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Abstract. We prove that approximative compactness of a Banach space X is equiv-
alent to the conjunction of reflexivity and the Kadec-Klee property of X. This means
that approximative compactness coincides with the drop property defined by Rolewicz
in Studia Math. 85 (1987), 25 — 35. Using this general result we find criteria for
approximative compactness in the class of Musielak—Orlicz function and sequence
spaces for both (the Luxemburg norm and the Amemiya norm) as well as critria
for this property in the class of Lorentz—Orlicz spaces. Criteria for full rotundity of
Musielak—Orlicz spaces are also presented in the case of the Luxemburg norm. An ex-
ample of a reflexive strictly convex Kéthe function space which is not approximatively
compact and some remark concerning the compact faces property for Musielak—Orlicz
spaces are given.
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1. Introduction

If it is not assumed something different X denotes a real Banach space and
B(X), S(X) stand for its unit ball and unit sphere, respectively.

Let us start with the following definition. A nonempty set C' C X is said
to be approrimatively compact if for any (x,) C C and any y € X such that
|zn — y|| — dist(y,C) = inf{||z — y|| : = € C}, it follows that (z,) has a

H. Hudzik, W. Kowalewski: Faculty of Mathematics nad Computer Science, Adam
Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland; hudzik@amu.edu.pl,
fraktal@amu.edu.pl

G. Lewicki: Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059
Krakow, Poland; Grzegorz.Lewicki@im.uj.edu.pl



164 H. Hudzik et al.

Cauchy subsequence. X is called approximatively compact if any nonempty,
closed and convex set in X is approximatively compact.

Approximative compactness has been introduced by Jefimov and Stechkin
in [27]. This property for a Banach space X is strongly related to the approxi-
mation theory (see [2]). Namely, it implies that any element € X has the best
approximant in any nonempty convex and closed subset A of X. We say that
y € A is the best approximant for x in A if ||z — y| = dist(x, C'). Moreover,
approximative compactness of a strictly convex Banach space X guarantees con-
tinuity of the function x — P4(x), called the metric projection onto A, where
Pi(x) ={y € A: dist(x,A) = ||z — y||} for any nonempty, convex and closed
subset A of X and any z € X.

A Banach space X is said to have the Kadec—Klee property (or property H
for short) if for any sequence (z,) C X, and = € X such that ||z,| = =] = 1,
we have ||z, — z|| — 0 provided x,, — x weakly. If the weak convergence in this
definition is replaced by the local convergence in measure, that is, convergence
in measure on any measurable set of finite measure, we obtain the definition of
H,—property for X.

This property was originally considered by Radon [37] and next by Riesz
([38], [39]), where it has been proven that LP-spaces (1 < p < oo) have prop-
erty H, although L'[0, 1] has not. Moreover, it has been proved simultaneously
that L'[0, 1] has the H,—property.

Rolewicz [40] introduced the notions of the drop in a Banach space and the
drop property for Banach spaces. For any x € X \ B(X) the drop determined
by x is the set

D(z,B(X)) = conv({z} U B(X))

and X is said to have the drop property if for any closed set C, disjoint with
B(X), there exists « € C such that D(z, B(X))NC = {«}.

Montesinos [34] has shown that a Banach space X has the drop property
if and only if X is reflexive and X has property H. We will show that the
conjunction of reflexivity and property H is nothing but approximative com-
pactness, whence it follows that drop property and approximative compactness
coincide. Since for the most important classes of Banach spaces reflexivity has
been already described, to get criteria for approximative compactness, we need
only to find criteria for property H. This is a great benefit of our observa-
tion. In such a way we are able to find criteria for approximative compactness
in Musielak—Orlicz spaces, both for the Luxemburg and the Amemyia norm
and in Lorentz—Orlicz sequence spaces equipped with the Luxemburg norm.
Conditions for approximative compactness for Orlicz spaces endowed with the
Luxemburg norm have been found in [26] in both the function case and the
sequence case. For the Orlicz norm it has been done in the function case only.
However, in that paper a different method via full rotundity was used. The
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notion of full rotundity was introduced by Ky Fan and I. Glicksberg [16]. A
Banach space X is said to be fully k-rotund (k > 2, k € N) if every sequence
() in S(X) such that ||xn +ad o+ ng)H — k as n — oo for all its
subsequences (xﬁl )), (x%)), c (x%k)), is a Cauchy sequence. Moreover, 2-fully
rotund Banach spaces are called simply fully rotund spaces.

Approximative compactness for Musielak—Orlicz spaces over non-atomic
measure spaces coincide with reflexivity and strict convexity. Example 1 show
that it is not a general rule. We construct a reflexive strictly convex Kothe space
which is not approximatively compact. For other results of this type see [3, 36].

We say that a Banach s <pace X i 1s compactly fully k-rotund if any sequence
(x,) C S(X) such that Hx 2 | — k as n — oo for all its
subsequences (:1:,(11)), D, (SLH(I ) forms a relatively compact set. It has been

proved in [26] that k-fully rotund Banach spaces are approximatively compact.

It is known (see [11]) that a Banach space X is fully k-rotund if and only if it
is compactly fully k-rotund and strictly convex. For Musielak—Orlicz sequence
spaces equipped with the Luxemburg norm criteria for k-full rotundity were pre-
sented in [11]. However, the problem was not solved there completely because
an additional assumption concerning the Musielak—Orlicz function, namely con-
dition (*), was assumed. Criteria for 2-full rotundity of Orlicz function spaces
have been obtained in [9]. In this paper we present criteria for full k-rotundity
and for approximative compactness for Musielak—Orlicz spaces for both the
function and the sequence cases and for both the Luxemburg and the Amemyia
norms. It is worth noticing that in the sequence case condition (%) is not used
in this paper. In the function case condition (*) never appeared. Although
full k-rotundity implies approximative compactness, in our paper proofs of the
criteria for these properties are presented intependently because criteria for full
k-rotundity are presented only for a non-atomic finite measure space and under
the additional assumption that M — 0asu — 0 for p-ae. t € T. We
finish the paper with criteria for approximative compactness of Lorentz—Orlicz
function (and sequence) spaces.

2. General auxiliary and new results

Let (7,3, 1) be a measure space. Set
L°=L°(T)={f:T — R: fis ¥-measurable },

where measurable functions f and g equal on T p-a.e. are identified. A Banach
space X is called a Banach function lattice or a Koéthe function space over the
measure space (T, %, p), if it is a subspace of L°(T, X, ) such that:

1°ifx e L°, y € X and |z(t)| < |y(t)| for p-a.e. t € T, then 2 € X and
]l < llyll,



166 H. Hudzik et al.

2° there exists a positive function z € X such that supp(x) = T, where
supp(z) .= {t € T': x(t) # 0}.
In the case of purely atomic measure we can also use the name Banach sequence
lattice or a Kothe sequence space.

Let X be a Banach function lattice. A sequence (x,) in X is said to be equi-
continuous if for any € > 0 there exist numbers 0 = o(¢) > 0, N = N(¢) € N
and a set A € ¥ with (A) < oo such that ||z,xmal| < ¢ for any n > N and if
B C A and u(B) < o, then ||z, xg| < ¢ or any n € N.

A sequence (z,,) in a Banach sequence lattice X is said to be equi-continuous
if for any e > 0 there is i(¢) € Nsuch that [[(0, ..., 0, z,(i(e H1), 2, (i(eH2), ... )| <
¢ for any n € N.

Theorem 1 ([10, 15]). Any Banach function and sequence lattice with the
Kadec—Klee property is order continuous. The same holds for the property H,
in place of the Kadec—Klee property.

For the definition of order continuous elements and order continuity of the
norm in Banach lattices see [30] and [32].

Proposition 1 ([19]). Let X be a Banach function lattice over a measure space
Q% n). If (x,) C X, 2z € X, z, — x weakly in X and z, — y locally in
measure in L° then r=y.

Lemma 1 ([31]). Let E be a Banach function lattice. If (x,,) C E, x € E and
x, — x in E, then there existy € Ey, (x,,) C (x,) and (g,,) C Ry withe,, | 0
such that |x,, (t) — x(t)| < €,,y(t) for p-a.e. t € T (here E; denotes the set of
all nonnegative elements from E ).

Theorem 2 ([20], Theorem 5 (2)). In every reflexive Banach sequence lattice
the properties H,, and H coincide.

Proposition 2 ([11]). If X is compactly fully k-rotund, then X is reflexive.
We start with the following general new result.

Theorem 3. A Banach space X is approximatively compact if and only if X
15 reflexive and X has the Kadec—Klee property.

