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Nonexistence of Solutions

to a Hyperbolic Equation with a

Time Fractional Damping

Mokhtar Kirane and Nasser-eddine Tatar

Abstract. We consider the nonlinear hyperbolic equation

utt −∆u+Dα
+u = h(t, x) |u|p

posed in Q := (0,∞) × R
N , where Dα

+u, 0 < α < 1 is a time fractional derivative,
with given initial position and velocity u(0, x) = u0(x) and ut(0, x) = u1(x). We find
the Fujita’s exponent which separates in terms of p, α and N, the case of global exis-
tence from the one of nonexistence of global solutions. Then, we establish sufficient
conditions on u1(x) and h(x, t) assuring non-existence of local solutions.
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1. Introduction

In this paper, we consider the equation

utt −∆u+Dα
+u = h(t, x) |u|p (WE)

posed in Q := (0,+∞)× R
N , subject to the initial conditions

u(0, x) = u0(x) and u(0, x) = u1(x), (1)

where ∆ = ∂21 + ...∂2N is the Laplacian in the space variable x and Dα
+ for

0 < α < 1 is the time fractional derivative defined by

(

Dα
+f
)

(t) =
1

Γ(1− α)

d

dt

∫ t

0

f(σ)

(t− σ)α
dσ.
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This fractional derivative is said to be left-handed. The right-handed fractional
derivative is defined by

(

Dα
−f
)

(t) =
−1

Γ(1− α)

d

dt

∫ ∞

t

f(σ)

(σ − t)α
dσ

(see [12] and [13] for more on fractional integrals and derivatives). In equation
(WE), the term Dα

+ represents an attenuation of fractional type (see [8, 14,
15, 16]). Before we discuss our results in detail, let us briefly dwell on some
literature related to the equation (WE).

In the case of purely fractional derivative time modelling, Seredynska and
Hanyga [14] considered the nonlinear equation

D2u+ γD1+ηu+ F (u) = 0,

where D1+η with 0 < η < 1 represents the (1 + η)-order fractional derivative in
the sense of Caputo [12], and γ is the thermo-viscous coefficient. This equation
serves as a model for the anomalous attenuation. Our equation can be viewed
as an infinite dimensional version of the equation above.

In one of our previous papers, some conditions were obtained for the oc-
currence of blowing-up of solutions to (WE), with h(t, x) ≡ 1, on a bounded
domain. More precisely, in [8], it is proved that the solution is unbounded and
grows up exponentially in the Lp-norm for sufficiently large initial data. This
paper has been followed by two others by Tatar [15, 16]. In [16], the set of
initial data has been considerably enlarged using a different argument based on
a new Lyapunov type functional. Then a blow up in finite time has been proved
using an argument similar to the one used in [8] but combined with a technique
due to Georgiev and Todorova [4] together with a suitably chosen functional.

Here, in the first part of the paper, we relax completely the conditions on the
data and prove a result of different flavor in the sense that a critical exponent
is found which separates the case of blow-up from the case of global existence;
the decisive point is then made according to the size of data in some functional
space. The method of proof we follow here has been already used in [7] (see
also [6]) to not only give a short proof of an important result in [17] but also to
answer positively an open question raised there concerning the equation (WE)
with a linear damping of the form ut (rather than a time fractional damping).
This method of proof appeared first in the book of J. L. Lions [9] for the heat
equation with polynomial nonlinearity and then in the paper of Baras and
Pierre [2] (see also [3]). It remained dormant till the series of very interesting
papers by Qi S. Zhang [18, 19] followed by a sizeable number of articles by
Mitidieri, Pohozaev, Kurta, Tesei, Laptev, Veron, Guedda and Kirane collected
in [10]. The method is rather simple and consists in a judicious choice of the
test function in the weak formulation of equation (WE) accompanied with a
scaled variables argument.
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The theorems we will present here are concerned with the non-existence of
solutions. In case of the existence of a local solution then our results would
mean that this solution must blow up in finite.

