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A Gauss–Bonnet Formula for Metrics

with Varying Signature

Michael Steller

Abstract. A Gauss–Bonnet formula for compact orientable connected Riemannian or
Lorentzian 2-manifolds is well-known. We investigate singular metrics on 2-manifolds
with varying signature. Such metrics are necessarily degenerate at some points of M

where most of the usual definitions for geometric quantities break down. We prove
that under some additional assumptions there is a Gauss–Bonnet formula for compact
orientable connected 2-manifolds with a singular metric. Some examples are given.
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1. Introduction

The Gauss–Bonnet theorem is one of the most important results in differential
geometry. The so-called global Gauss–Bonnet formula for a metric g on a
compact orientable connected surface M ,

∫

M

K dA = 2πχ(M), (1)

connects the integral of the intrinsic Gaussian curvature K with the Euler char-
acteristic χ(M) which is topological invariant. The history of such a formula
began with Gauss in [6] in a local version for geodesic triangles (where on
the left-hand side of (1) is additionally the sum of the three exterior angles of
the triangle, for details see Section 5). Later, Avez in [1] and Chern in [4]
independently obtained a global Gauss–Bonnet formula (1) for a compact ori-
entable connected semi-Riemannian manifold (for higher dimension, K dA is
substituted by an expression in the curvature form). In all of these cases the
signature of the metric is constant.
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steller@mathematik.uni-stuttgart.de
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The question is whether the Gauss–Bonnet formula (1) still holds, if the
metric g varies the signature on a connected 2-manifold. These metrics neces-
sarily degenerate at some points of the manifold. In order to make this more
precise, we define a singular metric g = 〈·, ·〉 on a 2-manifold M as a symmetric
2-tensor on the tangent bundle TM . The singular locus S(g) of g is defined to
be the points of M where g is degenerate (i.e., S(g) := {p ∈M | rank g < 2}).

In 1984, Pelletier in [9] found under some assumptions a global Gauss–
Bonnet formula for particular singular metrics on a 2-manifold. These singular
metrics degenerate only at distinct simply closed curves. Further assumptions
are made concerning the behaviour of the metric in the neighbourhood of the
singular locus.

The aim of this paper is to consider singular metrics where the singular locus
is the union of simply closed curves which only meet in pairs and transversally.
The main result of the present paper is the following theorem where the as-
sumptions will be explained in the sequel of this paper.

Theorem A. Let (M, g) be a compact orientable connected generic 2-manifold
without boundary. If the singular locus S(g) 6= ∅ is pseudo-geodesic and pseudo-
orthogonal, then the Gauss–Bonnet formula

∫

M

KdA = 2πχ(M)

holds, where K := λK is the Gaussian curvature-with-sign where λ(p) is −1 if
the signature of g is (0, 2) at p and 1 otherwise.

Theorem A is stated and proved as Theorem 2 in Section 6. In Section 2 we
introduce generic 2-manifolds which provides a sufficiently smooth transition
between parts of different signature. The pseudo-geodesics are an extension of
the concept of a geodesic to the singular case and will be discussed in Section 3.
In Section 4 we extend the concept of orthogonality to the singular locus. An
overview of local Gauss–Bonnet formulas is given in Section 5. Finally, in
Section 6 our main results are stated and proved. Futhermore, some examples
of generic 2-manifolds are given and counterexamples where the assertion of
Theorem A does not hold.

2. Generic singular metrics

Let us assume in the whole paper that M is a 2-manifold without boundary.
We define a singular metric g = 〈·, ·〉 on M as a symmetric 2-tensor on the
tangent bundle TM . The singular locus S(g) of g is defined to be the points of
M where g is degenerate (i.e., S(g) := {p ∈ M | rank g < 2}). We call (M, g)
a singular 2-manifold if M is a 2-manifold and g is a singular metric on M and
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we denote by N (p) := {X ∈ TpM | 〈X,Y 〉 = 0 for all Y ∈ TpM} the nullspace
of g in p. In this paper we assume sufficient regularity for the metric g. The
signature of such a singular metric can vary on the 2-manifold M . Generally,
the behaviour of a singular metric is vicious, for example, if g is a singular metric
with S(g) = M , no quantity of a Riemannian resp. Lorentzian manifold (like
Gaussian curvature, geodesic curvature, etc.) exists in the usually sense. For
obtaining a Gauss–Bonnet formula (1), the singular locus of g has necessarily to
be of measure zero (with respect to some Riemannian metric on M), otherwise
we can change the Euler characteristic on the right-hand side of (1) by gluing
a loop onto the singular locus without change the integral on the left-hand
side. Another problem is the integrability of the Gaussian curvature as an
improper integral which depends hardly on the transition between two parts
of different signature. Therefore, we study singular metrics having a sufficient
smooth transition between the parts of different signature.

Definition 1. Let (M, g) be a singular 2-manifold. Then (M, g) is called generic
if the following conditions hold:

G1: The singular locus S(g)is a union of simply closed smooth curves S0, . . . ,Sm
(m ≥ 0) which only can meet in pairs and transversally. The set of all
intersection points, denoted by I(g), of curves Si and Sj (i 6= j) are called
the intersection points and the curves Si are called the singular curves.