Proof. Necessity. It is well known (see [41], Corollary 2.4, p. 99) that if all
closed subspaces are proximinal, then all linear functionals attain their norm
(so X isreflexive). Since approximative compactness of X implies that all closed
subspaces of X are proximinal the necessity of reflexivity follows.

Now we will prove necessity of the Kadec—Klee property. Suppose that X is
approximatively compact and X has not the Kadec—Klee property. Then there
is a sequence (z,) C X and = € X such that ||z,| = ||z| = 1, z,, — = weakly
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and (x,) does not converge to x. Passing to a subsequence, if necessary, we can
assume that there exists d > 0 such that ||z, —z|| > d for any natural number n.
Let f € X* be a norming functional for x, that is, 1 = f(z) = |[|f]|. Set
C={z€ X : f(z) > 1}. Obviously C is a nonempty, closed and convex subset
of X. Since ||f]| =1, ||z]| > 1 for any z € C. Hence dist(0,C) =1 = ||z — 0]|.
Since x,, — x weakly, f(x,) — f(z) = 1. Setting z, = z,/f(x,), we have
that z, € C, because f(z,) = 1 for any n € N. Moreover, since f(z,) — 1 and
|z,|| = 1, we have ||z, || = ||z, —0]|] — 1 = dist(0, C'). Since X is approximatively
compact, (z,) has a Cauchy subsequence (we will denote it again as (z,)). Since
X is a Banach space, ||z, — z|| — 0 for some z € X. Hence z, — z weakly. But
z, — x weakly, since x,, — z weakly and f(z,) — 1. Consequently z = x. Hence
|zn — || — 0, which gives immediately that ||z, — x| — 0, a contradiction.
This shows that approximative compactness implies the Kadec—Klee property.

Sufficiency. Suppose that X is reflexive and X has the Kadec—Klee prop-
erty. Let C' C X be a nonempty, closed and convex set. Assume y € X and
(x,) C C is chosen in such a way that ||z, —y| — dist(y, C). If dist(y, C) = 0,
then ||z, —y|| — 0 and (x,) is a Cauchy sequence. So suppose that dist(y, C') =
d > 0. Since X is reflexive, passing to a subsequence if necessary, we can assume
that (x,) converges weakly to some € X. Since C' is closed and convex, C' is
weakly closed. Hence x € C. Moreover,

d = dist(y. C) < |l — yl| < limink, |z, — y]| = d.

which shows that ||z — y|| = d. Set 2z, = (v, — y)/||zn — y|| and z = (z — y)/d.
Then ||z,|| = ||z]| = 1, and 2, — z weakly, since ||z, — y|| — d and z, — x
weakly. By the Kadec—Klee property of X, ||z, — z|| — 0 and consequently
|z, — z|| — 0. Hence (z,,) is a Cauchy sequence as required. O

Remark 1. Let X be an approximatively compact Banach space and V' C X be
a nonempty, closed and convex subset of X. Suppose x € X and card(Py(z) =
{veV:|z—wv| =dist(z,V)}) = 1. Then for any v, € V with ||z — v,|| —
dist(z, V'), we have ||v, — v|| — 0, where {v} = Py(z).

Proof. Suppose for the contrary that |v,, —v|| > d > 0 for some subsequence
(Un, ). Since X is approximatively compact, there exist z € Py (x) and a subse-
quence of (vy, ) (we will also denote it by (v,, )) such that ||v,, — z|| — 0. Since
cardPy (z) = 1, we have z = v, which leads to a contradiction. O

Corollary 1. Let X,V, z € X andv €V, be as in Remark 1. If ||z, — x| — 0,
then ||v, —v|| — 0 for any v, € Py(z,). In particular, if X is strictly convex
or 'V is strictly convex, which means that for any x,z € (V) =V \ Int(V) we
have 3(x + z) ¢ O(V), then || Py(x,) — Py(z)| — 0 whenever x,, — x (here we
treat Py(x,) and Py(z) as elements from V).
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Proof. The result follows immediately from Remark 1 and continuity of the
function « — dist(z, V). O

Remark 2. Let X,V and x € X be as in Remark 1. If ||z,, — z|| — 0, then
diam(Py (z,)) = sup{|ly — z||,y, 2 € Py(x,)} — 0.
Proof. The result follows from Corollary 1. O

Example 1. We give an example of a strictly convex, reflexive Kéthe function
space X which is not approximatively compact. In particular, it means that X
does not have property H. Therefore X is not locally uniformly convex (compare

with [3, 36]).

Let X be a reflexive Banach space which is not approximatively compact
such that there exists a countable set F' = {fi, fo,...} C S(X*)that is total
over X. Recall that a set G C X* is called total over X if for any x € X,
the condition g(z) = 0 for any g € G implies z = 0. By Theorems 11 and 12
from Section 3 we can choose X as a reflexive, non-strictly convex Orlicz space
Lo = (Lo(T, X, 1), equipped with the Amemiya or the Luxemburg norm, where
1 is atomless and o-finite. Lg is then generated by an Orlicz function ® that
is not strictly convex on the whole R but both ® and its Young’s complement
®* satisfy condition Ay (see [26] and Theorem 8 on page 174) . Since p is
o-finite and atomless, there exists a sequence {T}} of measurable subsets of T'
of positive and finite measure such that, for any f € L and k£ = 1,2,..., if
gr(f) =0, then f = 0. Here

gr(f) = . f@)dpt).

Set fr = gi/||lgk|| for k = 1,2, .... By definition of gy, F' = {f1, ..., f, ...} is total
over X. Let us define on X the norm || - ||; by
1
)2) 2

Il = (qu? Y (25

It is clear that (X, ||-||1) is a K6the function space and || - ||; is equivalent to || -||,
which shows that (X, || - |1) is reflexive. Moreover, since [y is strictly convex,
and F' is total over X, it is not difficult to check that (X, || - ||1) is also strictly
convex. We will show that (X, | -]|1) is not approximatively compact. Since
(X, || - |) is not approximatively compact, there exist a sequence (x,) C S(X)
and x € S(X) such that z, converges to x weakly and ||z, — x| > d > 0.
Moreover, by the proofs of Theorem 11 and Theorem 12 in Section 3, we can
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assume that x,, > 0 and = > 0. We will show that ||z,|1 — ||z]|1. To do this,
fix € > 0 and k, € N such that ) 7, (2F)7* < (%)2 Note that for any z € X,

e S 0 (£ 4

and

=

(= (H uzle (fk 2 ) ); - (g (%Y)

Combining the above inequalities, we get

ko—1 2 % ko—1
lzall — lelh] < (umru > (25 ) - (||x||2+ > (%
k=1 k=1

. (i (fk<2:£n>)2)5 . (i (fk;;c))?)é

Since [|zp|| = [lz]| = 1, 2, 2 0 and = 2 0, fi(|zal) = fu(zn) = fulz) = fr(|z])
for any k, so by the choice of k, we get that |||z,||1 — ||z||1| < 2¢ for n > n,.
Consequently, ||z,|1 — |[|z]1. Since ||z, — x| > d > 0, ||z, — z||; does not
converge to 0, which shows that (X, || -||;) is not an approximatively compact
space.

>>)

Remark 3. We say that a Banach space X has compact faces if for any f €
X*\ {0} the set Ny = {z € S(X) : f(z) = || f||} is compact. We will prove
that any approximatively compact Banach space has compact faces. Indeed, by
the continuity of the norm, Ny is closed. We will show that it is also compact.
For any © € Ny, we have d(0,Ny) = ||z|| = 1 and for any (x,) C Ny, we
have ||z,|| = d(0, Ny) for any n € N. Therefore, each sequence (x,) C Ny is a
minimizing sequence for 0 with respect to the set Ny. Since X is approximatively
compact and Ny is closed and convex, the sequence (z,,) contains a subsequence
which converges to some € Ny, which means that Ny is compact.

In general, the converse is not true. Indeed, the space from Example 1 is
reflexive and has compact faces (since it is strictly convex, so the faces are single-
tons) but it is not approximatively compact. However, for spaces X considered
in Theorems 10, 11, 12, 15 and Corollary 2 criteria for approximative compact-
ness can be unified in the following manner: X is approximatively compact if
and only if X is reflexive and has compact faces.
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3. Approximative compactness and full rotundity
of Musielak—Orlicz spaces

We start with notations and definitions that will be used in this section. Let
(T,%, 1) be a measure space with a nonatomic measure p. A function ® :
T xR — Ry U{+o0} is called a Musielak—Orlicz function if

(a) ®(-,u) is a X-measurable function for any u € R;

(b) the function ®(t, -) is convex, even, continuous at zero and left-continuous
on (0,00) for p-almost all t € T,

(c) ®(t,0) = 0, P(t,u;) < 400 for some u; € (0,4+00) and P(t,u) — oo as
u — oo for almost all t € T'.

