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Existence of Periodic Solutions of

a Class of Planar Systems

Xiaojing Yang

Abstract. In this paper, we consider the existence of periodic solutions for the fol-
lowing planar system:

Ju′ = ∇H(u) +G(u) + h(t) ,

where the function H(u) ∈ C3(R2\{0}, R) is positive for u 6= 0 and positively (q, p)-
quasi-homogeneous of quasi-degree pq, G : R

2 → R
2 is local Lipschitz and bounded,

h ∈ L∞(0, 2π) is 2π-periodic and J is the standard symplectic matrix.
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1. Introduction

We consider in this paper the existence of periodic solutions for the following
planar system

Ju′ = ∇H(u) +G(u) + h(t), (′= d/dt) (1)

where H(u) ∈ C3(R2\{0}, R) is positive for u 6= 0 and positively (q, p)-quasi-
homogeneous of quasi-degree pq, that is, for any u = (x, y)T∈ R

2, λ > 0,

H(λqx, λpy) = λpqH(x, y),

here p > 1 and q is the conjugate exponent of p, that is, 1
p
+ 1

q
= 1, the function

G : R
2 → R

2 is local Lipschitz and bounded, h = (h1, h2) ∈ L∞(0, 2π) is
2π-periodic and J =

(

0 −1
1 0

)

is the standard symplectic matrix.

If G ≡ 0, system (1) reduces to a Hamiltonian system

x′ =
∂H̄

∂y
, y′ = −

∂H̄

∂x
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with Hamiltonian function H̄ = H(u) + 〈h, u〉.

Under above conditions, it is easy to see that the origin is an isochronous
center for the autonomous system

Ju′ = ∇H(u) , (2)

that is, all solutions of (2) are periodic with the same minimal period, which
we denote by τ .

For example, let p > 1, 1
p
+ 1

q
= 1,

H(x, y) =
α(x+)p + β(x−)p

p
+
|y|q

q
, G ≡ 0, h(t) = (−f(t), 0)

with α > 0, β > 0 and satisfy

Dp

(

1

α
1

p

+
1

β
1

p

)

=
2

n
,

where the positive constant Dp > 0 will be given at the end of this paper (see
Example 1) . Then system (1) reduces to

x′ = φq(y), y′ = −αφp(x
+) + βφp(x

−) + f(t)

which is equivalent to the second order p-Laplacian

(φp(x
′))′ + αφp(x

+)− βφp(x
−) = f(t),

where φp(x) = |x|
p−2x, p > 1 is a constant and x+ = max{x, 0} is the positive

part of x, x− = max{−x, 0} is the negative part of x.

The existence of periodic solutions for second order differential equation

x′′ + f(x)x′ + g(x) = f(t)

has aroused the interests of many mathematicians (see, for example, the refer-
ences [1 – 8] and references therein). Recently, Capietto and Wang [3] studied
the following asymmetric nonlinear equation:

x′′ + f(x)x′ + ax+ − bx− + g(x) = p(t). (3)

Assume F (x) =
∫ x

0
f(s)ds and g(x) are bounded and p(t) is 2π-periodic and

continuous, a, b are positive constants satisfying the resonance condition
1√
a
+ 1√

b
= 2

n
. Let φ(t) be the solution of the initial value problem

x′′ + ax+ − bx− = 0, x(0) = 0, x′(0) = 1.
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Assume in addition that the limits limx→±∞ F (x)=F (±∞) and limx→±∞ g(x)=
g(±∞) exist. They showed that (3) has at least one 2π-periodic solution pro-
vided that either the function

Σ1(θ) =
n

π

[

g(+∞)

a
−
g(−∞)

b

]

−
1

2π

∫ 2π

0

p(t)φ(θ + t) dt

or the function

Σ2(θ) =
n

π
[F (+∞)− F (−∞)]−

1

2π

∫ 2π

0

p(t)φ′(θ + t) dt

is of constant sign.

More recently, Fonda [6] considered system (1) with p = q = 2, G ≡ 0. He
gave a general description of the dynamics of the solutions, for example, the
existence and multiplicity of 2π-periodic solutions, boundedness and unbound-
edness of solutions. In this paper, inspired by the works of Fonda, Capietto and
Wang, we shall consider the existence of a 2π-periodic solution of system (1).
The results of this paper generalize and refine some results of [3] and [6].

