U € B(3,7,7), (8:3)

for some positive constant C' and some function @ € A.

Define then 7, = (2C)~! and choose, for any r < 5, a number yy(r) > 1
such that @W(vy) < % for all ¥ > ~2(r). Thus, the inequality C'[2r +©(v)] < 1
holds for any r < ry and v > (). Consequently, from (8.3) it follows that

F' is a contraction mapping in B(8,v,r) if r <rqandy > y(r). (8.4)

Summing up, (8.2) and (8.4) imply that equation U = F(U) has a unique
solution in each ball B(3,~,r) such that r < r3 and v > ~3(r), where r3 =
min{ry,re} and y3(r) = max{vy1(r),72(r)}. Evidently r3 and w3 depend on g,
i.e., 73 = r3[0] and w(r) = w|[F](r). We have proved the existence of the solution
to (5.17), (5.18), (5.25) in UP".

Next we are going to show that the solution of system (5.17), (5.18), (5.25)
is unique in the space UsY = Uﬂ’e(o,ﬁ) U7 Suppose that system (5.17), (5;\18),
(5.25), or equivalently equation U = F(U), has two solutions U and U in U%".
Consequently, there exists a ' € (0,3) such that U, U € U7, Let us now
choose some (3" € (0,). Since (U — Uy)(0) = (U — U1)(0) = 0 (cf. system
(5.17), (5.18), (5.27) for U, U and formulas (5.19), (5.20), (5.22), (5.23) and
(5.26) for the operators entering this system), from estimate (6.6) in Lemma 6.2
we obtain the relations

U = Uillgry — 0, |U=Uillgry—0 as ~v— 4oc. (8.5)

We mention that the assumptions of Theorem 8.1 remain valid if we replace
with 3”. Hence the existence part of the proof also remains valid if we substitute
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B" for 3. The relations (8.5) imply that there exists o > ~3[3"](r3[3"]/2) such
that U,U € B(8",70,73[8"]/2). Asin the ball B(3",~o,73][("]/2) the uniqueness
has already been shown, we conclude that U = U.

In order to complete the proof it remains to show that the first component v
of the solution U = (v, m,n) belongs to C**#([0, T]; X). But this easily follows
because the right-hand side of the equation (5.25) belongs to C**4([0,77]; X)
for any (v, m,n) € UP7. O

Finally, let us return to our explicit identification problem (2.4) — (2.8) for
(u, h), which is equivalent to problem (2.11) — (2.15) for (u, h) with & = u — ur.
Due to Propositions 3.1, 4.1 and 4.2, problem (2.11) — (2.15) is a particular case
of the abstract problem (5.8) — (5.11), since conditions (5.1) — (5.7) are satisfied.
Consequently, applying Theorem 8.1, we obtain the following theorem.

Theorem 8.2. Let assumptions (3.1) — (3.4) with0 < f < 1 and (3.13) — (3.16),
(4.2), (4.3) be satisfied. Moreover, let the inclusion Avy + g(0,-) + (Q%vy +
F20) +S(Q'vg + £1(0,-)) € Da(B,00) hold, where the operator S is given by
(4.42), functions v, 1,19, g are defined by formulas (3.5), (3.6) and Q°, f° Q'
and f1 are defined by (4.31), (4.32), (4.37) and (4.38), respectively'. Then prob-
lem (2.4) — (2.8) has a solution (u, h) in the space Us x C?([0,T]; C[0,1]), where
Us = {u=ur +u : ue C*P0,T); X) N C*P([0,T]; Xa)}. The solution is
unique in the space Jge o 5 Us % C?([0,T); C*0,1)).
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