G2: The metric g induces on S(g)− I(g) a regular metric (i.e., dim N (p) = 1
for all p ∈ S(g)− I(g)).

G3: For all p ∈ S(g) − I(g) and for all vector field V with 0 6= Vp ∈ N (p) it
holds V 〈V, V 〉|p 6= 0.

G4: For all intersection points p ∈ I(g) the metric g vanishes (i.e., g|p = 0).
G5: For each simply closed curve γ in S(g) and for all intersection points p ∈

I(g) on γ it holds (γ̇ 〈γ̇, γ̇〉)p 6= 0.

Notice that the conditions G2−G5 are parameter independent. In local co-
ordinates around an intersection point they state that the determinant function
det gij of g is a Morse function. A real function f is called a Morse function if
all critical points p of f (i.e., grad f|p = 0) are non-degenerate (i.e., the Hessian
of f at p has maximal rank).

Pelletier has considered in [9] another type of generic metrics. His generic
metrics have no intersection points in the singular locus and the rank of the
metric is 1 on the singular locus. These singular metrics are much more special
and it is not obvious how to remove the intersection points. However, the
situation can be handled for a generic metric in our sense with intersection
points.
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Lemma 1. Let (M, g) be a generic 2-manifold, then the following holds:

(i) The distribution of the signature of g around a connected piece of S(g)−
I(g) is either

(0, 2) (1, 1)

(−)

or (2, 0) (1, 1)

(+)

where (+) (resp. (−)) means that the segment is spacelike (resp. timelike).
(ii) The distribution of the signature of g around an intersection point is the

following (up to rotations around the intersection point)

(0, 2)

(1, 1)

(1, 1)

(2, 0)

(−) (+)

(+)

(−)

Proof. (i) From G2 it follows that the connected piece of S(g) − I(g) is either
spacelike (+) or timelike (−). Therefore, both adjacent components ofM−S(g)
have a spacelike resp. timelike direction. Furthermore, G3 makes sure that we
have always a change of the signature.

(ii) From G2 and G5 it follows that a singular curve Si of S(g) changes
the type at an intersection point (from spacelike (+) to timelike (−) resp. vice
versa). By (i) the described distribution is the only possibility.

3. Pseudo-geodesics in the singular locus

For a singular 2-manifold (M, g) the Levi–Civita connection ∇ is well defined
only outside the singular locus. In order to obtain a kind of a connection in
every point of M , we define the Levi–Civita dual connection ¤XY (Z) (cf. [7]
and [9]) by the right-hand side of the Koszul formula

¤XY (Z) :=
1

2

(
X 〈Y, Z〉+ Y 〈X,Z〉 − Z 〈X,Y 〉

+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉
) (2)

for all vector fields X,Y, Z on M (notice that ¤XY (Z) is defined everywhere
on M). Outside the singular locus the Levi–Civita dual connection is nothing
but

¤XY (Z) = 〈∇XY, Z〉 (3)
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for all vector fields X,Y, Z. Therefore, in this setting the equation ∇γ̇ γ̇ = αγ̇
of an ordinary geodesic γ turns into the condition

¤XX(Z) = 0, (4)

whenever X is a vector field tangential to γ and Z is a vector field orthogonal
to γ where X and Z do not vanish on γ. Notice that (4) does not depend on
the choise of X and Z (i.e., if (4) holds for one then also for all such vector
fields). Furthermore, (4) is well defined even in the singular locus.

Definition 2. Let (M, g) be a generic 2-manifold. We call a curve γ a pseudo-
geodesic if ¤XX(Z) = 0 holds whenever X is a vector field tangential to γ
and Z is a vector field orthogonal to γ where X and Z do not vanish on γ.
The singular locus S(g) is called pseudo-geodesic if S(g)− I(g) consists only of
pseudo-geodesics.

Let (M, g) be a generic 2-manifold and let Si be a singular curve of S(g).
In local coordinates around a point p ∈ Si − I(g), the equality (4) leads to the
following. By G2 −G5, we can always choose a parametrization

φ1 : (−1, 1)2 −→ Up (5)

in a neighbourhood Up of p = φ1(0, 0) with coordinates (x, y) such that the
conditions

φ1((−1, 1)× {0}) ⊂ Si and φ1((−1, 1)2) ∩ S(g) = (−1, 1)× {0}

hold and g has the expression
( g11 0
0 g22

)
with

g11 6= 0 on (−1, 1)2 (6)

g22 = 0 for y = 0 (7)

g22 6= 0 for y 6= 0 (8)
∂
∂y
g22 6= 0 for y = 0. (9)

Writing ∂1 =
∂
∂x
and ∂2 =

∂
∂y
, in these coordinates the Levi–Civita connection

∇ is outside the singular locus (i.e., y 6= 0) nothing but

∇∂i∂j =
2∑

k=1

Γkij∂k

with the Christoffel symbols Γkij =
∑

m Γij,mg
mk where gmk := (grs)

−1. Writing

(ĝmk) := (det grs) · (gmk) and Γ̂kij :=
∑

m

Γij,mĝ
mk,
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we obtain a pseudo-connection ∇̂ defined on (−1, 1)2 with

∇∂i∂j =
1

det gij

2∑

k=1

Γ̂kij∂k

︸ ︷︷ ︸
=:∇̂∂i∂j

= (det gij)
−1 · ∇̂∂i∂j. (10)

The following lemma tells us how to extend the Levi–Civita connection ∇ to
(−1, 1)2 in this parametrization. It follows from the rule of Bernoulli–l’Hospital.