Let S(t) = (S1(t), S2(t)) be the solution of (2) satisfying H(S(t)) ≡ 1 for
all t ∈ R and has minimal positive period τ . In this paper, we denote by 〈a, b〉
the scalar product of vectors of a, b.

If we define 2π
n
-periodic functions λ1(θ) and µ0(θ) as

λ1(θ) =























1
q

(

∫ 2π

0
h2(t)S2(θ + t) dt+ nΦ1(θ)

)

, if p > 2

1
2

(

∫ 2π

0
〈h(t), S(θ + t)〉 dt+ nΦ2(θ)

)

, if p = 2

1
p

(

∫ 2π

0
h1(t)S1(θ + t) dt+ nΦ3(θ)

)

, if 1 < p < 2

(4)

and

µ0(θ) =























−1
p

(

∫ 2π

0
h2(t)S

′
2(θ + t) dt+ nΨ1(θ)

)

, if p > 2

−1
2

(

∫ 2π

0
〈h(t), S ′(θ + t)〉 dt+ nΨ2(θ)

)

, if p = 2

−1
q

(

∫ 2π

0
h1(t+ θ)S ′1(θ + t) dt+ nΨ3(θ)

)

, if 1 < p < 2,

(5)

where

Φ1(θ) = g2(+∞, +∞)

∫

I++

S2(θ + t) dt+ g2(+∞, −∞)

∫

I+−

S2(θ + t) dt

+ g2(−∞, +∞)

∫

I
−+

S2(θ + t) dt+ g2(−∞, −∞)

∫

I
−−

S2(θ + t) dt
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Φ2(θ) = g1(+∞, +∞)

∫

I++

S1(θ + t) dt+ g1(+∞, −∞)

∫

I+−

S1(θ + t) dt

+ g1(−∞, +∞)

∫

I
−+

S1(θ + t) dt+ g1(−∞, −∞)

∫

I
−−

S1(θ + t) dt

+ g2(+∞, +∞)

∫

I++

S2(θ + t) dt+ g2(+∞, −∞)

∫

I+−

S2(θ + t) dt

+ g2(−∞, +∞)

∫

I
−+

S2(θ + t) dt+ g2(−∞, −∞)

∫

I
−−

S2(θ + t) dt

Φ3(θ) = g1(+∞, +∞)

∫

I++

S1(θ + t) dt+ g1(+∞, −∞)

∫

I+−

S1(θ + t) dt

+ g1(−∞, +∞)

∫

I
−+

S1(θ + t) dt+ g1(−∞, −∞)

∫

I
−−

S1(θ + t) dt

and

Ψ1(θ) = −g2(+∞, +∞)

∫

I++

∂H

∂S1

(θ + t) dt− g2(+∞, −∞)

∫

I+−

∂H

∂S1

(θ + t) dt

− g2(−∞, +∞)

∫

I
−+

∂H

∂S1

(θ + t) dt− g2(−∞, −∞)

∫

I
−−

∂H

∂S1

(θ + t) dt

Ψ2(θ) = g1(+∞, +∞)

∫

I++

∂H

∂S2

(θ + t) dt+ g1(+∞, −∞)

∫

I+−

∂H

∂S2

(θ + t) dt

+ g1(−∞, +∞)

∫

I
−+

∂H

∂S2

(θ + t) dt+ g1(−∞, −∞)

∫

I
−−

∂H

∂S2

(θ + t) dt

− g2(+∞, +∞)

∫

I++

∂H

∂S1

(θ + t) dt− g2(+∞, −∞)

∫

I+−

∂H

∂S1

(θ + t) dt

− g2(−∞, +∞)

∫

I
−+

∂H

∂S1

(θ + t) dt− g2(−∞, −∞)

∫

I
−−

∂H

∂S1

(θ + t) dt

Ψ3(θ) = g1(+∞, +∞)

∫

I++

∂H

∂S2

(θ + t) dt+ g1(+∞, −∞)