In the case when 7' = N and p is the counting measure on 2V, we can state that
a function ® = (P;)2, is called a Musielak—Orlicz function if

(a) &; : R — Ry U {+o0} is convex, even, continuous at zero and left-
continuous on (0, 00) for all i € N;

(b) ®;(0) =0, ®;(u;) < 400 for some u; € (0, +00) and ®;(u) — 0o as u — 0o
for all 7 € N.

Given a Musielak—Orlicz function ®, we define pg : L° — Ry U {+00} by

() = [ Bt 170 dute).
T
Then pg is called the modular and the space
Lo ={f € L°: po(\f) < +oo for some A >0}

is called the Musielak—Orlicz space generated by ®. Analogously, for any real
sequence = = (z;)%°, (the space of such sequences is denoted by {°) the modular
po at x has the form

pal(r) =D Pi(|z),
i=1
and then the space
lo = {z €1°: ps(Ax) < +oo for some A >0}

is called the Musielak—Orlicz sequence space.

We consider two classical norms in Musielak-Orlicz spaces Lg (resp. lp):

the Luxemburg norm
||z]|e = inf {)\ >0: po (;) < 1}
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and the Amemiya norm

1+ polk
|z]|2 = inf {k: >0 %W}

(see [6] and [35]). In the first case we denote the Musielak—Orlicz space by
Lg; in the second case by Li. Analogously, the respective sequence spaces we
denote by lg and I4.
Let
Eo ={f€L°: ps(\f) < 4oo for all A >0}

and

he = {x € [°: for any A > 0 there exists i) € N s.t. Z@z()\|xz|) < +o0 },

1=1)

where N denotes the set of natural numbers. Then Fg (he resp.) are called
the subspaces of finite elements. They are the subspaces of order continuous
elements from Lg (resp. lg) in fact.

It is said that a Musielak—Orlicz function ® : T'x R, — R U{+o0} satisfies
the Ag-condition (® € A,) if for any d > 1 there exist £ > 1 and ¢ € Ly(T),
¢ > 0, such that for any v € R™ and p-a.e. t € T, we have

O(t, du) < kd(t,u) + c(t).

It is said that a Musielak—Orlicz function ® = (®;)°, satisfies the do-condition
(® € §y) if for any d > 1 there exists a > 0, k > 1, i, € N and a nonnegative
sequence {¢;} € Iy such that the inequality

holds for all ¢ > i, and u € R" satisfying ®;(u) < a. For some equivalent forms
of the Ay-condition and the dy-condition see [18] and [35].

We denote by ®* the function complementary to @ in sense of Young, i.e.,
O*(t,u) = sup,~o{vu — ®(t,v)} for any v > 0 and p-a.e. t € T (analogously
¢* = (@), where @ (u) = sup,~o{vu — ®,(v)} for any u > 0 and all n € N, in
the sequence case).

For any x € L or = € I3, we define

k*(z) = inf {k > 0: Is-(po k|z|) > 1}
k*(z) = sup {k > 0: Ip-(po klz]) <1},

where p(t,-) is the right hand side derivative of ®(¢,-) on R, and po k|z|(t) :=
p(t, k|z(t)|) for p-a.e. t€ T. Next we define K () = [k*(x), k**(z)] if k*(z) < oo.
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This interval has the property that [z[|§ = (1 4 pa(kz)) if and only if k €
K(z). If k*(z) < co and k**(z) = oo, we have ||z|g = £(1 —I— pq>(k:17)) for any
ke [k*(x), k**(x )) and ||z[|§ = limy_o +(1 + po(kz)) fT (t)|du, where
A(t) = limyoo (= D(t, u)).

The dual space of Lg is well known. Namely, we have
(Le)" = Lo~ ® S,

that is, any z* € (Lg)* is uniquely represented in the form z* = £, + ¢, where
v € Lg« and &, is the order continuous functional (order continuous functionals
are also called regular functionals) on Lg generated by v € Lg«, that is,

. (c) = / o()x(t)dt (r € La)

and ¢ € S is a linear singular functional on Lg, that is, ¢(z) = 0 for any
x € Eg. We denote by RGrad(z), (SGrad(y), respectively) the set of all regular
(singular, respectively) support functionals at z (that is, norming functionals
for ).

Now, we need to recall some results that will be used in the proofs of our
new results.

Lemma 2 ([7]). Let ® be a finite-valued Musielak—Orlicz function and p be a
o-finite measure. Then there exists a sequence (S,)5, of measurable sets of
finite measure such that Sy C Sy C ..., p(U>—, Sn) = p(T) and

L%(u/Sn) = L*(/Sn) = L'(n/S,) (¥ €N).

Lemma 3 ([28]). Let ® be a Musielak—Orlicz function. There ezists a se-
quence (T,)%, of pairwise disjoint, measurable sets of positive measure such
that U, T, =T and sup{®(t,u): t € T,} < 400 for anyn € N and u € R..

Lemma 4 ([8]). Let © € S(Le) and pe (x) = 1. Then z* € RGrad(z) if and
only if
. Jr 2(Oy(t)dp
T e
)

where z € Lo« and z(t) € [p—(t,x(t)), p(t,x(t))] for p-a.e. t € T, where p_(t,u)
and p(t,u) denotes the left and right derivatives of ®(t,-) at u € R.

(Vy e Ly),

Lemma 5 ([22]). Let X denote Ly or L. Assume that ® > 0, @ — 0
asu — 0 for p-a.e. t €T, & € Ay and ®* € Ay, If (z,), (yn) C S(X) and
|Tn + ynll — 2, then for any € > 0 there exist numbers 6 = d(e) > 0 and
n' = n'(e) € N such that for any n > n' and any set E € ¥ the condition
|ynxell <0 implies [z, xE| <e.
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Lemma 6 ([6]). Let T be an interval in R (the whole R and other unbounded
intervals are not excluded) and (T,%,p) be the Lebesque measure space. Let
E € X be a bounded, closed set. Then E can be decomposed into E,, F, € X
(n € N) such that F,NE, =0, E = F,UE,, W(E,) = u(F,) = 3u(E) for any
n €N and

lim [ () (xm, () — xr, (8) dt =0

n—oo E

for any function v integrable over E.

Theorem 4.
(i) A Musielak—Orlicz space Le¢ is reflexive (with respect to the Luzemburg
and Amemiya norms) if and only if ® € Ay and ®* € As.
(ii) A Musielak—Orlicz space lg is reflexive (with respect to the Luzemburg and
Amemiya norms) if and only if & € §y and O* = {P} : i € N} € ,.

Proof. 1t is evident, but since we do not know any reference to this fact, let
us sketch a proof. It is known (see [35]) that if ® € Ay, then (Lg)* = L.
Moreover, by ®* € Ay, we have (Lg)** = (Lg.)* = Lg-- = Lg, because ®** = ®.
Similar arguments show that ®, ®* € A, imply that L3 is reflexive.

Moreover, it is known that for any Banach function lattice F, reflexivity of
E implies that both E and E* are order continuous. But order continuity of
Lg (and so of L as well) is equivalent to ® € A, (see [17]). In such a way we
have shown that reflexivity of L¢ gives ® € Ay and ®* € A,. The proof in the
sequence case is analogous. O

Theorem 5 ([23]). Assume that ® € Ay and $(t,-) is a strictly convex function
for almost all t € T. Let xp,yn € Lo, ||Tnlle = |ynlle = 1. If |20 + Ynlle — 2,
then x, — y, — 0 locally in measure.

Theorem 6 ([23]). Assume ®* € Ay and D(t,-) is a strictly convex function
for almost allt € T. Set for any x € Lg

K(@) = {k € [0,+00) : [lalld = (1+ Lpa(ka))}.
Then K(z) # 0 for any v € Lg and
sup {k >0:k € K(z), |z]|§ = 1} < +oo0.

Theorem 7 ([14]). Let ® = (®;) be a Musielak-Orlicz function. Set, for any
i € N, b = sup{u > 0 : ®;(u) < +oo}. Then the Musielak—Orlicz space
(ls, ||-]|&) has the Kadec—Klee property if and only if ® € 5 or Y oo, ®7(c;) < 1.
Here for any i € N,

C;, =

(@5)7'(1), @5(bi) > 1.
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Theorem 8 ([13]). The Orlicz space L{ is strictly convex if and only if
(i) @ is strictly convez,
(ii) lim, oo R(u) = oo, where R(u) = Alu| — ®(u) and A = limu_,ooy.

We start now with our new results in the topic of Section 3.