Lemma 2. Let f, h : (−1, 1)2 → R be two smooth functions. If {(x, y) |
f(x, y) = 0} = {(x, y) | h(x, y) = 0} = (−1, 1) × {0} and ∂

∂y
h(x, 0) 6= 0 for

all x, then F := f

h
is extendible to (−1, 1)2 with F (x, 0) = ∂f

∂y
/∂h
∂y
|(x,0).

Choosing h := det gij and f := Γ̂
k
ij and considering the fact that from (6)

and (9) follows

∂
∂y
h = ∂

∂y
(det gij) =

∂
∂y
g11 · g22 + ∂

∂y
g22 · g11 = ∂

∂y
g22 · g11 6= 0

for y = 0, all assumptions of Lemma 2 except the following are satisfied. The
leftover assumption is f = Γ̂kij = 0 for y = 0. By determining

∇̂∂1∂1 =
1

2

(
∂
∂x
g11 · g22 ∂1 − ∂

∂y
g11 · g11 ∂2

)
(11)

∇̂∂2∂1 = ∇̂∂1∂2 =
1

2

(
∂
∂y
g11 · g22 ∂1 + ∂

∂x
g22 · g11 ∂2

)
(12)

∇̂∂2∂2 =
1

2

(
− ∂

∂x
g22 · g22 ∂1 + ∂

∂y
g22 · g11 ∂2

)
, (13)

it turns out that in the singular locus (i.e., y = 0) we have

∇̂∂1∂1 = −
1

2

(
∂
∂y
g11 · g11 ∂2

)
(14)

∇̂∂2∂1 = ∇̂∂1∂2 = 0 (15)

∇̂∂2∂2 =
1

2

(
∂
∂y
g22 · g11 ∂2

)
6= 0 (16)

On the other hand, by (2) the pseudo-geodesic condition of the singular locus
is equivalent to

¤∂1∂1(∂2) = −
1

2
∂
∂y
g11 = 0 (17)

for y = 0. Combining Lemma 2 and (14)–(17) we obtain the following proposi-
tion.
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Proposition 1. Let (M, g) be a generic 2-manifold then the following conditions
are equivalent:

(i) S(g) is pseudo-geodesic.

(ii) In the parametrization (5), ∇∂i∂1 (i = 1, 2) is extendible to (−1, 1)2.
(iii) In the parametrization (5), ∂

∂y
g11 = 0 for y = 0.

Proof. (ii)⇔ (iii): As g11 6= 0 on (−1, 1)2, this follows from (14)–(15), (17) and
Lemma 2. (i) ⇔ (iii): This follows directly from (17).

Parameter independently, Proposition 1 (ii) states that the Levi–Civita con-
nection is local extendible to

∇′ : X(M)× X
>(M)→ X(M)

where X(M) is the set of all vector fields on M and X
>(M) is the set of all

vector fields on M which are tangential to Si. By Proposition 1 (iii) we have
a simple method to decide whether the singular locus is pseudo-geodesic or
not. Furthermore, Proposition 1 (iii) is also helpful for construction of generic
metrics with a pseudo-geodesic singular locus. In [10] the condition (ii) in
Proposition 1 is called auto-parallel. For further and general propositions we
refer to [7] and [10].

4. Pseudo-orthogonality of the singular locus

Let (M, g) be a generic 2-manifold. As the singular metric g is degenerate in
S(g), we are not able to measure angles in the usual way. In order to talk
about orthogonality of two singular curves Si and Sj at an intersection point
p ∈ Si ∩ Sj with respect to g, we make the following considerations.

Let Si be a singular curve of S(g). As the rank of g is equal to 1 on Si−I(g)
there exists a non-vanishing vector field N i on Si − I(g) with N i

p ∈ N (p) for
all p ∈ Si − I(g). By G2, N

i is not tangential to Si. If N
i is extendible in the

sense that there exists a non-vanishing vector field N
i
on Si with N

i ∈ RN i on
Si − I(g) then the extension N

i
at the intersection point can play the role of

an orthogonal direction of Si. More precisely, we can introduce the following
definition.

Definition 3. Let (M, g) be a generic 2-manifold. We call the singular locus
pseudo-orthogonal if for every intersection point p = Si ∩ Sj (i 6= j) of two
singular curves there exist around p non-vanishing vector fields N i on Si and
N j on Sj satisfying the following conditions

(i) N i resp. N j lies in the nullspace on Si resp. Sj.

(ii) It hold N i
p ∈ TpSj and N j

p ∈ TpSi.
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In local coordinates around an intersection point p of two singular curves
Si and Sj (i 6= j), we can express the conditions in Definition 3 in the following
way. There is always a parametrization

φ2(x, y) : (−1, 1)2 → Up ⊂M (18)

in a neighbourhood Up of an intersection point p = φ2(0, 0) with

φ2
(
(−1, 1)× {0}

)
= Si ∩ Up, φ2

(
{0} × (−1, 1)

)
= Sj ∩ Up

and Si ∪ Sj ⊃ S(g) ∩ Up.