∫

I+−

∂H

∂S2

(θ + t) dt

+ g1(−∞, +∞)

∫

I
−+

∂H

∂S2

(θ + t) dt+ g1(−∞, −∞)

∫

I
−−

∂H

∂S2

(θ + t) dt

with

I++ =
{

t ∈ [0, 2π
n
] : S1(θ + t) > 0, S2(θ + t) > 0

}

I+− =
{

t ∈ [0, 2π
n
] : S1(θ + t) > 0, S2(θ + t) < 0

}

I−+ =
{

t ∈ [0, 2π
n
] : S1(θ + t) < 0, S2(θ + t) > 0

}

I−− =
{

t ∈ [0, 2π
n
] : S1(θ + t) < 0, S2(θ + t) < 0

}

,

then we have the following result:
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Theorem 1. Assume 2π
τ

= n∈ N, H ∈ C3(R2, R), h = (h1, h2)∈ L∞(0, 2π),
G(u) = (g1(x, y), g2(x, y)) ∈ C(R2;R2) are local Lipschitz and bounded. More-
over, let the limits

lim
x,y→±∞

g1(x, y) = g1(±∞,±∞), lim
x,y→±∞

g2(x, y) = g2(±∞,±∞)

exist and assume that there exists a constant σ0 > 0 such that the following
limits hold:

lim
x,y→±∞

[gi(x, y)− gi(±∞,±∞)](x2 + y2)σ0 = 0, i = 1, 2.

Then system (1) has at least one 2π-periodic solution provided that the function
λ1(θ) or the function µ0(θ) is of constant sign.

If we define another two 2π-periodic functions λ1+σ(θ) and µ1(θ) as follows:

if p > 2, σ = p− 2,

λ1+σ(θ) =



























1
p

∫ 2π

0
h1(t)S1(θ + t) dt, 0 < σ < 1

1
p

∫ 2π

0
h1(t)S1(θ + t) dt

+cp
∫ 2π

0
h2(t)S

′
2(θ + t)

∫ t

0
h2(τ)S2(θ + τ) dτ dt,

σ = 1

cp
∫ 2π

0
h2(t)S

′
2(θ + t)

∫ t

0
h2(τ)S2(θ + τ) dτ dt, σ > 1

if p = 2,
λ1+σ(θ) = λ2(θ) = λ1(θ)λ

′
1(θ) ≡ 0 ∀ θ ∈ R,

µ1(θ) = −
1

4

∫ 2π

0

〈S ′′(θ + t), h(t)〉

∫ t

0

〈S(θ + τ), h(τ)〉 dτ dt

if 1 < p < 2, σ = 2−p

p−1
,

λ1+σ(θ) =



























1
q

∫ 2π

0
h2(t)S2(θ + t) dt, 0 < σ < 1

1
q

∫ 2π

0
h2(t)S2(θ + t) dt

+cq
∫ 2π

0
h1(t)S

′
1(θ + t)

∫ t

0
h1(τ)S1(θ + τ) dτ dt,

σ = 1

cq
∫ 2π

0
h1(t)S

′
1(θ + t)

∫ t

0
h1(τ)S1(θ + τ) dτ dt, σ > 1,

where cp = (p−2)(p−1)
p2 > 0 for p > 2 and cq = 2−p

p2 > 0 for 1 < p < 2, then we
have

Theorem 2. Let the conditions on H, h in Theorem 1 hold. Assume G(u) =
λ1(θ) ≡ 0, where λ1(θ) is given by (4) with Φi(θ) ≡ 0, i = 1, 2, 3. Then sys-
tem (1) has at least one 2π-periodic solution provided that the function λ1+σ(θ)
(for p > 1) or the function µ1(θ) (for p = 2) is of constant sign.
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2. Generalized polar coordinates transformation

Since H is positively (q, p)-quasi-homogeneous of quasi-degree pq, we have for
any λ > 0 and u = (x, y)T ∈ R

2,

H(λqx, λpy) = λpqH(x, y). (6)

Taking the derivative of both sides of (6) with respect to λ and then letting
λ = 1, we obtain the generalized Euler’s identity

1

p
x
∂H(x, y)

∂x
+

1

q
y
∂H(x, y)

