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Abstract. The Plancherel and Hausdorff–Young type theorems are proved for an
integral transformation, which is associated with the product of the modified Bessel
functions of different arguments. The transform essentially generalizes Lebedev’s
transformation involving squares of the modified Bessel functions as kernels.
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1. Introduction

In this paper we will derive and study the following pair of integral transforms:

[Gf ](x, y) = 2√
π

∫ ∞

0

τKiτ

(

√

x2 + y2 − y
)

Kiτ

(

√

x2 + y2 + y
)

f(τ)dτ (1.1)

f(τ) =
8 sinh 2πτ

π3
√
π

∫ ∞

0

∫ ∞

0

Kiτ

(

√

x2 + y2 − y
)

×Kiτ

(

√

x2 + y2 + y
)

[Gf ](x, y)dx dy
x

,

(1.2)

where Kν(z) is the modified Bessel function (cf. in [1, Chapter 9]) of the pure
imaginary index (a subscript) ν = iτ . The convergence of the integrals in the
corresponding spaces of functions will be discussed in detail below. Here we
note, that we consider transformation (1.1) as an integral operator between two
Lebesgue spaces

G : L2

(

R+;
τdτ

sinh 2πτ

)

↔ L2

(

R+ × R+;
dx dy

x

)

, (1.3)
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where the weighted Lebesgue space Lp(Ω;ω(τ)dτ), 1 ≤ p <∞, is normed by

‖f‖Lp(Ω;ω(τ)dτ) =

(
∫

Ω

|f(τ)|pω(τ)dτ
)

1

p

(1.4)

‖f‖L∞(Ω;ω(τ)dτ) = ess supτ∈Ω|f(τ)|.
We will show that (1.3) is a one-to-one map. Moreover, using the technique of
Mellin and Kontorovich–Lebedev transforms we generalize this result by proving
the boundedness of the transformation (1.1) as an operator

G : Lp (R+; dτ)↔ Lq

(

R+ × R+;x
qν−1dx dy

)

(1.5)

with 1 ≤ p ≤ 2, p−1+q−1 = 1, ν > 0. These main results are summarized in the
Plancherel and Hausdorff -Young type theorems for the transformation (1.1).

As we see below, this surprisingly enough reciprocal formulas arise from the
application of Plancherel’s theorems for the Mellin and Kontorovich–Lebedev
transforms (see in [5, 6, 7]). Since the integration in (1.1) is with respect to
the order of the modified Bessel functions, such a class of integral transforms
is called index transforms [7]. For instance, if we put y = 0 in (1.1) we arrive
at the one-dimensional Lebedev transformation with the square of the modified
Bessel function [3, 8]

[Gf ](x) = 2√
π

∫ ∞

0

τK2
iτ (x)f(τ) dτ.

By fixing x > 0, say x = 1, we derive an index transform with the product of
the modified Bessel functions

[Gf ](y) = 2√
π

∫ ∞

0

τKiτ

(

√

1 + y2 − y
)

Kiτ

(

√

1 + y2 + y
)

f(τ) dτ.

However, when (x, y) ∈ R+ × R+ are independent variables, it defines a com-
pletely different type of integral transformations which form one-to-one iso-
metric isomorphism between one- and two-dimensional naturally determined
weighted L2-spaces with respect to the measures (1.3). Moreover, as we will
show for all f1, f2 ∈ L2

(

R+;
τdτ

sinh 2πτ

)

the corresponding Gf1,Gf2 belong to

L2
(

R+ × R+;
dx dy

x

)

and the Parseval identity holds:
∫ ∞

0

∫ ∞

0

[Gf1](x, y)[Gf2](x, y)
dx dy

x
=
π3

4

∫ ∞

0

τ

sinh 2πτ
f1(τ)f2(τ)dτ. (1.6)

In particular, we have
∫ ∞

0

∫ ∞

0

|[Gf ](x, y)|2dx dy
x

=
π3

4

∫ ∞

0

τ

sinh 2πτ
|f(τ)|2dτ. (1.7)

Finally we note in this section, that the formulas (1.1), (1.2) give a new source
of index integrals and may successfully collect the related table in [3] (see also
in [6, Chapter 10]).
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2. Auxiliary definitions and results

It is well known [1] that the modified Bessel function can be defined, in partic-
ular, through the inverse Mellin transform of the product of the Euler Gamma-
functions (cf. in [7, relation (2.124)])

Kiτ (2x) =
1

8πi

∫ γ+i∞

γ−i∞
Γ
(

s+iτ
2

)

Γ
(

s−iτ
2

)

x−sds, x > 0, γ > 0.