As g11(x, 0) = 0 only if x = 0, and g22(0, y) = 0 only if y = 0, the vector
fields N i and N j in Definition 3 can be chosen as

N i
(x,0) :=

(
− g12
g11

, 1
)
|(x,0)

and N j

(0,y) :=
(
1,−g12

g22

)
|(0,y)

,

with x, y ∈ (−1, 1)\{0}. By G5 and the rule of Bernoulli–l’Hospital , for a
generic metric these two vector fields are always extendible to x, y ∈ (−1, 1)
with

N i
(0,0) :=

(
−

∂
∂x
g12

∂
∂x
g11 |(0,0)

, 1

)
and N j

(0,0) =


1,−

∂
∂y
g12

∂
∂y
g22

|(0,0)


 . (19)

In the sense of Definition 3, the singular locus S(g) is pseudo-orthogonal if
and only if the extension of N i in x = 0 resp. N j in y = 0 is

N i
(0,0) = (0, 1) resp. N j

(0,0) = (1, 0). (20)

This leads to the following proposition.

Proposition 2. Let (M, g) be a generic 2-manifold. Then the following condi-
tions are equivalent:

(i) The singular locus is pseudo-orthogonal.

(ii) At all intersection points p ∈ I(g) we have ∂
∂x
g12 =

∂
∂y
g12 = 0 in the

parametrization (18).

(iii) There exists a parametrization (18) which is orthogonal in the sense that

(gij) =

(
g11 0
0 g22

)

with consequently g11 · g22 = 0 if and only if x · y = 0.
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Proof. (i)⇔ (ii): This follows directly from (19) and (20). (iii)⇒ (ii) is obvious.
(i)⇒ (iii): By (20), in the parametrization (18), we can always find orthogonal
vector fields V 1, V 2 6= 0 on (−1, 1)2 with

V 1(x,0) = N i
(x,0), V

1
(0,y) ∈ TSj and V 2(0,y) = N j

(0,y), V
2
(x,0) ∈ TSi.

We obtain the desired parametrization (orthogonal coordinates) by repara-
metrizing so that the derivative of the coordinate lines point into the directions
of V 1 resp. V 2 and so that the x-axis and y-axis are preserved.

5. Local Gauss–Bonnet formulas and
the topological structure of Lorentzian parts

Let (M, g) be a compact orientable connected generic 2-manifold then M ′ :=
M − S(g) is a union of connected orientable open 2-manifolds {M1, . . . ,Mn},
each with constant signature (2,0), (1,1) or (0,2). If the metric g is Riemannian
onMi (i.e., with signature (2,0)), then there is the ordinary (exterior) angle, the
ordinary geodesic curvature κg and the ordinary Gaussian curvature K. Fur-
thermore, there holds the well-known local Gauss–Bonnet formula for a compact
oriented 2-manifold D ⊂Mi with a piecewise smooth boundary Γ

∫

D

KdA+

∫

Γ

κgds +
∑

i

αi = 2πχ(D), (21)

where the αi’s are the exterior angles at the non-smooth points of Γ and χ(D)
is the Euler characteristic of D.

In the case where g has the signature (0,2), the local Gauss–Bonnet for-
mula (21) holds for −g. By taking account of that Kg = −K−g and κg = −κ−g
(where K−g (resp. κ−g) is the Gaussian curvature (resp. geodesic curvature)
with respect to −g), formula (21) turns into

∫

D

−KgdA+

∫

Γ

−κgds+
∑

i

αi = 2πχ(D), (22)

where αi are the exterior angles in the Riemannian sense. Notice that the
sign in the first integral is the reason of the Gaussian curvature-with-sign in
Theorem A.

In the Lorentzian case (i.e., the metric g has signature (1,1)), there are
different local Gauss–Bonnet formulas. Birman and Nomizu (cf. [2]) appear
to be the first to consider a Lorentzian version of the classical local Gauss–
Bonnet theorem. They assumed that the boundary consists only of timelike
segments. Dzan (cf. [5]) proved a local Gauss–Bonnet formula for regions with
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either timelike or spacelike piecewise smooth boundary (using an imaginary
’geodesic curvature’ and a special kind of angle). Later, Law (cf. [8]) extended
this to a local Gauss–Bonnet formula for regions with piecewise smooth non-
null (i.e., timelike or spacelike) boundary. In this paper we will use the local
Gauss–Bonnet formula from Law. Before we introduce this local Gauss–Bonnet
formula we have to define the complex exterior angle of two non-lightlike vectors
in the tangent plane which Law (and Dzan) used.