∂y
= H(x, y). (7)

For r > 0, θ(mod 2π) ∈ R, we define the generalized polar coordinates
transformation P : (r, θ)→ u as

P : u = (x, y)T =
(

r
1

pS1(θ), r
1

qS2(θ)
)T

. (8)

Then the map P is a diffeomorphism from the half plane {r > 0} to R
2\{(0, 0)}

and is area-preserving: dx ∧ dy = −dr ∧ dθ, the functions r, θ are of C2 as far
as u(t) does not cross the origin. By assumption, for all r > 0,

H
(

r
1

pS1, r
1

qS2

)

= rH(S1, S2),

we get
∂H

∂x

∂x

∂S1

= r
∂H

∂S1

,
∂H

∂y

∂y

∂S2

= r
∂H

∂S2

,

which implies
∂H

∂x
= r1− 1

p

∂H

∂S1

,
∂H

∂y
= r1− 1

q

∂H

∂S2

.

This is equivalent to

∇H(u) =

(

r1− 1

p

∂H

∂S1

, r1− 1

q

∂H

∂S2

)

. (9)

Substituting (8) into (1) and using (9), we obtain

r′J
∂u

∂r
+ θ′J

∂u

∂θ
=

(

r1− 1

p

∂H

∂S1

, r1− 1

q

∂H

∂S2

)

+ (G+ h). (10)

By the generalized Euler’s identity (7) and by using 〈Ju, u〉 = 0 for any u ∈ R
2,

a scalar product in (10) with ∂u
∂r

yields

θ′
〈

J
∂u

∂θ
,
∂u

∂r

〉

=

(

1

p
S1
∂H

∂S1

+
1

q
S2
∂H

∂S2

)

+

〈

(G+ h) ,
∂u

∂r

〉

= 1 +

〈

(G+ h) ,
∂u

∂r

〉

.
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But it is not difficult to verify 〈J ∂u
∂θ
, ∂u

∂r
〉 = r

1

p
+ 1

q
−1 = 1, we get therefore

θ′ = 1 + 〈(G+ h) , ∂u
∂r
〉. Similarly, a scalar product of (10) with ∂u

∂θ
yields

r′ = −〈(G+ h) , ∂u
∂θ
〉. We get therefore

θ′ = 1 +

〈

(G+ h) ,
∂u

∂r

〉

, r′ = −

〈

(G+ h) ,
∂u

∂θ

〉

, (11)

where h = h(t) and u is given by (8).

Now we discuss (11) according to p > 2, p = 2 and 1 < p < 2, separately.

Let ρ = r
1

p for p > 2, then (11) is changed into the form

θ′ = 1 +

〈

G+ h,
1

p
ρ−(p−1)∂u

∂ρ

〉

, ρ′ = −

〈

G+ h,
1

p
ρ−(p−1)∂u

∂θ

〉

, (12)

where u = (ρS1(θ), ρ
p−1S2(θ)). Similarly, we let ρ = r

1

2 for p = 2 and ρ = r
1

q

for 1 < p < 2, we can obtain similar forms of above approximation. For ρ0 À 1,
by the boundedness of S, S ′, G and h, for any t ∈ [0, 2π], we obtain

ρ(t) = ρ0 +O(1), ρ−1(t) = ρ−1
0 +O(ρ−2

0 ), θ(t) = θ0 + t+O(ρ−1
0 ), (13)

where by O(1) we mean a function a(ρ, t) which is bounded uniformly in (ρ, t)
for ρ > 0, t ∈ [0, 2π] and by O(ρ−k) we mean a function b(ρ, t) such that
‖ρkb(ρ, t)‖ is bounded for ρ > 0, t ∈ [0, 2π] and k > 0.

Substituting (13) in to (12) and integrating over [0, 2π] with respect to t,
we get, by analyzing the cases p > 2, p = 2 and 1 < p < 2 separately, the
following asymptotic expression:

θ1 = θ0 + 2π + λ1(θ0)ρ
−1
0 + o(ρ−1

0 ), ρ1 = ρ0 + µ0(θ0) + o(1), (14)

where by o(1) we mean a function A(ρ, θ) which is 2π-periodic in θ and satisfies
limρ→+∞A(ρ, θ) = 0 uniformly for θ ∈ R, and by o(ρ−k) we mean a function
B(ρ, θ) which is 2π-periodic in θ and satisfies limρ→+∞ ρkB(ρ, θ) = 0 uniformly
in θ ∈ R for k > 0. λ1(θ) and µ0(θ) are given in (4) and (5) respectively.