Theorem 9. Let & = (9;)2,be a Musielak-Orlicz function. Then the Musielak—
Orlicz space lg has the Kadec—Klee property with respect to coordinatewise con-
vergence if and only if ® satisfies the do-condition and for every i € N there is
u; > 0 such that ®;(u;) = 1.

Proof. Necessity. For the necessity of the ds-condition see [12]. We will show
the necessity of the second condition on ®. Assume that there is 7 € N such
that ®;(b;) < 1 (for the definition of b; see Theorem 7). We will show that
le does not have the Kadec—Klee property with respect to the coordinatewise
convergence. Define for ¢ # j the numbers

)by, A ®y(by) + Pi(bi) <1
“ u;, where ®;(b;) + ®;(u;) = 1 otherwise,

the element = = bje; and the sequence (;);>; in lp, where x; = bje; +c;e;. Then
x; — x coordinatewise. Moreover, assuming that ¢ > j, we have pg (7;) < 1,
whence ||z;]| < 1. Since pg (Az;) > 1 for all A > 1, so ||z;|l > 1 for any
i > j. Consequently, ||z;]|, = 1 for any ¢ > j. Similarly we get [|z| 4, = 1.
If i € N, i > j,is such that ¢; = b;, then [jz; — 2|, = 1. Ifi € N, ¢ > j,
is such that b, = w;, then 1 > pg (v; —x) = ®; (v;) = 1 — ®;(b;), whence
lz; — z|lp > 1 — @;(b;). Consequently, ||z; — x| > min(1,1 — ®;(b;)) for any
i > j. Since min(1,1 — ®;(b;)) > 0, this shows that ls does not have the
Kadec—Klee property with respect to the coordinatewise convergence.

Sufficiency. Fix A > 1 and let k > 1 corresponds to d = 2\ in the prop-
erty d5. Let P; be the projection of a sequence onto its first J coordinates,
and let @y = I — P;. Let ¢ > 0. Choose J such that pg (Qsz) < 57, so
that pge (Pyr) > 1 — ;7. By coordinatewise convergence, for n large enough we
have pg (APjx, — APsz) < £. Also pg (Pjr,) > 1 — 5, so that pg (Qyr,) <
5z The property dy gives now pe (AQ sz, — AQsz) < €, and it follows that
po (A(x, — z)) < 2¢ for n large enough. The arbitrariness of ¢ > 0 gives that
po (A(x, —2)) — 0 as n — oo, whence the arbitrariness of A > 0 gives that

|z, — z|le — as n — oc. O

Corollary 2. Suppose ® = (®;) is a Musielak—Orlicz function such that for any
i € N there exists u; > 0 with ®;(u;) = 1. Then lg is approzimatively compact
if and only if le is reflexive.

Proof. The proof follows immediately from Theorems 3 and 9. O
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The following example shows that for nonreflexive Musielak—Orlicz sequence
spaces equipped with the Luxemburg norm, the property H, is essentially
stronger than the property H in general. Namely, there exists a Musielak—
Orlicz sequence space with property H but without property H,,.

Example 2. Let ®(t) =t for ¢t € [0,1], ®;(¢) = +oo for t > § and ®;(t) =¢
for ¢ > 2. By Theorem 9, X = ls has not the H,-property. However, X has
property H. To prove this fact, it is enough to show that X = [! and the norms

| - |le and || - ||; are equivalent, because I' has even the Schur property and
this property is preserved by equivalent norms. It is obvious that {* = [¥ and
|- |li = || - |lw for the Musielak—Orlicz function ¥ = (¥;)°,, with ¥;(u) = |u|

for all v € R and 7 € N. We have that ®;(5) = ¥;(5) for all v € [0,1] and
i € N, whence we easily to get that lo = [Y = ['. For any z € [¥Y = [, 2 # 0,
we have p\p(m) < pq>(2 ” ) <1, whence H” that is, ||x]|\1, < ||x||q> On

sl € [1,4], 50 @i(575h) = W(5ih) for all i € N,

the other hand, since
and consequently,

( T ) ( x ) < 1 T 1 .
po| —— | = pu Sspe— <5<l
][ 2|z ||y 2" lzlly T 2

<1,s0||z|lg < 2|z]y. In consequence, the equivalence of the

ls
norms || - || and || - ||; is proved.

whence H L
2zl

Theorem 10. The Musielak-Orlicz space I3 equipped with the Amemiya norm
s approximatively compact if and only if it is reflexive, that is, if and only if
D, O* € ).

Proof. By Theorem 4, if I3 is reflexive, then ® € §,. By Theorem 7, I3 has
property H. By Theorem 3, I3 is approximatively compact. The converse also
follows from Theorem 3. O

Lemma 7. Assume that (T, %, p) is a nonatomic, complete and o-finite measure
space and ® is a Musielak—Orlicz function satisfying the Aq-condition. Let
x € Lg, (x,) C Lo, ®, — x locally in measure and pg (x,) — pe (x) < o0.
Then ||z, — x|l — 0 as n — oo.

Proof. Let us fix ¢ > 0. By Lemma 3 there exists a set A € ¥ such that

0 < w(A) < 00, xa € LN L' and pg (xxma) < 5. The sequence (z,x4)

converges in measure to xx4. Therefore, there is a subsequence (z,,) of (z,)
such that z,, x4 — xxa (and consequently ® o z,, xa — P o xy4) almost
everywhere. In consequence (by the fact that u(A) < oo) we have oz, x4 —
® o xy4 in measure. Let § > 0 be such that for any B € ¥ N A satisfying

p(B) < 6 we have that pe (zxp) < §. By the Jegoroff Theorem we get that

there is a B C A such that p(B) < d, zp,xa\p = oxa\p and ® o z,xa\5 =
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® o xx4\p (the sign = indicates the uniform convergence). So pg (vXB) < 3
whence pg ($X(T\A)UB) < 2—; Moreover, pg (xnkXA\B) — Do (IXA\B)‘ Since
Po (Tn,) — po(x), S0 po (ﬂvnkX(T\A)uB) — pa (TX(\a)uB) < %5 Therefore,
there is n. € N such that pg (iﬂnkX(T\A)uB) < % for n > n.. By the facts that
TpXa\B = TXa\B and pe (:CXA\B) < oo (which follows by condition A, and
the fact that x4 € L'), using the Lebesgue dominated convergence theorem,
we get that pé(az"’“ﬂXA\B) — 0 as n — oo. So, there is m, > n. such that

2
pq,(x"’;_z X A\ B) < § all n > m.. In consequence, for all n > m., we have

1 5e

po (577) < po ("5 ) + 5 low (B Xrns) +po (axas)] < -

Tny, —T

2
pq)(W) — 0 is equivalent to ||® o x"’;_IHU — 0. By Lemma 1, there exists

y € (L"), such that ® o w < y. By the As-condition, we get that for
any A > 0 there exists yy € L' such that ® o ‘T"’“Q—_:C < yx. Hence, using the
fact that A(zp, (t) — x(t)) — 0 for p-a.e. t € T and the Lebesgue dominated
convergence theorem, we get pg (A(x,, —x)) — 0 as k — oo. This means, by
the arbitrariness of A > 0, that ||z,, —z[; — 0. Using the double extract

subsequence theorem, we have that ||z, — x|, — 0 as n — 0. O

So we have proved that pq>( ) — 0 as n — oo. Note that the condition

Theorem 11. Let X = Lg. The following conditions are equivalent:
(i) X s approzimatively compact.
(ii) X is reflexive and strictly convez.

(iii) ®,P* € Ay and D(t,-) is strictly conver on R for p-a.e. t € T.

Proof. (i) < (iii). By Theorem 4, L% is reflexive if and only if ® € A, and
O* € Ay, If & € Ay, then ®* is finitely valued, so ®(¢,u)/u — oo as u — oo
for p-a.e. t € T'. Therefore, the equivalence of conditions (iz) and (7i7) follows
easily by Theorem 8.

(i) < (ii). We will present two completely different proofs. Although the
second proof is simpler than the first one, it concerns only the Lebesgue measure
space in R. Since the first proof concerns arbitrary measure space, it is more
general.

First proof. Suppose X is approximatively compact. By Theorem 3, X is
reflexive. Assume for the contrary that X is not strictly convex. Then there
exist f,g € X, ||fll4 = llglla = 1, f # g such that H%H;} = 1. Since X is
strictly convex if and only if X is strictly convex (see Theorem 2 in [19]) we
can assume, without loss of generality, that f,g > 0 and f # g.