Let h be a Lorentzian metric

h = dx21 − dx22,

on R
2 and {t,x} a basis defined by t := (1, 0)T and x := (0,−1)T. With respect

to this choice of {t,x}, the two null directions of g divide the tangent space R
2

into quadrants, each containing one component of S1,1 := {u | h(u, u) = ±1}.
If u, v ∈ S1,1 are lying in the same quadrant, then there is a unique defined
number α with u = L(α)v where

L(α) =

(
cosh α sinh α
sinh α cosh α

)

and cosh |α| = |h(u, v)|. If u, v ∈ S1,1 do not lie in the same quadrant, we have
to rotate them. Writing

C+ =

(
0 1
-1 0

)
and C− =

(
0 -1
1 0

)
,

there is a unique number α and a unique number n ∈ {0, 1, 2, 3} such that
u = L(α)Cn

+v = L(α)C4−n− v. (23)

Definition 4 ([8, Definition 3.7]). Let u and v be non-null unit vectors. With
the notations above, the oriented angle from v to u in the positive resp. negative
sense is defined by (v, u)+ := α + n(iπ

2
) resp. (v, u)− := α+ (4− n)(−iπ

2
).

Notice that if u and v are orthogonal, then the oriented angle is purely
imaginary. The imaginary part is then 0, π

2
, π, 3π

2
in the positive sense. In

this paper we only consider orthogonal unit vectors, so we refer for further
considerations to [5] and [8].

Theorem 1 ([8, Theorem 5.1]). Let g be a Lorentzian metric on a domain D
with a piecewise smooth boundary Γ consisting of a finite number of non-null
segments, then

∫

D

KdA+

∫

Γ

κgds+
∑

i

βi = ±2πi (24)

holds, where βi denotes the complex oriented exterior angle at the non-smooth
points of Γ.
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We only take an interest in the real part of (24). Therefore, we do not have
to regard the orientation of the exterior angles. If the boundary is orthogonal
at its non-smooth points then the exterior angle is purely imaginary. The real
part of the Gauss–Bonnet formula (24) turns into

∫

D

KdA+

∫

Γ

κgds = 0. (25)

Notice that in the real part of (24) resp. (25), the Euler characteristic χ(D) is
missing resp. zero, so that it is necessary to study the topological structure of
the connected components ofM−S(g) where g is Lorentzian (cf. Propositon 3).

In order to obtain a global Gauss–Bonnet formula for generic 2-manifolds
using these local Gauss–Bonnet formulas we need to approximate the singular
locus. For the simply closed singular curves Si of the singular locus we have
tubular neighbourhoods Ψi : Si × (−ε, ε) → M , which we can always find (for
example by taking a Riemannian metric on M). Notice that ε is fixed for every
curve Si. Next to an intersection point p ∈ Si ∩ Sj (i 6= j) the intersection
of the two tubular neighbourhoods Ψi and Ψj are not empty. Let the sin-
gular locus S(g) be pseudo-orthogonal then we obtain from Proposition 2(iii)
in a neighbourhood of any p ∈ I(g) orthogonal coordinates. By taking the
coordinate lines as segments of leaves we can always construct a tubular neigh-
bourhood Ψi of every Si with the property that two leaves Ψ

t
i := Ψi(Si × {t})

and Ψt
j := Ψj(Sj ×{t}) (i 6= j) can only meet orthogonally. Furthermore, if we

choose ε > 0 small enough these tubular neighbourhoods Ψi have non-lightlike
leaves outside the singular locus. This is possible because pieces of the curves Si
between two intersection points are non-lightlike (cf. G2). In this sense we call a
set Ψ = {Ψ0, . . . ,Ψm} of tubular neighbourhoods proper if the conditions above
are satisfied. This leads to the following proposition.

Proposition 3. Let (M, g) be a orientable generic 2-manifold with a pseudo-
orthogonal singular locus S(g) 6= ∅ and let Mi be a Lorentzian connected compo-
nent of M−S(g). Furthermore, let Ψ = {Ψ0, . . . ,Ψm} be a proper set of tubular
neighbourhoods then Mit := Mi −

⋃m

k=0Ψk(Sk × (−t, t)) is either a topological
disc with a boundary consisting of 4 segments which are orthogonal at the edges
or a topological cylinder with a boundary consisting of two simply closed curves.

Proof. Let us introduce the following notations:

e1, . . . , en : the non-smooth connected components of ∂Mit

f1, . . . , fk : the smooth connected components of ∂Mit

l : the number of loops inside Mit

Notice that the edges of ej are timelike and spacelike in alternating mane (cf.
Lemma 1). As g is Lorentzian onMi there exists a non-vanishing timelike vector
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Figure 1: The connected component ei of ∂Mit.

field ξ on Mi resp. Mit. We can assume that ξ is tangential to the edges of es
which are timelike and also tangential to fs where fs is timelike. By Lemma 1
and the existence of ξ, it follows that the non-smooth connected components es
of ∂Mit has the form

es = a1s b
1
s c
1
s d
1
s a
2
s b
2
s c
2
s d
2
s . . . a

ks
s bkss ckss dkss ,

where ajs and c
j
s are timelike and b

j
s and d

j
s are spacelike so that the behaviour

of ξ is given in Figure 1. Notice that the rotation of ξ along es follows from the
fact that Ψ is proper and Lemma 1 (ii).

Figure 2: The 2-manifold M1.

By gluing bjs and d
j
s together for every s and j like given in Figure 2 so



A Gauss–Bonnet Formula 155

that the direction of ξ is preserved, we obtain a orientable 2-manifold M1 with
smooth boundary consisting of simply closed smooth curves (1 ≤ s ≤ n)

a1s a
2
s . . . a

ks
s , c

1
s, . . . , c

ks
s , f1, f2, . . . , fk.