In case G ≡ 0, substituting (13) in to (12) and integrating over [0, t] ⊂
[0, 2π] with respect to t, we get

θ(t) = θ0 + t+ λ1(θ0, t)ρ
−1
0 + o(ρ−1

0 )

ρ(t) = ρ0 + µ0(θ0, t) + o(1)

ρ−1(t) = ρ−1
0 − µ0(θ0, t)ρ

−2
0 + o(ρ−2

0 ),

(15)
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where

λ1(θ, t) =















1
q

∫ t

0
h2(τ)S2(θ + τ) dτ, if p > 2

1
2

∫ t

0
〈h(τ), S(θ + τ)〉 dτ, if p = 2

1
p

∫ t

0
h1(τ)S1(θ + τ) dτ, if 1 < p < 2

(16)

µ0(θ, t) =















−1
p

∫ t

0
h2(τ)S

′
2(θ + τ) dτ, if p > 2

−1
2

∫ t

0
〈h(τ), S ′(θ + τ)〉 dτ, if p = 2

−1
q

∫ t

0
h1(τ)S

′
1(θ + τ) dτ, if 1 < p < 2 .

(17)

Substituting (15)–(17) in to (12) and integrating over [0, 2π] with respect to t,
under the assumption λ1(θ) ≡ 0, after some elementary calculations we get
µ0(θ) = λ′1(θ) ≡ 0 and

θ1 = θ0 + 2π + λ1+σ(θ0)ρ
−(1+σ)
0 + o

(

ρ
−(1+σ)
0

)

ρ1 = ρ0 + µσ(θ0)ρ
−σ
0 + o(ρ−σ

0 ),
(18)

where λ1+σ(θ) is given in Theorem 2. Moreover, we have the following relations:

λ2(θ) = λ1(θ)λ
′
1(θ) ≡ 0 if p = 2

µσ(θ) =

{

−λ′1+σ(θ), 2 < p ≤ 3, σ = p− 2 > 0

− 1
p−2

λ′2(t), p > 3,
(19)

µ1(θ) is given in Theorem 2 if p = 2, and

µσ(θ) =

{

−λ′1+σ(θ),
3
2
≤ p < 2, σ = 2−p

p−1
> 0

−p−1
2−p

λ′2(θ), 1 < p < 3
2
.

(20)

Combining the above discussions, we obtain the following lemmata.

Lemma 1. Let 2π
τ

= n ∈ N and the conditions of Theorem 1 hold. Then for
ρ0 À 1, the Poincaré map

P : (θ0, ρ0)→ (θ1, ρ1) =
(

θ(2π; θ0, ρ0), ρ(2π; θ0, ρ0)
)

of the solution of (11) with initial value (θ0, ρ0) has the asymptotic expression

of (14) where ρ = rp, r
1

2 or rq according to p > 2, p = 2 and 1 < p < 2,
respectively, λ1(θ), µ0(θ) are given in (4) and (5) respectively.

Lemma 2. Let 2π
τ
= n ∈ N and the conditions of Theorem 2 hold. Then under

the assumption λ1(θ) ≡ 0 and for ρ0 À 1, the Poincaré map

P : (θ0, ρ0)→ (θ1, ρ1) =
(

θ(2π; θ0, ρ0), ρ(2π; θ0, ρ0)
)

of the solution of (11) with initial value (θ0, ρ0) has the asymptotic expression

of (18) where ρ = rp, r
1

2 or rq according to p > 2, p = 2 and 1 < p < 2,
respectively, λ1+σ(θ), µ1(θ) are given in Theorem 2 and µσ(θ) satisfies (19) or
(20). Moreover, for p = 2, λ2(θ) = λ1(θ)λ

′
1(θ) ≡ 0.
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3. Proof of Theorems

Proof of Theorem 1. The proof of Theorem 1 is similar to the proof of Theo-
rem A in [3], so we only sketch it.