First suppose that K(f) # 0 and K(g) # 0 (see Theorem 6). Fix ky € K(f),
ky € K(g) and set | = k¢f, m = k,g. Define

A={teT:l(t)>m®t)}, B={teT m(t)>It)}, C=T\(AUB). (1)
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Since f # g and || f||£ = |lg]|4 = 1, we have pu(A) > 0 or u(B) > 0. Let F' €

X* = Lg«(T, X, 1) be a function that defines a support functional for %, that
is, | F|ls = 1 and F(££2) = 1. Then obviously F(f) = F(g) = 1 and F(t) > 0 p-

a.e.. Let a = [, F(t)(I(t) —m(t))xadu(t) and b = [ F(t)(m(t) —1(t))xs du(t),
where yy denotes the characteristic function of Y. Observe that we have a,b > 0.
We will show that

a>0 or b>0. (2)

Indeed, if a = b =0, then k, = k,F'(g) = F(m) = F(l) = ks F(f) = k¢, whence

| PO - a®)xadut) =0 and [ P (o) = 10)xo dute) =0

and consequently, by definitions of the sets A and B, we get a contradiction.

Now fix n € N. Since p is atomless, we can find a partition (A, ..., Agn) of
A, and a partition (B4, ..., Ban) of B such that
a b
F)(1(t) — m(t)) du(t) = 5 and F(t)(m(t) = 1(t)) du(t) = T
for i = 1,...,2". We can assume that the sets which form the above partitions
in the n-th step are partitions of the sets from the (n — 1)-th step. Define
I(t) forteC
n—1
fonm1(t) = Ut)  for t € U7, (Azj1 U By s)
n—1
m(t) for t € U?:l (Agj U BQj)

i i

and

Ity forteC
Fan(t) = {m(t) fort € 7 (Agj—1 U Boj_1)
i(t) fort e, (Ay UBy).
Observe that

2n—1

F(onfl) - F(an) = Z F((anfl - f2n>XA2j—1UA2j)

j=1
2n—1

+ Z F((fan-1 = f20)XBay_10Bs;) + F ((f2n-1 — fon)xC)

J=1
2n—1

= 3 (R = m)a, ) + F(lm = D)

2n—1

+ Z (F((l - m)XBijl) + F((m - l)Xsz))

J=1

=0.
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Moreover,

F(an_l + an) - F(ZXU?ZII A2j71UBZj71UC) T F’(Wlxugni1 Angng)

Jj=1

T F<mXU?Zf A2j71UBQj71UC) + FUXU?Z? A2jUB2j)
= F(l) + F(m)
=k + k.

Consequently, F(fon1) = F(fan) = 2 ;kg, which gives that || fo,[|4 > %t ;rkg and

| fon-1ll3 > @ Now we will show that || fon_1|4 = @ and || fonl|4 = %Lk"

To do this, note that we have by the definition of k; and k, and by the equalities
Iflls = llgllz =1 that

kr=1+pa(ksf) =1+ pa(l)
ky =1+ pa(kyg) = 1+ pa(m). (3)

Since || fanllg > 2572, [ fan-1]l3 > 2572, and || f][4 < 1+ pg (f) for any f € La,
we get

ke + Kk

% <1+ pa(fon) (4)
and

ke + Kk

% < 1+ po(fon-1)- (5)
Hence

kp+ kg <24 po(fon) + po(fon-1)
— 2 + p<1> (ZXU§ZIl AQj—lUBQj—luc) + p(1> (mXUiZIl A2jU32j)

+ pe (mXU?ZII A2j—1UBQj—1UC) + po (ZXUJZZ;l Aszsz)
=2+ ps(l) + pa(m)

— ks + ky.
This shows that we have equalities in (4) and (5) . Consequently, || fon_1l|5 =
@ and || fon|lf = uli ;rkg, as required. Observe that by definitions of the
functions fi, and by (2), we have

1 f2n = fon-ille = I [ fon = fonal I3

> F(|fon — fon-1])
2n 2n
= ZF(|f2n - fQTL—l‘XBj) + ZF(|f2n - f2n—1|XAj)
j=1

j=1
=a+b>0.
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Also by the definition and by (2),
a+b

1fe = fille = I1fi = fil e = F(1fi = fil) = >0
for functions f and f; corresponding to different partitions. This shows that
the sequence {fi} does not contain a norm-convergent subsequence.

Now put Z = cl(conv({f,})), where the closure is taken with respect to the
norm topology. Since F(f,) = @ for any n € N, ||h||4 > @ forany h € Z.
kf-‘rk‘g

Consequently, since || fo |5 = =572, ||kl = IWQL]% for any h € Z. Observe that

dist(0, Z) = kf—;rkg = || full§ for any n € N, that is, (f,) is a minimizing sequence
in Z for 0. But {f,} does not contain a Cauchy subsequence, which leads to a
contradiction.

Now assume that K(f) # 0 and K(g) = 0. Take k; € K(f). By convexity

of the function A — pa(Ag), we get 1 = ||g||§ = lim, =ps(ng). Note that for
any n € N,

L+ pa (72 (f +9)

2= I +glld <
kf+n
n kf
1+ P@(m(kfﬂ + (ng))
= nky
karn
< 1. 1+ pa(kyf) . pa(ng) o
n k¢ n
Hence .
2 = lim oy .
" karn

By ® € Ay, the function A\ — pg(A(f + ¢g)) is convex and continuous. Since
nky

— ks as n — oo, we have

kf—i-n
nk
14 p( 5+ 9) 1+ p(ki(f +9))
lim i = 2
kf—l—n f

and consequently,

o Lt p(ke(f +9))
_ 3

Since ||L32||4 = 1, by the above equality k; € K(££2). Since k; € K(f) and

f# %, the proof of this case reduces to the proof of the previous one, with

[t ;
52 in place of g.
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Finally, assume that K(f), K(g) = 0. Starting from f and g instead of
[ and m, we can construct a sequence {f,} as in the first case of the proof.
Analogously as in the first case we can show that ||fi|l4 > F(f,) = 1 for any
k€ Nand ||f, — fmld > 2 for m # n. Since K(f),K(g9) = 0, we have
limy+po(kf) =1 and 1 = limype(kg). Now we will show that || fx[|§ = 1 for
any k € N. To do this, assume for the contrary that ||fi|l4 = 1 +d with d > 0
for some k € N. We can assume without loss of generality that £ = 2n. Observe
that

po(mfon_1) + pa(mfon) 2

2+d < | fon-1ll + I fonll < +
m m

_ pa(mf) + pa(mg) | 2
N m m

d
<24 -
= +2

for m > m,; a contradiction. Hence || f¢||4 = 1 for any k& € N. Reasoning as in
the first case of the proof, we get that X is not approximatively compact.

Now suppose that X is reflexive and strictly convex. By Theorem 4, the
functions ®, ®* € A,y. The function ®(t,-) is strictly convex for p-a.e. t € T.
Now we will show that X has property H. To do this, take a sequence (f,) C X,
f € X such that f,, — f weakly and ||f,||l4 = || f|]l4 = 1. By Theorem 6, we can
find M > 0 such that for any n € N there exist k,, € K(f,) satisfying k,, < M.
Without loss of generality we can assume that k, — k € R. Since ||f,]|4 = 1,
k, > 1 for any n € N, which gives k& > 1. Since ® is strictly convex, pg(kf) > 0.
We will show that k — 1 = pg(kf). Since ||f||4 = 1, we have k — 1 < pg(kf).
Assume for the contrary that k — 1 < pg(kf) — d for some d > 0. Define

_ palg)

Let ||-]|1 denote the Luxemburg norm associated with p;. Observe that py (kf)>1
and py (k. f,) < 1 for n large enough. Hence ||k, f,||1 < 1 for n large enough and
Ik f]l1 > 1. Let us note that the weak convergence with respect to the norms
|- |; and || - ||4 coincide. Since k, — k, by the lower semicontinuity of the
norm with respect to the weak topology, we get ||kf||; < liminf ||k, f.]1 < 1; a
contradiction. Hence

Now define ()
Pa\g
g =
M= )
and let || - ||2 denote the Luxemburg norm associated with p,. It is obvious that

lkfll2 = 1. We will show that ||k, f.|ls — 1. Since f, — f weakly ,k, — k,
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the weak convergence with respect to the norm || - ||4# and the weak conver-
gence with respect to the norm || - || coincide, liminf ||k, f,,||2 > 1 by the lower
semicontinuity of the norm with respect to the weak topology. Suppose that
limsup || kn fu|l2 > 1 + d for some d > 0. Passing to a subsequence, if necessary,
and applying (6), we get for n € N, 1 < pof ng) < pg(k"f") — ﬁ <1;a
contradiction. Hence lim, ||k, fu|l2 = 1 = ||kf|2- Put z, = k wSo) | Enfall2 and
z = kf. It is easy to see that pa(z,) = |lznll2 = 1, p2(2) = [|z]|]2 = 1. Since
z, — z weakly, |22, — 1. By Theorem 5, z, — z — 0 locally in measure.
We will show that py(*2=) — 0. Fix ¢ > 0. Since py(z) = 1 and p is atom-
less and o-finite, we can find A; € ¥ of finite and positive measure such that
p2(2xma,) < € and |z(t)] > 0 for t € A;. There exists also n, € N such that
p2(zxa,) < €, where