Meanwhile, the Mellin direct transform

fM(s) =

∫ ∞

0

f(x)xs−1dx (2.1)

is defined for f ∈ L2(R+;x
2γ−1dx) and one-to-one isomorphically maps on

L2(γ − i∞, γ + i∞), where integral (2.1) is convergent in mean with respect to
the norm of the latter L2-space. The inverse operator is given by

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
fM(s)x−sds, s = γ + it, x > 0. (2.2)

Here integral (2.2) is convergent in mean by the norm in L2(R+;x
2γ−1dx). More-

over, the operator fM is an isometric isomorphism between two mentioned
Hilbert spaces and the Parseval equality

∫ ∞

0

|f(x)|2x2γ−1dx =
1

2π

∫ ∞

−∞
|fM(γ + it)|2dt (2.3)

holds true. We also consider the Kontorovich–Lebedev transform [5, 7] of the
form

[KLf ](x) = 4

∫ ∞

0

τK2iτ (2x)f(τ) dτ. (2.4)

As it is proved in [7, Chapter 2], the Kontorovich-Lebedev operator (2.4) is the
isomorphism

[KLf ] : L2

(

R+;
τdτ

sinh 2πτ

)

↔ L2
(

R+;x
−1dx

)

,

where the integral converges in mean and the Parseval identity

∫ ∞

0

|[KLf ](x)|2dx
x

= 2π2
∫ ∞

0

τ

sinh 2πτ
|f(τ)|2 dτ (2.5)
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holds. These results will be applied to study mapping properties of the index
transform (1.1) [Gf ](x, y), which is associated with the product of the modified
Bessel functions

Kiτ

(

√

x2 + y2 − y
)

Kiτ

(

√

x2 + y2 + y
)

. (2.6)

Furthermore, in Section 3 we will use the formula (2.16.33.10) in [4]

2

∫ ∞

0

xs−1Kiτ

(

√

x2 + y2 − y
)

Kiτ

(

√

x2 + y2 + y
)

dx

=

√
π

2
y
s
2K s

2
(2y)

Γ
(

s
2
+ iτ

)

Γ
(

s
2
− iτ

)

Γ(1+s
2
)

,

(2.7)

which gives the Mellin transform (2.1) with respect to x of this product for
each y, τ > 0 and γ = Res > 0. Finally in this section we appeal to relation
(2.16.52.8) in [4] and we take the Fourier sine transform [5]

(Fsf)(x) =

√

2

π

∫ ∞

0

f(τ) sin xτ dτ (2.8)

in order to derive the following integral representation for the kernel (2.6)

τKiτ

(

√

x2 + y2 − y
)

Kiτ

(

√

x2 + y2 + y
)

=
x2

2

∫ ∞

0

K1

(

2
√

y2 + x2 cosh2( t
2
)
)

√

y2 + x2 cosh2( t
2
)

sinh t sin tτ dt.
(2.9)

3. The Plancherel type theorem

In this section we give a sketch of proof of the Plancherel type theorem for the
transformation (1.1). The complete proof is recently published in [10, Theo-
rems 3, 4].

We begin to consider transformation (1.1) [GfN ](x, y) by taking

fN(τ) = f(τ) ∈ L2
(

R+; τ [sinh 2πτ ]
−1dτ

)

,

which vanishes outside of the interval ( 1
N
, N). Then in view of the uniform

estimate for the modified Bessel function [7, formula (1.100)]

|Kiτ (u)| ≤ e−δ|τ |K0(u cos δ), u > 0, δ ∈
[

0, π
2

)

, (3.1)

it follows that integral (1.1) exists in the Lebesgue sense. Hence we may calcu-
late with respect to x the Mellin transform (2.1) of the function [GfN ](x, y). For
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this we apply formula (2.7) and interchange the order of integration by virtue
of Fubini’s theorem. Therefore we obtain for y > 0, s = γ + it, γ > 0

[GfN ]M(s, y) =
y
s
2K s

2
(2y)

Γ(1+s
2
)

∫ ∞

0

τΓ
(

s
2
+ iτ

)

Γ
(

s
2
− iτ

)

fN(τ) dτ.