In the second part of the paper, we establish a sufficient condition on h(t, x)
and the initial data assuring non-existence of solutions for any time. Necessary
conditions are also established for the existence of global solutions. To this end,
we will adapt a method used in Baras and Kersner [1], originally established
for parabolic problems. In [1], the following problem has been considered:

{

ut −∆u = h(x)up, x ∈ R
N , t > 0

u(0, x) = u0(x) ≥ 0.
(PE)

It was shown that no local weak nonnegative solution to (PE) exists if the initial
data satisfies

lim
|x|→∞

u
p−1
0 h(x) = +∞,

and any possible local weak nonnegative solution blows-up at a finite time if

lim
|x|→∞

u
p−1
0 h(x) |x|2 = +∞.

Our plan for the rest of the paper is as follows: In the next section we prove
a first result on non-existence of solutions after some time T∗. Section 3 contains
the statements and proofs of other results on non-existence of local and global
solutions for the same problem but with a space dependent potential.

2. Non-existence of global solutions

The function h(t, x) is assumed to be nonnegative and satisfying h(tR2, xR) =
Rρh(t, x) for some ρ positive and R large. Let us make clear first what we mean
by a solution to problem (WE). QT here will denote the set QT := (0, T )×R

N

and L
p
loc(QT , h dt dx) will denote the space of all functions v : R

+ × R
N → R

such that
∫

K
|v|p h(t, x) dt dx <∞ for any compact K in R

+ × R
N .

Definition 2.1. The continuous function u ∈ L1loc(QT ) is a local weak solution

of the problem (WE) subject to the initial data (1) on (0, T ) (0 < T < +∞) if
u ∈ Lp

loc(QT , h dt dx) and is such that

∫

Q

h(t, x) |u|p ϕ+

∫

RN

u1(x)ϕ0(x) =

∫

Q

(

uϕtt − u∆ϕ+ uDα
−ϕ
)

(2)

holds for any ϕ ∈ C20 (QT ), ϕ ≥ 0, and satisfying ϕ = 0, ϕt = 0 at t = T and
ϕt = 0 at t = 0. Here we have set ϕ(0, x) =: ϕ0(x).
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Remark 2.2. We have the formula (integration by parts) (see [13, p. 46])
∫ b

a
f(x)(Dα

+g)(x) dx =
∫ b

a
g(x)(Dα

−f)(x) dx. In our case we extend u by 0 for t≤0.

Our first result reads

Theorem 2.3. Assume that
∫

RN u1(x) > 0, and 1 < p ≤ 1 + 2α+ρ
2+N−2α

. Then,

problem (WE)–(1) does not admit global non trivial solutions in time.

Proof. The proof is by contradiction. So, we assume that the solution is global.
Let ϕ0 ∈ C

2
0 (R), ϕ0 ≥ 0, ϕ0 decreasing and such that

ϕ0(y) =

{

1, if |y| ≤ 1

0, if |y| ≥ 2.

We choose ϕ(t, x) = ϕλ
0(ξ), where ξ = R−4(t2+|x|4), R is a positive real number,

λ is any real greater than p, and such that
∫

supp∆ϕ

|∆ϕ|q (hϕ)1−q +

∫

suppϕtt

|ϕtt|
q (hϕ)1−q +

∫

suppDα
−
ϕ

∣

∣Dα
−ϕ
∣

∣

q
(hϕ)1−q <∞

with p+ q = pq. Here and in the whole paper supp will stand for support. We
clearly have ϕt(0, x) = 0. This function ϕ will be taken as a test function in (2).
First, let us write

∫

Q

uϕtt =

∫

Q

u(hϕ)
1

p (hϕ)−
1

pϕtt.