A, = {t €A ni > max (|z(t)], (¢, [2()])) or min (|z(¢)|, ®(¢,]2(t)])) > no}.

o

Put A = A;\ A,. Since (z, — 2)xa — 0 in measure and pu(A) < oo, there exists
a subsequence (z,,) of (z,) such that z, — z p-a.e. on A. Now choose § > 0
such that for any B € ¥, B C A, if u(B) < § then pa(zxp) < €. By the Jegoroff
theorem, we can find B, C A such that u(B,) < § and z,, — z uniformly on
A\ B,. Observe that there is k, € N such that for any k£ > k,,

sup{ |2, (t) — 2(t)| : t € A\ B, } < ni

o

Hence for any t € A\ B, and k > k,,

|20, () = 2(8)] < [z, ()] + [2(8)] < 2[2(8)] + ni < 3Jz(1)]-

Consequently, by the As-condition and the Lebesgue dominated convergence
theorem,

p2((zn, — 2)xa\8,) = 0. (7)
Moreover, ® o z,, — ® o z coordinatewise p-a.e. on A\ A,. By the Jegoroff
theorem, we can find By C A\ B, such that u(B;) < d and ® oz, — Poz
uniformly on A\ (B, U B;) and ps(2xp,) < €. Reasoning as above gives
P2(Zn, X A\(B,UBL)) — P2(2X A\(B,UBY))- (8)
Since py is orthogonally additive and pa(z,,) = p2(z) = 1, we get by (8)

PQ(anX(T\A)u(BDUBl)) - P2(2X(T\A)U(BouBl))~ (9)
By (7) and (9), we have

Zny, — % 1
p2( 9 ) <3 9 (/02 ((an - Z)XA\(BOUB1)) + P2 (anX(T\A)U(BOUBl))

+ pQ(ZX(T\A)U(BoUBl))>
< 4e.
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Hence ps (%) — 0 and consequently pg (Z”’“z_z) — 0. By the As-condition we
get, ||zn, — 2|4 — 0. The above reasoning implies that ||z, — z||4 — 0, which
completes the proof.

Second proof. By Theorem 3, we need only to prove that the Kadec—Klee
property for L4 is equivalent to the facts that the Musielak—Orlicz function ®
is strictly convex and ® € A,.

Let & € Ay and ®(¢,-) be strictly convex for p-a.e t € T. Assume that
v € S(LE), (x,) C S(L3) and x,, — x weakly. By reflexivity of L4 we have
that ®* € Ay, which implies that lim,_ . q)(i’“) = oo for p-a.e. t € T. Then we
have that for any z € L{\{0} there exists k > 0 such that ||z||§ = =(1+po (kx)).
Moreover, by the assumption that & is strictly convex, we know that such a
number k£ > 0 is only one (otherwise if k,l € K(z) and k # [, then one can
easily prove that ® must be affine between kz(t) and lz(t)). So K(z) = {k}
and similarly there are k, > 0 (n = 1,2,...) such that K(x,) = {k,}, which
yields that k, — 1 = pg (k,z,) for any n € N and k — 1 = pg (kz). We may
assume that (k)2
is a bounded sequence, because otherwise considering (

Tn+T
2

Tn+x
2

— 1 (which follows be the weak convergence of 2=t

)Zozl in place of
()52, we have || ch
to x) and H@ - x”@ — 0 if and only if |z, — z|; — 0. It is easy to show
that lff—i’,i e K (%) for any n € N. The sequence ( lffi’fc):;l is bounded in
any case (also when (k,) is unbounded). It follows by strict convexity of ® that
knx, — kzx locally in measure (see [23]). Since (k)22 is a bounded sequence,

there are &' > 0 and a subsequence (k,,) of (k,) such that k,, — k" as [ — oc.

By z, — x, we get that kp, Ty, = K'z. Since ky,x,, — kz locally in measure,
we have k'x = kx (see Proposition 1). In consequence k' = k, whence we get
that k,, — k. Therefore pg (kn,zn,) — po (kz). We may assume without loss
of generality that this holds for k,z,, in place of k,,x,,. By Lemma 7, we have
\|knzy — kx|l — 0, and finally ||z, — z||4 — 0, because k, — k as n — oo.

Now we will show that condition ® € A, and strict convexity of ® are nec-
essary for the property H of Lg. Condition ® € A, is necessary by Theorem 1.
It remains to prove the necessity of strict convexity of ®. Assume that & is
not strictly convex on R. Then there are a set C' € X of positive measure and
an interval [a,b] such that 0 < a < b and ®(¢,-) is affine on [a,b] for p-a.e.
t € C. We will apply Lemma 6. Take 6 > 0 such that § < bfT“. We can
construct a function y € S(L§) such that ky(t) € [a+ 0,0 — 6] fort € G € %,
where G is bounded and closed, p(G) > 0 and p(T'\ G) > 0. Let ¢ = %2 and
Jo @*(t, p(c))dt < 1. We can find d > 0 and Gy C T'\ G such that

/ O (£, pl(c))dt + / B (¢, p(d))dt = 1.
G Gy
Then defining

T = cxe +dxa,
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we have ||z]|4 = 1+ ps (). In consequence, y := z/(1 + pg (x)) € S(L4) and
14 ps (z) € K(y). Denoting k = 14 pg (), we see that ky(t) = ¢ for any t € G,
that is, ky(t) = ¢ € [a 4+ 6,b — 0] for any t € G. Let (T,)%, be a sequence of
bounded and closed sets such that 0 < (7)) < oo, T}, C T)p.1, X7, € Eg for
any n € N and u(T\ U, T,) = 0 (the sets T}, can be constructed using the sums
of the sets T,, from Lemma 3). Define y, =y + 2xp, — 2xp,, where (E,), (F,)
are the sequences decomposing G as in Lemma 6 (with G in place of E). We

have for any n € N,

po (kyn) = pa (ky + 0xE, — 0xF,) = pa (ky) = ps ()

by the fact that @ is affine on the interval [a, b] and the values of ky+dx g, —0xF,
belongs to [a,b] for t € G. Consequently,

lvalld < (14 pa (k) = 71+ pi (k) = (14 pa (a)) = 1.

Moreover, by Lemma 6 and the facts that y, —y = dxg, —dxr, and the functions
from Lé are integrable on the sets V,, = T;I N S,, where S, are as in Lemma 2,
we deduce that y, —y — 0 weakly, that is y, — y weakly. In particular,
taking x* € Grad(y), we have x*(y,) — 2*(y) = 1, whence Hyan — 1= HyH(‘g.
However,

po (Yn —y) = / O (t,0)dt > 0,
a
whence
len — 2|4 > 2n — 2]y > min (1/ <I>(t,6)dt) S0,
el
which shows that L4 has not the Kadec-Klee property. O

Theorem 12. Let X = Lg¢, where p is a o-finite, atomless measure. Then X
1s approximatively compact if and only if X s reflexive and strictly convex.

Proof. Similarly as in the previous theorem, we will present two different proofs.

First proof. In general, the proof goes on the same line as the proof of
Theorem 11. First suppose that X is approximatively compact but not strictly
convex. Let f,g € X, f # g, be such that 1 = ||f|le = ||glle = ||%||¢.
Since X is strictly convex if and only if X is strictly convex (see [20]), we
can assume that f,g > 0. Let ' € X* be a support functional for %. Since
X is approximatively compact, X is reflexive. Hence F' € Lg«(T,%, 1) and
| F'||4 = 1. Now we proceed analogously as in the proof of Theorem 11. Starting
from f and g instead of [ and m (see page 177), we construct the sequence of
functions {f,}. We can show as in Theorem 11 that F'(f)) = 1, which implies
that || fn]le > 1 for any k € N, whence p(fx) > 1 for any k& € N. Also by the
orthogonal additivity of pe,

p(fan-1) + p(fan) = p(f) + p(g) = 2,
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Therefore p(fan—1) = p(fan) = 1, that is, || fx]|le = 1 for any k& € N. Moreover
a+b

1k = fmlle = fx = fullle = F(fx = finl) =

where a,b are as in Theorem 11. Put Z = cl(conv({f,})). Reasoning as in the
proof of Theorem 11, we get a contradiction with approximative compactness

of X.