Using (2.1) we see that the latter integral is the composition of the Kontorovich-
Lebedev and Mellin transforms (2.4) and (2.1), respectively. In fact, it can be
verified by substituting instead of the product of gamma-functions the value of
the Mellin transform (2.1) of the modified Bessel function (cf. relation (2.16.2.2)
in [4]). Then appealing to (3.1) and the Fubini theorem we invert the order
of integration in the obtained iterated integral and arrive at the composition
representation

[GfN ]M(s, y) =
y
s
2K s

2
(2y)

Γ(1+s
2
)

[KLfN ]
M(s) (3.2)

with s = γ + it, γ > 0,

[KLfN ]
M(s) =

∫ N

1

N

τΓ
(

s
2
+ iτ

)

Γ
(

s
2
− iτ

)

f(τ) dτ.

Theorem 1. Let f ∈ L2(R+; τ [sinh 2πτ ]
−1dτ). Then, as N →∞, the integral

[GfN ](x, y) =
2√
π

∫ N

1

N

τKiτ

(

√

x2 + y2 − y
)

Kiτ

(

√

x2 + y2 + y
)

f(τ) dτ

(3.3)

converges in mean to [Gf ](x, y) with respect to the norm of L2
(

R+ × R+;
dx dy

x

)

,

and

fN(τ) =
8

π3
√
π
sinh 2πτ

∫ N

1

N

∫ N

1

N

Kiτ

(

√

x2 + y2 − y
)

×Kiτ

(

√

x2 + y2 + y
)

[Gf ](x, y)dx dy
x

(3.4)

converges in mean to f(τ) with respect to the norm of L2(R+; τ [sinh 2πτ ]
−1dτ).

Moreover, almost for all τ ∈ R+ and (x, y) ∈ R+×R+, respectively, the following

reciprocal formulas take place:

f(τ) =
8

π3
√
π

sinh 2πτ

τ

d

dτ

∫ ∞

0

∫ ∞

0

∫ τ

0

ξKiξ

(

√

x2 + y2 − y
)

×Kiξ

(

√

x2 + y2 + y
)

[Gf ](x, y) dξ dx dy
x

,

(3.5)
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[Gf ](x, y) = 2√
π

∂

∂x∂y

∫ ∞

0

∫ x

0

∫ y

0

τKiτ

(√
u2 + v2 − v

)

×Kiτ

(√
u2 + v2 + v

)

f(τ) du dv dτ.

(3.6)

Finally, for all f1, f2 ∈ L2
(

R+;
τdτ

sinh 2πτ

)

and the corresponding Gf1,Gf2 ∈
L2
(

R+ × R+;
dx dy

x

)

the Parseval identity (1.6) holds. In particular for f1 ≡ f2
it takes the form (1.7).

Sketch of the proof. First we estimate the following double integral

IN(γ) =
1

2π

∫ ∞

−∞

∫ ∞

0

∣

∣[GfN ]M(γ + it, y)
∣

∣

2
dy dt. (3.7)

Making use of representation (3.2) we substitute it in (3.7). This leads to the
iterated integral in the form

IN(γ) =
1

2π

∫ ∞

−∞

∣

∣

∣

∣

∣

[KLfN ]
M(γ + it)

Γ(1+γ+it

2
)

∣

∣

∣

∣

∣

2

dt

∫ ∞

0

yγK γ+it

2

(2y)K γ−it

2

(2y) dy. (3.8)

But the integral with respect to y in (3.8) can be calculated in view of the
formula (2.16.33.2) in [4]. Thus, we insert in (3.8) the corresponding result and
employ the Mellin–Parseval identity (2.3). Consequently, the integral IN can
be written as

IN(γ) =

√
πΓ(γ + 1

2
)

8Γ(γ + 1)