As ϕ is of compact support, using Hölder’s inequality, we obtain

∫

Q

uϕtt ≤

(
∫

suppϕ

|u|p hϕ

)
1

p
(
∫

suppϕtt

(hϕ)−
q

p |ϕtt|
q

)
1

q

. (3)

We can appeal to the ε-Young inequality to get
∫

Q

uϕtt ≤ ε

∫

suppϕ

|u|p hϕ+ Cε

∫

suppϕtt

(hϕ)−
q

p |ϕtt|
q (4)

for some ε > 0. Likewise, we have the estimates

∫

Q

u∆ϕ ≤

(
∫

suppϕ

|u|p hϕ

)
1

p
(
∫

supp∆ϕ

(hϕ)−
q

p |∆ϕ|q
)

1

q

(5)

and

∫

Q

u∆ϕ ≤ ε

∫

suppϕ

|u|p hϕ+ Cε

∫

supp∆ϕ

(hϕ)−
q

p |∆ϕ|q . (6)
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The same is true for the third term in the right hand side of (2)

∫

Q

uDα
−ϕ ≤

(
∫

suppϕ

|u|p hϕ

)
1

p
(
∫

suppDα
−
ϕ

(hϕ)−
q

p

∣

∣Dα
−ϕ
∣

∣

q
)

1

q

(7)

and
∫

Q

uDα
−ϕ ≤ ε

∫

suppϕ

|u|p hϕ+ Cε

∫

suppDα
−
ϕ

(hϕ)−
q

p

∣

∣Dα
−ϕ
∣

∣

q
. (8)

Summing up, (4), (6) and (8), with ε small enough, we infer that
∫

Q

|u|p hϕ+

∫

RN

u1(x)ϕ0(x) ≤ C

∫

suppϕ

(hϕ)−
q

p

(

|ϕtt|
q + |∆ϕ|q +

∣

∣Dα
−ϕ
∣

∣

q)
(9)

for some positive constant C. From now on the constant C will denote a generic
positive constant. At this stage, we introduce the scaled variables t = τR2,
x = yR and set Ω := {(τ, y) ∈ R

+ × R
N ; τ 2 + |y|4 ≤ 2}. Therefore, writing

ϕ(t, x) = ϕ(τR2, yR) =: χ(τ, y), we have
∫

Ω

(hϕ)−
q

p |ϕtt|
q = R

2+N−4q− qρ

p

∫

Ω

h
− q

p |χττ |
q
χ
− q

p

∫

supp∆ϕ

(hϕ)−
q

p |∆ϕ|q = R
2+N−4q− qρ

p

∫

Ω

h
− q

p |∆χ|q χ− q

p

and
∫

suppDα
−
ϕ

(hϕ)−
q

p

∣

∣Dα
−ϕ
∣

∣

q
= R

2+N−2αq− qρ

p

∫

Ω

h
− q

p

∣

∣Dα
−χ
∣

∣

q
χ
− q

p .

So, we have
∫

|u|p hϕ+

∫

u1(x)ϕ0(x) ≤ C
{

R
2+N−4q− qρ

p +R
2+N−2αq− qρ

p

}

. (10)

Observe that we have chosen ϕ0 in such a way to have |χττ |
q and |∆χ|q at the

same magnitude in R. Now we impose the condition

1 < p ≤ 1 +
2α + ρ

2 +N − 2α
=: pα.

In the estimate (10), we have to distinguish two cases:

Either p < pα : In this case, passing to the limit as R → ∞ in (10) we
obtain

lim
R→∞

{
∫

|u|p hϕ+

∫

u1(x)ϕ0(x)

}

=

∫

h |u|p +

∫

u1(x) ≤ 0.
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This contradicts the requirement
∫

u1(x) > 0.

Or p = pα : In this case, we obtain from (10)
∫

h |u|p ϕ +
∫

u1ϕ0 ≤ C and
therefore

∫

h |u|p ϕ ≤ C. Letting R→∞, we obtain
∫

h |u|p ≤ C. So

lim
R→∞

∫

CR

|u|p hϕ = 0, (11)

where CR :=
{

(t, x) : R4 ≤ t2 + |x|4 ≤ 2R4
}

.

Using (2) and the estimates (3), (5) and (7), we may write

∫

|u|p hϕ+

∫

u1(x)ϕ0(x) ≤

(
∫

CR

|u|p hϕ

)
1

p
{(
∫

(hϕ)−
q

p |ϕtt|
q

)
1

q

+

(
∫

(hϕ)−
q

p |∆ϕ|q
)

1

q

+

(
∫

(hϕ)−
q

p

∣

∣Dα
−ϕ
∣

∣

q
)

1

q
}

.