Now suppose that X is reflexive and strictly convex. We will show that X
has property H. To do this, take f, € X, f € X of norm one of any n € N
such that f, — f weakly. Let F' € S(X*) be such that F(f) = || f] =
Then F (@) — 1, whence ||@|| — 1. By Theorem 5, f, — f — 0 locally
in measure. Reasoning as in Theorem 11, replacing p, by pe, we get that
@p(@) — 0 for some subsequence {f,, }. By the Ay-condition, we get that
| fn. — flle — 0. Hence, by the double extract subsequence theorem, we get
that || f, — f|le — 0, which shows that X has the property H. By Theorem 3,

X is approximatively compact, as required.

> 0,

Second proof (for T C R and the Lebesgue measure in 7). Basing on
Theorem 3, it is enough to show that Lg has the Kadec—Klee property if and
only if ® € Ay and @ is strictly convex. The necessity of ® € A, follows by
Theorem 1 and the fact that Le is order continuous if and only if & € Ay
(see [17]). Let us prove now the necessity of strict convexity of ®. Suppose
that ® is not strictly convex. Then there are a set C' € X of positive measure
and an interval [a, b] such that 0 < a < b < co and ®(t,-) is affine on [a, b] for
p-a.e. t € C. Let D C C be a measurable set such that u(D) > 0, u(C'\ D) > 0
and

/ B(t,c)dp < 1,
D

where ¢ = 222, Let 0 < § < 2 and (E,), (F,,) be the sequences decomposing
D as in Lemma 6, with D in place of E. There is d > 0 such that

T = cxp + dxe,

with E C (C'\ D) N ¥ satisfies ||z|| = 1 (in the case when ®(¢,-) is finitely
valued on some measurable set in 7'\ C', then we can even find d and E such
that pg (z) = 1). Define z, = x+dxg, —Oxr,. Then ps (z,xp) = ps (xxp) and
TpXE = TXE, whence it follows that ||z,|; = ||z] 5. By Lemma 6 we know that
x, —x — 0 weakly. Moreover, by the fact that ®(¢, -) is affine on [¢c—d, ¢+ 0] for
any t € C, we have pg (z, — = f() (t,c)du > 0. Slnce()<fc (t,c)dp <1,
we have ||z, — x|, > [, O(t, c)du, which means that x,, — z 4 0 in norm.

If |zn]lg = ||zl = 1 and z,, — = weakly, then taking z* € Grad(zx), we
have 2* (25£) — 2*(z) = 1, whence ||22]| — 1. In consequence (see [23]),

we have that x,, — z locally in measure. Therefore, applying Lemma 7 finishes
the proof. O
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Theorem 13. Let pu be non-atomic, u(T) < oo and ¢ be a Musielak—Orlicz
function such that @ — 0 as u — 0 for p-a.e. t € T. Then the Musielak—
Orlicz space Lg is fully k-rotund if and only if ®(t,-) are strictly convex functions

for p-a.e. t €T and ® € Ay, &* € A,.

Proof. Necessity. The necessity of the conditions ® € A, and ®* € A, follows
by Proposition 2. Moreover, full k-rotundity of Lg implies its approximative
compactness (see [26]). We will show that strict convexity of the functions ®(¢, -)
(for p-a.e t € T) is the necessary condition for approximative compactness of Lg.
Suppose that there exists a set A € ¥ such that u(A) > 0 and the functions
®(t,-) are affine on some intervals, for any ¢t € A. Let Q = (¢,)7° denote the
set of all rational numbers. For any k£ € N; we define the sets

A, = {t € A: ®(t,-) is affine on [ay, by]; ax, by € Q}

Since A = J,o, A, so there exists an [ € N such that u(A;) > 0, that is, there
exist an interval [a,b] C (0,00) and a set B C A such that u(B) > 0 and ®(¢,-)
is affine on [a, b] for any t € B. Moreover, we can assume that

p_(t,a) =py(t,b) forpu—ae teT, (10)

(considering in the opposite case a subinterval of [a, b]). Similarly we can assume
without loss of generality that [ 5@ (t, ‘ITH’) dp < 1, considering a subset of B
if necessary. Indeed, in the opposite case, using the facts that (t, “T*b) is a
nonnegative, measurable and integrable function we define on >N B a measure v
such that v(C) = [, ® (¢, %t) du for any C € £ N B (if such a function is not
integrable we use intersections of the sets C' with the sums of the sets from

Lemma 3). Then the measure v is nonatomic and v(B) > 1, so there exists a
set D C B such that D € ¥ and v(D) < 1.

Let c€ Rand £ C T'\ B be such that
/CI)(t,“T”’) d,u—i—/@(t,c)d,uzl.
B B

We denote BY = B. Since the function ®(¢,b) — ®(¢,a) is nonnegative, mea-
surable and integrable, we can define on ¥ N B a nonatomic measure x by the
formula x(C) = [,[®(t,b) — ®(t,a)]dp. Then k(B) > 0, so there exist sets
Bi, By € ¥ N B such that x(Bj) = k(Bj) and x(Bj N B;) = 0. Hence

/B (L, byt + / Ot a)dy — /

B3 B3
Let z1 = axp: +bxp; + cxe. Then

iy = [ otads /

@(t,b)du—i—/ O(t,a)dp.

1 1
1 Bl

@(t,b)du—i—/ O(t,c)du

1
2 E
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=(,

+/E<I>(t,c)du

%(/Bcp(t,aH/Bcp(t,b)) +/E<I>(t,c)du
:/B@(t,aT“))dqu/Ecb(t,c)du

1.

O(t,a)du +/

By

O(t,b)du +/

By

O(t,a)du +/

By

o(t, b)dﬂ)

Similarly we decompose the sets B?, n > 2, i = 1,...,2", into subsets By,

B3+t such that B = \J2, B, k(B3 N BL™Y) = 0, B» = B, U B and
K(B3iTh) = k(By™).

Define the sets C7 = Ui:ll By, ., Cy = U,Q;_ll Bj,. and the elements
Ty, = axcp + bxep + cxe-

Then pg(z,) = 1 (whence ||z,||; = 1)and x(C}) = &(CF) for any n € N.
Moreover, by (10) and Lemma 4, there exists z € Ly generating a common
support functional z* for all x,. Let us consider x € D = conv(z,). Then
T = Zi:l a;z; for some [ € N and 22:1 a; = 1. It gives, by the triangle
inequality, that ||z, < 1. Moreover z*(z) = S.\_ az*(z;) = 1. Then 1 =
z*(x) < ||lz*||||z]lo = ||z||e, which implies ||z||4 > 1. Therefore, we have ||z|| = 1
for any x € D, whence d(0,D) =1 = ||z,]|| for any n € N. Now we will show
that pe (2, — &m) > 16(B) > 0. Let m,n € N, n < m. Then

Cl=C'NB=CIN(CTruCy) = (CrNnCH)U(CrnCy).
Therefore, C}\C7* = CT\ (CTNC) = CTNCY. Similarly, C3\C3* = CyNCT".
Moreover, (C7\ C7*) N (Dy \ C3*) = 0. So, by symmetry of the decomposing,

1 1
1F(B) = 5r(CF) = w(CT N OT) = w(CT NGYY) = w(CT\ CF)-

Therefore, k(Cy\ CF") = 1x(B). Moreover, &, — &, = axcp\cp + bxepcp, S0

1
po (Tn — ) = po (axepom) + po (bxemem) > ZH(B) > 0,

because

K(CT\ CT") = pa (bxepvopr) — pa (axepop)
< pPo (bXC{L\C{”) + po (CLXC?\C’{”)

= po (Tn — Tim).



Approximative Compactness and Full Rotundity 187

This implies that the sequence (x,) has no Cauchy subsequence, which means
that L¢ is not approximatively compact.

(1), )
Sufficiency. Assume that (x,) C S(Lg), ||%H¢ — 1 for every sub-
sequences (xl), (z2) of (z,), the function ®(¢,-) is strictly convex for p-a.e.

teT, & € Ay and ¥ € A,. Denote, for simplicity of notations, the se-
quences (xg)), (xq(f)) by (z1), (zm), respectively. We will show that (x,,) is equi-

continuous. Suppose the contrary. Then, since u(7T") < oo, we have

deg>0 Vo>0 VkeN an:nk(0)>k ElBk:Bk(O')EE
such that ||z, xB,|ls > €0 Whenever p(By) < o.