As the direction of ξ was preserved by the gluing, on M1 there exists a non-
vanishing vector field ξ1 so that ξ1 is tangential to a

1
s a
2
s . . . a

ks
s , c

1
s, . . . , c

ks
s ,

f1, f2, . . . , fk if they are timelike. The number H of connected components of
∂M1 is

H := k +
n∑

s=1

(ks + 1).

Let (M 1, ξ1) and (M 2,−ξ1) be two copies of M1 endowed with the vector
field ξ1 resp. −ξ1. We can now glue the same connected components of ∂M 1

resp. ∂M 2 together (cf. Figure 3) and we obtain a oriented compact 2-manifold
M2 without boundary. The number of loops in M2 is

2l +H − 1 = 2l + k +
n∑

s=1

(ks + 1)− 1.

Figure 3: The 2-manifold M2.

By adapting ξ1 onM1 and −ξ1 onM2, we obtain a non-vanishing vector field ξ3
on M2. As the torus is the only compact orientable connected 2-manifold ad-
mitting a non-vanishing vector field, M2 is a torus (i.e., there is only one loop).
It follows that the number of loops is equal to 1, i.e.,

2l + k +
n∑

s=1

(ks + 1)− 1 = 1.
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The only solutions are

l = 1, n = k = 0 ⇒ Mit is a torus and S(g) = ∅
l = 0, n = 0, k = 2 ⇒ Mit is topological a disc with a boundary

consisting of 4 segments which are orthogonal
at the edges

l = k = 0, n = k1 = 1 ⇒ Mit is topological a cylinder with a boundary
consisting of 2 simply closed

As S(g) 6= ∅, only the last two cases are possible.

Notice that byProposition 3 the Gauss–Bonnet formula (25) for the Lorentz-
ian part Mit turns into

∫

Mit

KdA+

∫

∂Mit

κgds = 2πχ(Mit)− wi

π

2
= 0, (26)

with the notations and the assumptions of Proposition 3, where wi is the number
of non-smooth points of ∂Mit.

6. A global Gauss–Bonnet formula

Let (M, g) be a compact orientable connected generic 2-manifold and let Ψ =
{Ψ0, . . . ,Ψm} be a proper set of tubular neighbourhoods. If the Gaussian cur-
vature is integrable on M (resp. on M − S(g)), then we can use the limits
(t → 0) of the local Gauss–Bonnet formulas in Section 5 applied to Mt :=
M − ⋃m

k=0Ψk(Sk × (−t, t)) to obtain a global Gauss–Bonnet formula. In this
sense the behaviour of the geodesic curvature of the boundary ∂Mt (resp. of
the leaves Ψt

i of the proper set of tubular neighbourhoods {Ψ0, . . . ,Ψm}) is
important and need a specification. As the set of tubular neighbourhoods is
proper, (the real part of) the exterior angle at the non-smooth points of ∂Mt is
constant. We can establish the following propositions.

Proposition 4. Let (M, g) be a compact orientable connected generic 2-mani-
fold with a pseudo-geodesic and pseudo-orthogonal singular locus S(g) 6= ∅ and
let Ψ = {Ψ0, . . . ,Ψm} be a proper set of tubular neighbourhoods. Then for every
leaf Ψt

i := Ψi(Si × {t}) of Ψi

lim
t→0

∫

Ψti

|κg| dσ = 0

holds, where κg denotes the geodesic curvature of Ψ
t
i.
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Proof. Let Si be a singular curve of S(g). We can assume that the transport of
an intersection point p ∈ Si ∩ Sj (i 6= j) via the tubular neighbourhood Ψi is
along Sj (i.e., Ψi(p, t) ∈ Sj for all t) and we can assume that t > 0.

Let c : [a, b]→ Si be the segment between two adjoined intersection points
(resp. if there is only one intersection point, c is the segment Si − I(g) and if
there isn’t any intersection on Si, c is the segment Si with an arbitrary point
of Si as start- and endpoint). Writing ct(k) := Ψi(c(k), t) as the transportation
of c, then the following holds for t > 0:

∫

ct

|kg| ds =
∫ b

a

∣∣¤c′t
c′t(N)

∣∣
√
|〈N,N〉|︸ ︷︷ ︸
=:F (k,t)

dk, (27)

where N 6= 0 is a vector field which is orthogonal to c′t and Np ∈ N (p) for
all p ∈ Si. As N 〈N,N〉 6= 0 on c0([a, b]) (cf. G3), it follows from the rule of
Bernoulli–l’Hospital that F is extendible to Ψi(c([a, b]) × [0, ε[). Furthermore,
as Si is pseudo-geodesic it follows that ¤c′t

c′t(N) = 0 for t = 0. This implies
that F (k, 0) = 0. Thus

lim
t→0

∫

ct

|kg| ds = lim
t→0

∫ b

a

F (k, t) dk =

∫ b

a

lim
t→0

F (k, t) dk =

∫ b

a

F (k, 0) dk = 0.