(12)

Passing to the limit as R→∞ in (12) and taking into account (11), we obtain

lim
R→∞

{
∫

|u|p hϕ+

∫

u1(x)ϕ0(x)

}

= 0.

This is again in contradiction with
∫

u1 > 0. The proof is complete.

Remark 2.4. Observe that in the limiting case when α→ 1, the critical expo-
nent is pcwd = 1 + 2+ρ

N
. This is in agreement with the one found in [17] and [7].

Remark 2.5. Notice that the previous argument works perfectly as well for
the case 1 ≤ α < 2. In this case we use the definitions (see [14, p. 37])

(

Dα
+f
)

(t) =
1

Γ(n− α)

(

d

dt

)n ∫ t

0

f(σ)

(t− σ)α−n+1
dσ, n = [α] + 1

and

(

Dα
−f
)

(t) =
(−1)n

Γ(n− α)

(

d

dt

)n ∫ ∞

t

f(σ)

(σ − t)α−n+1
dσ, n = [α] + 1.

3. Necessary conditions for local and global solutions

In this section we assume that inf t∈R+ h(t, x) > 0.

Remark 3.1. From the formula (see [13, p. 36])

(

Dα
−f
)

(t) =
1

Γ(1− α)

[

f(T )

(T − t)α
−

∫ T

t

f
′

(σ)

(σ − t)α
dσ

]

,
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(for absolutely continuous functions) it is clear that if f(T ) = 0, then the right-
handed fractional derivative reduces to

(

Dα
−f
)

(t) =
−1

Γ(1− α)

∫ T

t

f
′

(σ)

(σ − t)α
dσ.

This is to be compared with the fractional derivative in the sense of Caputo.

Our first results in this section are the following

Theorem 3.2. Let u be a local solution to (WE)–(1) where T < +∞ and p > 1.
Then, there exist constants γ and L such that

lim inf
|x|→∞

u1(x)h
p

p−1 (t, x) ≤
1

q

(

4

p

)
q

p
(

γq

T 2q−1
+ LT (1−α)q

)

.

Proof. By the definition of a weak solution, for any ϕ ∈ C∞
0 (QT ), ϕ ≥ 0 such

that suppϕ ⊂
{

x ∈ R
N : |x| > R0 > 0

}

, we have

∫

RN

u1(x)ϕ0(x) +

∫

QT

h(t, x) |u|p ϕ ≤

∫

QT

(

|u| |ϕtt|+ |u| |∆ϕ|+ |u|
∣

∣Dα
−ϕ
∣

∣

)

. (13)

Using the ε-Young inequality ab ≤ εap + Cεb
q (with Cε = 1

q
(pε)−

q

p ) we can

estimate all three terms in the right hand side of (13). Indeed, writing |u| |ϕtt| =

|u| (ϕh)
1

p (ϕh)−
1

p |ϕtt| , we find for ε > 0

∫

QT

|u| |ϕtt| ≤ ε

∫

QT

|u|p hϕ+ Cε

∫

QT

|ϕtt|
q (ϕh)−

q

p , (14)

where q is always the conjugate exponent of p. Likewise, we obtain for the other
two terms

∫

QT

|u| |∆ϕ| ≤ ε

∫

QT

|u|p hϕ+ Cε

∫

QT

|∆ϕ|q (ϕh)−
q

p (15)

and

∫

QT

|u|
∣

∣Dα
−ϕ
∣

∣ ≤ ε

∫

QT

|u|p hϕ+ Cε

∫

QT

∣

∣Dα
−ϕ
∣

∣

q
(ϕh)−

q

p . (16)