∫ ∞

0

∣

∣[KLfN ](x)
∣

∣

2
x2γ−1dx. (3.9)

However on the other hand, we represent IN in terms of the square of norm of
[Gf ](x, y) in the space L2 (R+ × R+;x

2γ−1dx dy). Indeed, by the use of (2.3) we
have

IN(γ) =

∫ ∞

0

∫ ∞

0

∣

∣[GfN ](x, y)
∣

∣

2
x2γ−1dx dy. (3.10)

Combining (3.9) and (3.10) we arrive at the equality

∫ ∞

0

∫ ∞

0

∣

∣[GfN ](x, y)
∣

∣

2
x2γ−1dx dy

=

√
πΓ(γ + 1

2
)

8Γ(γ + 1)

∫ ∞

0

∣

∣[KLfN ](x)
∣

∣

2
x2γ−1dx.

(3.11)

So the Parseval identity (1.7) for the L2-sequence {fN} will follow from (3.11)
by formal substitution γ = 0 and using the equality (2.5). We note that (1.6)
is now an immediate consequence of the equality (1.7) and the parallelogram
identity.
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Further, we have

∫ ∞

0

∫ ∞

0

∣

∣[GfN ](x, y)− [GfM ](x, y)
∣

∣

2dx dy

x

=
π3

4

(

∫ 1

N

1

M

+

∫ M

N

)

τ

sinh(2πτ)
|f(τ)|2dτ.

(3.12)

Since the right-hand side of (3.14) tends to zero as M → ∞, N → ∞, so it
does the left-hand side. That is, [GfN ](x, y) converges in mean to a function,
[Gf ](x, y) say, of the class L2 (R+ × R+;x

−1dx dy), which satisfies the Parseval
identity (1.7).

On the other hand, for two functions f, θ we have (see (1.6)) that

∫ ∞

0

∫ ∞

0

[G; τf(τ)](x, y)[G; τθ(τ)](x, y)dxdy
x

=
π3

4

∫ ∞

0

ξ

sinh 2πξ
f(ξ)θ(ξ)dξ. (3.13)

Putting

θ(ξ) ≡ θτ (ξ) =

{

1, if ξ ∈ [0, τ ]

0, if ξ > τ,

and differentiating through with respect to τ in the equality (3.13) we obtain
for almost all τ ∈ R+ that

f(τ) =
8 sinh 2πτ

π3
√
πτ

d

dτ

∫ ∞

0

∫ ∞

0

∫ τ

0

ξKiξ

(

√

x2 + y2 − y
)

×Kiξ

(

√

x2 + y2 + y
)

[G; τf(τ)](x, y) dξ dx dy
x

.

(3.14)

Now, analogously we set GN(x, y) = [G; τf(τ)](x, y) and it is equal to zero out-
side of the square [ 1

N
, N ]×[ 1

N
, N ]. Hence evidently it converges to [G; τf(τ)](x, y)

by the norm of the space L2
(

R+ × R+;
dx dy

x

)

(cf. in (1.4) with p = 2,Ω =
R+ × R+, with respect to the measure x−1dx dy). Moreover, substituting
GN(x, y) into (3.14) we may differentiate through the integral sign by virtue
of the uniform convergence. Thus we arrive at (3.4), and via Parseval identity
(1.7) its left-hand side converges to the limit function ψ(τ). It is proved [10]
that ψ(τ) = f(τ) almost for all τ ∈ R+.

Now we show that apart from sets of measure zero, there is a one-to-one
correspondence between [Gf ](x, y) and f(τ). Indeed, for the sequence fN(τ)
integral (3.3) has a finite range of integration and converges absolutely and
uniformly by (x, y) ∈ R+×R+, 0 < r =

√

x2 + y2 ≤ R. Therefore, we integrate
by x and y in (3.3), and making the interchange of the order of integration we
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arrive at the equality
∫ x

0

∫ y

0

[GfN ](u, v) du dv =
2√
π

∫ ∞

0

τ

∫ x

0

∫ y

0

Kiτ

(√
u2 + v2 − v

)

×Kiτ

(√
u2 + v2 + v

)

fN(τ) du dv dτ.