Proposition 5. Let (M, g) be a compact orientable generic 2-manifold with
a pseudo-orthogonal singular locus S(g) 6= ∅. Let Mi (i = 1, · · · , n) be the
connected components of M − S(g) and let Ψ = {Ψ0, . . . ,Ψm} be a proper set
of tube neighbourhoods. Writing Mit := Mi −

⋃m

k=0Ψk(Sk × (−t, t)), then the
following holds:

(i) Let wi be the number of non-smooth points of ∂Mit (t 6= 0), then for
1 ≤ j ≤ wi

∠
j
i := lim

t→0
αji =

{
0 : signature (1, 1)
π
2
: signature (2, 0) or (0, 2)

holds, where αji denotes the (real part of the) exterior angle of the j-th
non-smooth point of ∂Mit.

(ii) In the notation of (i) it holds

n∑

i=1

wi∑

j=1

∠
j
i = π |I(g)| ,

where |I(g)| denotes the number of intersection points.
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Proof. (i): As ψ is proper, all leaves of the tubular neighbourhoods of Ψ can only
meet orthogonally. Thus by the definition of the exterior angles in Section 5,
the real part of the exterior angle at a vertex of ∂Mit is either

π
2
(if g has the

signature (2,0) or (0,2)) or 0 (if g has the signature (1,1))

(ii): We have for every intersection point four non-smooth points of certain
∂Mit. We have only to count the angles for every intersection point with the
distribution in Lemma 1. Therefore, we obtain (0+ π

2
+0+ π

2
) |I(g)|= π |I(g)|.

Before we establish a global Gauss–Bonnet formula, we have to ensure the
integrability of the Gaussian curvature K on M − S(g). The following propo-
sition shows us that this is always satisfied.

Proposition 6. Let (M, g) be a orientable compact generic 2-manifold with a
pseudo-geodesic and pseudo-orthogonal singular locus S(g), then the Gaussian
curvature K is integrable on M (resp. on M − S(g)).

Proof. In orthogonal coordinates, the integrand of the total curvature is

K dA =
〈R(∂1, ∂2)∂1, ∂2〉

g11 · g22
√
εg11g22 dx dy, (28)

where ε is -1 if the signature is (1,1) and 1 otherwise, and R is the Riemannian
curvature tensor. As K is integrable on every closed connected subset of M−
S(g) we have to show that the Gaussian curvature is integrable around the
singular points. First, we consider an intersection point p ∈ I(g) and take the
parametrization (18) in orthogonal coordinate form (cf. Proposition 2 (iii)) so
that the distribution of the signature is equal to the figure given in Lemma 1 (ii).
As g is generic, we know that g11 = x · ϕ1(x, y) and g22 = y · ϕ2(x, y) with
ϕ1, ϕ2 > 0 (cf. G3 and G5). Calculating R1212 := 〈R(∂1, ∂2)∂1, ∂2〉, we obtain

4R1212 = −2x ∂2

∂2y
ϕ1 − 2y ∂2

∂2x
ϕ2 +

x
(
∂
∂y
ϕ1
)2

ϕ1
+

∂
∂x
ϕ2

x
y

+
1

ϕ1
∂
∂x
ϕ1

∂
∂x
ϕ2 +

y
(
∂
∂x
ϕ2
)2

ϕ2
+

∂
∂y
ϕ1

y
x+

1

ϕ2
∂
∂y
ϕ1

∂
∂y
ϕ2.

(29)

As the singular locus is pseudo-geodesic it follows that ∂
∂y
ϕ1 = 0 (resp.

∂
∂x
ϕ2 = 0)

for y = 0 (resp. x = 0). By Lemma 2 it follows that ∂
∂y
ϕ1/y and

∂
∂x
ϕ2/x are

extendible to (−1, 1)2. Therefore, by (29) it follows that R1212 is extendible to
(−1, 1)2. By (28) the Gaussian curvature is integrable on [− 1

2
, 1
2
]2 because

∫

[− 1
2
, 1
2
]2
|K| dA ≤

(
max
[− 1

2
, 1
2
]2

|R1212|√
ϕ1ϕ2

)∫

[− 1
2
, 1
2
]2

1√
|xy|

dx dy <∞.

The same arguments work for any p ∈ S(g)−I(g) with parametrization (5).
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We are now able to prove the validity of a global Gauss–Bonnet formula for
generic 2-manifolds as follows.

Theorem 2. Let (M, g) be a compact orientable connected generic 2-manifold
without boundary with a pseudo-geodesic and pseudo-orthogonal singular locus
S(g) 6= ∅. Let M1, . . . ,Mn be the connected components of M − S(g), then the
following holds:

(i) Let Ψ = {Ψ0, . . . ,Ψm} be a proper set of tubular neighbourhoods then for
every i = 1, . . . , n and t > 0

∫

Mi

λiKdA = 2πχ(Mit)− wi

π

2

holds, where λi is −1 if the signature of g is (0, 2) on Mi and 1 otherwise,
Mit is defined as in Proposition 5 and wi is the number of non-smooth
points of ∂Mit. Notice that χ(Mit) is constant.

(ii) The Gauss–Bonnet formula
∫

M

KdA = 2πχ(M)

holds,where K :=λiK is the Gaussian curvature-with-sign with λi from (i).

Notice that the statement of Theorem 2 generally does not hold if we omit
anyone of the assumptions. We give example for these cases (see Example 1
and Example 2).