Taking ε = 1
4
, we deduce from (14)–(16) and (13) that

J :=

∫

RN

u1(x)ϕ0(x) ≤ C1/4

∫

QT

(

|ϕtt|
q + |∆ϕ|q +

∣

∣Dα
−ϕ
∣

∣

q)
(ϕh)−

q

p , (17)
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with C1/4 =
1
q

(

4
p

)
q

p . At this stage, we make the choice

ϕ(t, x) := Φ
(

x
R

)

(

1− t2

T 2

)2q

where Φ ∈ C∞
0 (QT ), Φ ≥ 0, suppΦ ⊂ {x ∈ R

N : 1 < |x| < 2} and |∆Φ| ≤ kΦ.
It is clear that the requirements previously set for ϕ are satisfied (ϕ(T, x) ≡
ϕt(T, x) ≡ ϕt(0, x) ≡ 0). Next, we estimate the three terms in the right hand
side of (17). Let us make the change of variables t = τT and put γ = q(q − 1).
Using this and the assumptions on ϕ, we find,

∫

QT

|ϕtt|
q (ϕh)−

q

p ≤ γqT 1−2q
∫

Q1

h1−qΦ, (18)

and
∫

QT

|∆ϕ|q (ϕh)−
q

p ≤ kqR−2qT

∫

Q1

h1−qΦ. (19)

For the third term, it is easy to see that
∫

QT

∣

∣Dα
−ϕ
∣

∣

q
(ϕh)−

q

p =

∫

QT

h1−q
(

1− t2

T 2

)2q(1−q)

Φ

∣

∣

∣

∣

Dα
−

(

1− t2

T 2

)2q
∣

∣

∣

∣

q

. (20)

Now we compute the right-handed fractional derivative

Γ(1− α)Dα
−

(

1− t2

T 2

)2q

= −
d

dt

∫ T

t

(

1− σ2

T 2

)2q

(σ − t)α
dσ = −T−4q d

dt

∫ T

t

(T 2 − σ2)
2q

(σ − t)α
dσ.

Using the Euler’s change of variable y = σ−t
T−t

we see that 1 − y = T−σ
T−t

and

1− y2 = T 2−σ2

(T−t)2
− 2t 1−y

T−t
. Therefore

I :=

∫ T

t

(T 2 − σ2)
2q

(σ − t)α
dσ =

∫ 1

0

[

(1− y2) + 2t
1− y

T − t

]2q

(T − t)4q−α+1y−αdy

or

I = (T − t)4q−α+1

∫ 1

0

y−α(1− y)2q
[

(1 + y) +
2t

T − t

]2q

dy.

By the binomial formula we may write

I =
∑2q

l=0
22q−lC

2q
l t

2q−l(T − t)2q−α+l+1

∫ 1

0

y−α(1− y)2q(1 + y)ldy

where C2ql = 2q(2q−1)(2q−2)...(2q−l+1)
l!

. Using the formula

∫ 1

0

(1− τ)u−1τ v−1dτ =
Γ(u)Γ(v)

Γ(u+ v)
, u, v > 0
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we obtain

I =
∑2q

l=0
22q−lC

2q
l Mlt

2q−l(T − t)2q−α+l+1

where Ml :=
∑l

n=0C
l
n
Γ(2q+1)Γ(n−α+1)
Γ(2q−α+n+2)

. Hence

Dα
−

(

1− t2

T 2

)2q

=
−T−4q

Γ(1− α)

2q
∑

l=0

22q−lC
2q
l Mlt

2q−l−1(T− t)2q−α+l [(2q− l)T− (4q − α + 1)t ].

Substituting this expression in (20) we obtain that

∫

QT

∣

∣Dα
−ϕ
∣

∣

q
(ϕh)−

q

p

=
T 1−αq

Γ(1− α)

∫

Q1

h1−q
(

1− τ 2
)2q(1−q)

Φ

×

∣

∣

∣

∣

2q
∑

l=0

22q−lC
2q
l Mlτ

2q−l−1(1− τ)2q−α+l [(2q − l)− (4q − α + 1)τ ]

∣

∣

∣

∣

q

.