From Lemma 1, the Poincaré map of the solutions of (11) has the form
of (14). If λ1 is of constant sign, then there exists a constant c0 > 0 such that
λ1(θ) ≥ c0 or λ1(θ) ≤ −c0. Therefore, the image (θ0, ρ1) of (θ0, ρ0) under the
map P does not lie on the ray θ = θ0 if ρ0 is large enough. By the Poincaré–Bohl
Theorem (see [9]), the map P possesses at least one fixed point, which implies
that system (11) and hence system (1) has at least one 2π-periodic solution.

If µ0(θ) is of constant sign, then there exists a constant c1 > 0 such that
either (i) µ0(θ) ≤ −c1 < 0 or (ii) µ0(θ) ≥ c1 > 0 for all θ ∈ R. In case (i), we
have ρ1 < ρ0 for ρ0 large enough. Therefore, the Brouwer fixed theorem ensures
the existence of a fixed point of the map of P . Hence system (11) and therefore
system (1) has a 2π-periodic solution. In case (ii), we see the map P−1 has the
corresponding property of P , therefore P−1 has a fixed point, which implies that
system (11) and therefore system (1) as at least one 2π-periodic solution.

Proof of Theorem 2. It follows from Lemma 2 that the Poincaré map of the
solutions of (11) has the form of (18). The rest of the proof of Theorem 2 is
similar to that of Theorem 1, so we omit it.

Remark 1. If λ1(θ) ≡ 0, the results of [3] and [6] can not be applied here
since by (19) and (20), for p 6= 2, the function µσ(θ) is either identically zero or
changes signs at least two times in [0, 2π), by its 2π-periodicity.

Example 1. Let us consider the following planar Hamilton system

x′ = a+φq(y
+)− a−φq(y

−)− F (x) + h2(t)

y′ = −b+φp(x
+) + b−φp(x

−)− g(x)− h1(t),
(21)

where a±, b± are positive constants satisfying

Dp

(

1

(a+)
1

q (b+)
1

p

+
1

(a+)
1

q (b−)
1

p

+
1

(a−)
1

q (b+)
1

p

+
1

(a−)
1

q (b−)
1

p

)

=
4

n
(22)

with

Dp =
1

p
1

q q
1

p

B
(

1
p
, 1

q

)

,

where B(λ, µ) =
∫ 1

0
tλ−1(1 − t)µ−1 dt is the β function for λ, µ > 0 and

x± = max{±x, 0}, y± = max{±y, 0}, n ∈ N, F (x), g(x) ∈ C are bounded
and the limits limx→±∞ F (x) = F (±∞) and limx→±∞ g(x) = g(±∞) exist,
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h1(t), h2(t) ∈ L∞(0, 2π) are 2π-periodic, φp(u) = |u|
p−2u for p>1. Especially,

let a+= a−= 1, b+= α, b−= β, F = h1 ≡ 0, h2(t) = e(t), then (21) reduces to

(φp(x
′))′ + αφp(x

+)− βφp(x
−) + g(x) = e(t)

and (22) reduces to

Dp

(

1

α
1

p

+
1

β
1

p

)

=
2

n
.

Let (S(t), C(t)) be the solution of the initial value problem

x′ = a+φq(y
+)− a−φq(y

−), x(0) = 0

y′ = −b+φp(x
+) + b−φp(x

−), y(0) = q
1

q (a+)−
1

q .

Then it is easy to verify the equation

H(S(t), C(t)) ≡ 1 ∀ t ∈ R,

where

H(x, y) =
[b+(x+)p + b−(x−)p]

p
+

[a+(y+)q + a−(y−)q]

q
.