Proof. (i): If g has the signature (2,0) or (0,2) on Mi, from Proposition 5 it
follows that the exterior angle are always π

2
. By (21) and (22) it follows

∫

Mit

λiKdA+

∫

∂Mit

λiκg dσ = 2πχ(Mit)− wi

π

2
. (30)

If g is Lorentzian on Mi, then (30) follows directly from (26). By taking the
limit (t → 0) of (30) and Proposition 4 we obtain the desired equality. Notice
that the right-hand side of (30) is constant for all t.

(ii): As all tubular neighbourhoods Ψi are strips, it follows that χ(Ψt) =
|I(g)| with Ψt :=

⋃m

k=0Ψk(Sk × [−t, t]) (t > 0). Thus
∫

M

KdA
Prop. 6
=

n∑

i=0

∫

Mi

KdA

(i)
=

n∑

i=0

(
2πχ(Mit)− wi

π

2

)

= 2π

( n∑

i=0

χ(Mit)− |I(g)|
)

= 2πχ(M)
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In the special case where S(g) does not have any intersection points, The-
orem 2 with comparable assumptions is already observed by Pelletier in [9].
The topological structure of the closure of each connected component of M −
S(g) where g induces a Lorentzian metric can only be a cylinder.

Theorem 3. Let (M, g) be a compact orientable connected generic 2-manifold
with a pseudo-geodesic singular locus S(g) 6= ∅ without any intersection points
(i.e., I(g) = ∅). Then the Gauss–Bonnet formula

∫

M

λKdA = 2πχ(M)

holds, where the factor λ(p) is −1 if the signature of g is (0, 2) at p and 1
otherwise.

We now give some examples of generic 2-manifolds. First, we will give a
simple example how to construct a generic 2-manifold with a pseudo-geodesic
and pseudo-orthogonal singular locus.

Example 1. Let h1 be the generic metric

ds2 = sin(kα)dα2 + sin(jβ)dβ2,

(k, j 6= 0 fixed) on the torus T = S1× S1. The singular locus S(h1) of h1 is the
union of circles where sin(kα) sin(jβ) = 0. The singular locus is pseudo-geodesic
because ∂

∂β
sin(kα) = ∂

∂α
sin(jβ) = 0 on S(h1) and obvious pseudo-orthogonal.

A second generic metric h2 is given by

ds2 = − cos(t)dt2 + dα2

on the cylinder C =] − 3
2
π, 3

2
π[×S1. The singular locus S(h2) is union of the

two circles {−π
2
} × S1 and {π

2
} × S1. S(h2) is also pseudo-geodesic because

∂
∂α
cos(t) = 0 on S(h2).
With these two generic metrics, we can construct a generic metric with a

pseudo-geodesic and pseudo-orthogonal singular locus on a compact orientable
connected 2-manifold with arbitrary Euler characteristic. First, we take the
generic 2-manifold (T, h1) (k, j 6= 0) and cutting out one disc from a connected
component of T − S(h1) where h1 is of signature (2,0) and one disc from a
connected component of T −S(h1) where h1 is of signature (0,2) (cf. Figure 4).
Now, taking the generic 2-manifold (C, h2) and gluing the curves c1 = {−54π}×
S1 and c2 = {54π} × S1 of the cylinder C into the holes of T (in the right way,
i.e, so that the orientation of T and C are preserved, cf. Figure 4). The result
is a compact orientable connected 2-manifold with a generic metric h. Notice
that the singular locus of h is still pseudo-geodesic and pseudo-orthogonal. If
we do this repeatedly, we obtain a 2-manifold of arbitrary Euler characteristic.
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Figure 4: The generic metrics h1 and h2.

The following example shows that the Theorem 2 becomes incorrect, if we
omit one of the assumptions.

Example 2. Let (C, h1) be the cylinder C = (−π
2
, 3π
2
) × S1 with the singular

metric h1

ds2 = − sin(t)dt2 + (2 + sin(t))dα2.

It holds S(h1) = {0} × S1 ∪ {π} × S1. This singular metric is generic, but
the singular locus isn’t pseudo-geodesic because ∂

∂t
(2 + sin(t)) = cos(t) 6= 0 on

S(h1). The Gaussian curvature on C ′ :=]0, π2 ]× S1 is

K =
sin(t)− cos2(t) + 2
2 sin2(t)(2 + sin(t))2

.

The Gaussian curvature is not integrable on C ′ because
∫

C′
K dA = lim

s↘0

∫

]s,π
2
]×S1

K dA

= lim
s↘0
2π

∫ π
2

s

K
√
sin(t)(2 + sin(t)) dt

= lim
s↘0
2π

∫ π
2

s

sin(t)− cos2(t) + 2
2 sin

3
2 (t)(2 + sin(t))

3
2

dt

= lim
s↘0
2π
−
√
2
√
4 + 2 sin(t) cos(t)

4
√
sin(t)(2 + sin(t))

∣∣∣∣∣

π
2

s

= −∞
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The autor was not able to find an example of a generic 2-manifold with a
pseudo-geodesic but not pseudo-orthogonal singular locus so that the Gauss–
Bonnet formula in Theorem 2 (ii) does not hold. However, it is obvious that
pseudo-orthogonal does not follow from pseudo-geodesic.
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