It is not difficult to see that, as l + 2− α > 0, we have the estimation
∫

QT

∣

∣Dα
−ϕ
∣

∣

q
(ϕh)−

q

p ≤ LT 1−αq

∫

Q1

h1−qΦ (21)

with L := 1
Γ(1−α)

[
∑2q

l=0 2
2q−lC

2q
l Ml(6q − l − α + 1)

]q
.

Now observing that

inf
|x|>R

(

u1(x)h
q−1
)

∫

RN

h1−qΦ ≤

∫

RN

u1(x)ϕ0(x) =

∫

RN

u1(x)Φ(x)

and gathering the relations (17)–(19) and (21), we infer that

inf
|x|>R

(

u1(x)h
q−1
)

∫

RN

h1−qΦ≤
[

γqT 1−2q+ kqR−2qT+LT 1−αq
]

C1/4

∫

Q1

h1−qΦ. (22)

Taking the supremum with respect to t of both sides of (22) and making use
of the assumption inf t∈R+ h(t, x) > 0, we can divide by

∫

RN (inft∈R+ h)1−q Φ > 0
(recall that 1− q < 0). Then, letting R→ +∞, we obtain

lim inf
|x|→∞

(

u1(x)h
q−1
)

≤

(

γq

T 2q−1
+ LT 1−αq

)

C1/4, (23)

which completes the proof.
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We can immediately deduce the following results.

Corollary 3.3. Let p > 1. Assume that

lim inf
|x|→∞

u1(x)h
p

p−1 (t, x) = +∞,

then problem (WE)–(1) has no weak local solution for any T > 0.

Corollary 3.4. Suppose that 1 < p < 1
1−α

and u1(x) ≥ 0. If (WE)–(1) admits

a global weak solution, then

lim inf
|x|→∞

[

u1(x)
(

inf
t∈R+

h(t, x)
)q−1

]

= 0.

Proof. Suppose that (WE)–(1) has a global weak solution and that

P := lim inf
|x|→∞

[

u1(x)
(

inf
t∈R+

h(t, x)
)q−1

]

> 0.

Then from (23), it appears that

T ≤ max

{

(

γq + L

P
C1/4

)
1

αq−1

,

(

γq + L

P
C1/4

)
1

2q−1

}

.

This is a contradiction.

The next theorem gives another necessary condition for existence of a global
weak solution. At the same time it provides (in case u1(x) ≥ 0) a sufficient
condition for blow up in finite time of any possible local solution.

Theorem 3.5. Suppose that 1 < p < 1
1−α

and u is a global weak solution to

(WE)–(1). Then, there exists a positive constant K such that

lim inf
|x|→∞

(

u1(x)h
q−1 |x|2

αq−1

α

)

≤ K.

Proof. As p < 1
1−α

, we have αq − 1 > 0 and then for T > 1 we may write

γqT 1−2q + kqR−2qT + LT 1−αq ≤
γq + L

T αq−1
+ kqR−2qT.

From (22) we see that

inf
|x|>R

(

u1(x)h
q−1
)

∫

RN

h1−qΦ ≤

(

γq + L

T αq−1
+ kqR−2qT

)

C1/4

∫

Q1

h1−qΦ. (24)
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Minimizing the left hand side expression in (24) with respect to T, we obtain

inf
|x|>R

(

u1(x)h
q−1
)

∫

RN

h1−qΦ ≤

(

kq +
γq + L

K1

)

C1/4K
1

αq

1 R−2αq−1

α

∫

Q1

h1−qΦ ,

where K1 := 1
kq
(αq − 1)(γq + L). Now, using the assumptions on Φ (namely,

R < |x| < 2R), we see that

inf
|x|>R

(

u1(x)h
q−1 |x|2

αq−1

α

)

∫

RN

h1−q |x|−2
αq−1

α Φ

≤

(

kq +
γq + L

K1

)

C1/42
−2αq−1

α K
1

αq

1

∫

Q1

h1−q |x|−2
αq−1

α Φ.

(25)

To conclude it suffices to take the sup with respect to t of both sides of (25)

and divide by
∫

RN [inft∈R+ h(t, x)]1−q |x|−2(αq−1)/α Φ.
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