(11)

By Lemma 5, we get

Ve>0 35d=0(e) >0 In =n'(e)eN VIim>n VEEX

we have ||z;xg|ls < € whenever ||z, xgls < 0. (12)

Let us fix k € Nand § > 0. By ® € A,, the element x;,; has order continuous
norm, whence there exists ¢ > 0 such that ||z;+1x4ll < 6 whenever A € ¥ and
1(A) < 0. Now, using condition (11) to this value o > 0, we get

deg>0 Vo>0 VkeN Ellk:nk,mk:k+1>k dB,eX

13
such that ||z, xB, |l <6 and ||z, xB,|ls > €o- (13)

We get a contradiction, because condition (13) is just the condition opposite to
condition (12). So the sequence (x,,) is equi-continuous. Moreover, z,, — x - 0
for some z € Lg (see [23]). We can assume, without loss of generality, that
xn(t) — x(t) for prae. t € T. Since pu(T) < oo and (x,) is equi-continuous,
there exist n(¢) € N and a(e) > 0 such that |z,xgll, < § for any n > n(e)
whenever F € ¥ and p(F) < a(e). Since Lg is order continuous (by & € A,),
there exists b(¢) > 0 such that ||zxg|, < § for any E € ¥ with u(E) < b(e).
By the Jegoroff Theorem there exists A € ¥ such that p(A4) < imin(a(e), b(e))
and x, — z — 0 uniformly on 7"\ A, which yields that there exists n;(¢) € N
such that |z,(t) — z(t)] < 1 for any t € T'\ A and for any n > n;(¢). Then
O(t, z,(t) —x(t)) < O(t,1) for any t € T'\ A. Let (7;):2, be the sequence from
Lemma 3 and m € N be such that u((T'\ A)\ S,) < 3 min(a(e), b(e)) for S,, =
Uit T;, SmC T\ A. Then p(T'\ S,,) < min(a(e), b(e)) and pg (xs,,) < 0o. By the
Lebesgue dominated convergence theorem we have that pe ((2,— )xs,,) — 0 as
n — oo. Condition ® € A, implies that ||(z, — x)xs,/l¢ — 0, whence there
exists ny(e) > max(n(e),n1(e)) such that ||z, — x| Xs, < § for any n > na(e).
Finally,

20 = llg < [[(@n — ) x50 lle + || (@0 — 2) X180 ||
< lzaxsnlle + [|TaX\80 |6 + |2XT\S0

<I><€

for any n > ns(e). By the arbitrariness of € > 0, this finishes the proof. O
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4. Lorentz—Orlicz spaces

Let (I, 0,m) be the Lebesgue measure space with I = (0,1) or I = (0,00) . Let
® : [0,00] — [0, 00] be an Orlicz function (i.e., Musielak—Orlicz function which
does not depend on the parameter ¢) and w : I — (0, 00) be a weight function
(i.e., nonincreasing and locally integrable function with respect to the measure
m and such that [[“wdm = oo if I = (0,00)). For z € L° 2* denotes the
nonincreasing rearrangement of z defined by

2*(t) = inf{\ > 0: pu,(N) <t}

for any ¢ > 0 (by convention inf(()) = 00), where p,(A) = pu({s € T: |x(s)| > \})
for any A > 0. The Orlicz—Lorentz function space Ag,, is defined by

Aoy = {x € L'(m): /@(Ax*)w dm < oo for some A\ > 0}.
I

In the case of counting measure on 2N the Orlicz-Lorentz sequence space g,
is defined by

)\q>,w:{x: ZCID )\x w(k) < oo for some)\>0}

=1

Here w = (w(k)) is a weight sequence, that is, a nonincreasing sequence of
positive reals such that » ;- w(k) = oco. In this case z* is nothing but the
permutation of x such that z* is a nondecreasing sequence.

It is easy to check that Ag, (resp. Ae.) is a symmetric function space
(resp. symmetric sequence space) with the Fatou property, if it is equipped

with the norm .
/i =mf{A >0: pa(3) <1},

where p5(x) = [, ®(a"(#)w(t) du (resp. p(z) = Y52, B(a*(n))w(n) in the
sequence case) The Symmetry of the space means the fact that if x and g are
equimeasurable, that is, pu, = g, then ||2]|ow = ||g||o.0-

Now we consider the Kadec—Klee property and approximative compactness
in Lorentz—Orlicz function and sequence spaces. In the sequence case we assume
that the weight sequence (w,) belongs to ¢o. We say that an Orlicz function
O satisfies condition Ay at zero (& € Ay(0) for short) if there are positive
constants K, a such that ®(a) > 0 and the inequality ®(2u) < K®(u) holds for
all u € [0,a].

Theory of Lorentz spaces and Lorentz—Orlicz spaces is very important and
popular mainly because of its applications to the interpolation theory. We refer
the readers to [1, 4, 5, 32] and [33].
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Theorem 14. Suppose that ® : Rt — RT is a convex function. Then the
Lorentz—Orlicz sequence space Ao, has the Kadec—Klee property if and only if
a(®) =0, ® satisfies the Ay-condition at zero and Y | w, = +00.

Proof. Necessity. Suppose that a(®) > 0. Take b > 0 such that ®(b)w; = 1 and
define = = bey, x, = x + a(P)e,41 (n € N). It is evident that x > 0 and x,, > 0
for any n € N. We will show that z,, — = weakly. Define z = a(®) > "7 €n41.
We have z > 0, pg (2) = 0 and pg (Az) = +o00 for any A > 1, whence ||z||$ = 1.
Therefore z € Ag,. In consequence, for any z* € (Ag,)*, z* > 0, we have
0 < 2*(z) < 0o and for any k € N:

0 < a(®) nzk;x*@nﬂ) =z (a(cp) Zk; enﬂ) < 2*(2) <

whence Y z*(epq1) < oo, and so z*(z,) — 0 as n — oo. Since any
r* € (Apw)" can be written as a difference of two nonnegative functionals
from (Mg, )*, this shows that x, — z weakly. Since p§(z) = ®(b)w; = 1,
we get ||z]|§ = 1. Analogously, since p§(z,) = ®(b)w; + P(ag)wy = 1, we get
|znll% = 1. But ||z, — z||§ = a(®)|le1||$ > 0 for any n € N, which shows that
Ao does not have the Kadec-Klee property.

Suppose now that ® does not satisfy the A,-condition at zero or) ., w,< co.
Then A, contains an order isometric copy of [* (see [25]), so A, does not
have the Kadec-Klee property.

Sufficiency. Assume now that a(®) = 0, ® € Ay(0) and > w, = oco.
Then, taking into account that in the sequence case weak convergence implies
pointwise convergence of sequences, we get in the same way as in [24] in the
function case that A\¢,, has the Kadec-Klee property. O

Theorem 15.

(i) If ® is an Orlicz function vanishing only at zero and w : I — Ry is a
weighted function that is strictly decreasing on I, then the Lorentz—Orlicz
space Mg, 15 approzimatively compact if and only if Ag ,, is reflexive, that
is, ® and ®* satisfy condition Ay(c0) if m(I) < oo and condition Ag(R)
if m(I) = oo, and [;w(t)dm = oo if m(I) = oo,

(ii) If ® is an Orlicz function vanishing only at zero and (w,) is a weighted
sequence from cy, then the Lorentz—Orlicz space \g,, 1S approzimatively
compact if and only ® and ®* satisfy condition Ay(0) and Y 7 | w, = 00.

Proof. Sufficiency. (i) By the assumptions, Ag,, is reflexive (see [21])) and it
has the Kadec—Klee property (see [19], Theorem 18, p. 327). So, by Theorem 3,
As,, is approximatively compact.

(ii) By the assumptions we know (see [19]) that g, is reflexive and that
(see [19], Theorem 2) A, has property H, (= the Kadec-Klee property with
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respect to the coordinatewise convergence), so by reflexivity of the space, it has
also property H. By Theorem 3, A\g, is approximatively compact.

Necessity. By [21], the assumptions are necessary for reflexivity of Ag ,, and
Ao, respectively. By [19], Theorems 18 and 2, the assumptions are necessary
for property H of Ag, and Ag,, respectively. By Theorem 3, the assump-
tions are necessary for approximative compactness of the spaces Ag ., and g,
respectively. O

Remark 4. Note that by Theorem 15 and the criteria for strict convexity of
Ag,, from [19], in the case when the weighted function w is strictly decreasing
on [, approximative compactness of the Lorentz-Orlicz Ag, does not imply
strict convexity of Ag, in contrast to Musielak—Orlicz function spaces.

Remark 5. It follows from the results of this paper that in reflexive strictly
convex Musielak—Orlicz spaces and in Lorentz—Orlicz spaces that are reflexive
and strictly convex, the metric projections from the space onto its nonempty,
convex and closed subsets are continuous.
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