Let τ = 2π
n
and λ1(θ), µ0(θ) be defined in Theorem 1, it is not difficult to obtain

λ1(θ) =























1
q

(

∫ 2π

0
h2(t)C(θ + t) dt+ nΦ1(θ)

)

, p > 2

1
2

(

∫ 2π

0
[h1(t)S(θ + t) + h2(t)C(θ + t)] dt+ nΦ2(θ)

)

, p = 2

1
p

(

∫ 2π

0
h1(t)S(θ + t) dt+ nΦ3(θ)

)

, 1 < p < 2,

where

Φ1(θ) = −F (+∞)

∫

S(θ+t)>0

C(θ + t) dt− F (−∞)

∫

S(θ+t)<0

C(θ + t) dt

Φ2(θ) = −F (+∞)

∫

S(θ+t)>0

C(θ + t) dt− F (−∞)

∫

S(θ+t)<0

C(θ + t) dt

+ g(+∞)

∫

S(θ+t)>0

S(θ + t) dt+ g(−∞)

∫

S(θ+t)<0

S(θ + t) dt

Φ3(θ) = g(+∞)

∫

S(θ+t)>0

S(θ + t) dt+ g(−∞)

∫

S(θ+t)<0

S(θ + t) dt,

and

µ0(θ) =























−1
p

(

∫ 2π

0
h2(t)C

′(θ + t) dt+ nΨ1(θ)
)

, p > 2

−1
2

(

∫ 2π

0
[h1(t)S

′(θ + t) + h2(t)C
′(θ + t)] dt+ nΨ2(θ)

)

, p = 2

−1
q

(

∫ 2π

0
h1(t)S

′(θ + t) dt+ nΨ3(θ)
)

, 1 < p < 2,
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where

Ψ1(θ) = −F (+∞)

∫

S(θ+t)>0

C ′(θ + t) dt− F (−∞)

∫

S(θ+t)<0

C ′(θ + t) dt

Ψ2(θ) = −F (+∞)

∫

S(θ+t)>0

C ′(θ + t) dt− F (−∞)

∫

S(θ+t)<0

C ′(θ + t) dt

+ g(+∞)

∫

S(θ+t)>0

S ′(θ + t) dt+ g(−∞)

∫

S(θ+t)<0

S ′(θ + t) dt

Ψ3(θ) = g(+∞)

∫

S(θ+t)>0

S ′(θ + t) dt+ g(−∞)

∫

S(θ+t)<0

S ′(θ + t) dt

with C ′ = C ′(θ + t) = −b+φp(S
+(θ + t)) + b−φp(S

−(θ + t)).

Let p = 2, a+ = a− = 1, b+ = a, b− = b, h1(t) = p(t), h2(t) ≡ 0, then (21)
reduces to (3) with F (x) =

∫ t

0
f(s)ds.

Example 2. Let p = 2, α = β = n = 1, H(x, y) = 1
2
(x2 + y2), h(t) =

(h1(t), h2(t))
T = (1, 1)T and

g1(x, y) = g2(x, y) =
(π

2
+ arctanx

)(π

2
+ arctan y

)

.

Then by Theorem 1, it is not difficult to show that S1(t) = sin t, S2(t) = cos t
and

λ1(θ) =
π2

2

[
∫

I++

sin(t+ θ) dt+

∫

I++

cos(t+ θ) dt

]

> 0

for all θ ∈ R. Hence Theorem 1 implies that system (1) has at least one 2π-
periodic solution.

Example 3. Let p > 2, α = β = n = 1, H(x, y) = 1
p
(|x|p + |y|p), h(t) =

(h1(t), h2(t))
T = (1, 1)T and g1(x, y) = g2(x, y) ≡ 0. Then by Theorem 2, it is

not difficult to show that λ1(θ) ≡ 0 and, for σ = p− 2 ≥ 1, we have

λ1+σ = cp

∫ 2π

0

S ′2(θ + t)

∫ 2

0

S2(τ + θ) dτ dt = cp

∫ 2π

0

S2
1(θ + t) dt > 0

for all θ ∈ R, where cp > 0 is a constant. Theorem 2 implies that system (1)
has at least one 2π-periodic solution.

Remark 2. Similar to Theorem B in [3], we can prove the following result: If
the functions λ1 and µ0 have zeros and all the zeros are simple and the zeros
of λ1 and µ0 are different, moreover, if the signs of µ0 at the zeros of λ1 in
[0, 2π

n
) do not change or change more than two times, then system (1) has a

2π-periodic solution.
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