(3.15)

If N →∞, then for each fixed x > 0, y > 0 the left-hand side of (3.15) tends to
the value

∫ x

0

∫ y

0

[Gf ](u, v) du dv

as a bounded linear functional. Moreover, since (see [10])

∫ x

0

∫ y

0

Kiτ

(√
u2 + v2 − v

)

Kiτ

(√
u2 + v2 + v

)

du dv ∈ L2(R+; τ sinh 2πτ dτ),

then as it is easily seen via the Schwarz inequality the integral in the right-
hand side of (3.15) converges absolutely. Moreover, making N →∞ for almost
all positive x and y after differentiation of both sides in (3.15) we obtain for-
mula (3.6). So this correspondence is unique in L2-sense. Similarly, since for
each τ > 0

Kτ (x, y) =
2√
π

∫ τ

0

ξKiξ

(

√

x2 + y2 − y
)

Kiξ

(

√

x2 + y2 + y
)

dξ

∈ L2
(

R+ × R+;
dx dy

x

)

,

then in the same manner we observe that integral (3.5) converges absolutely
and represents an inversion formula for the transformation (3.6).

4. The Hausdorff-Young type theorem

In this section we study transformation (1.1) as an integral operator (1.5). We
will prove an analog of the boundedness Hausdorff-Young theorem [2] for this
transformation and we will estimate its norm for general p by using the Riesz-
Thorin interpolation theorem.

First we begin to prove the boundedness of the operator (1.1) for the case
p = q = 2, ν > 0. We employ the following inequality from [9], which estimates
the square of norms for the Kontorovich-Lebedev transformation (2.4)

∫ ∞

0

x2ν−1
∣

∣[KLf ](x)
∣

∣

2
dx ≤ π

3

241−2ν

Γ(1
2
+ 2ν)

∫ ∞

0

τ 2 |Γ(2(ν + iτ))|2 |f(τ)|2dτ. (4.1)

Assuming that f ∈ L2 (R+; dτ) we apply the reduction formula for gamma-
functions [7, formula (1.23)] Γ(z + 1) = zΓ(z) and the elementary inequality
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[7, formula (1.26)] |Γ(z)| ≤ Γ(Rez) to estimate the integral in the right-hand
side of (4.1) as follows:

∫ ∞

0

τ 2 |Γ(2(ν + iτ))|2 |f(τ)|2dτ ≤
∫ ∞

0

τ 2
|Γ(1 + 2(ν + iτ))|2

4(ν2 + τ 2)
|f(τ)|2dτ

≤ 1

4
[Γ(1 + 2ν)]2

∫ ∞

0

|f(τ)|2dτ.

Thus combining with (4.1) we obtain

∫ ∞

0

x2ν−1
∣

∣[KLf ](x)
∣

∣

2
dx ≤ π

3

24−2ν [Γ(1 + 2ν)]2

Γ(1
2
+ 2ν)

∫ ∞

0

|f(τ)|2dτ.

Meantime taking into account equality (3.11) we immediately arrive at the
estimate

∫ ∞

0

∫ ∞

0

∣

∣[Gf ](x, y)
∣

∣

2
x2ν−1dx dy =

√
πΓ(ν + 1

2
)

8Γ(ν + 1)

∫ ∞

0

x2ν−1
∣

∣[KLf ](x)
∣

∣

2
dx

≤ π22−4ν−3Γ(1
2
+ ν) [Γ(1 + 2ν)]2

Γ(1
2
+ 2ν)Γ(1 + ν)

∫ ∞

0

|f(τ)|2dτ.

Finally, invoking the duplication formula for gamma-function (cf. in [7, for-
mula (1.30)] Γ(2z) = 22z−1√

π
Γ(z)Γ(1

2
+ z) we find

∫ ∞

0

∫ ∞

0

∣

∣[Gf ](x, y)
∣

∣

2
x2ν−1dx dy ≤ π

[

Γ(1
2
+ ν)

]3
Γ(1 + ν)

8Γ(1
2
+ 2ν)

∫ ∞

0

|f(τ)|2dτ. (4.2)

Therefore, transformation (1.1) is a bounded operator (1.5) of type (2, 2) and
from (4.2) (see (1.4)) we obtain

‖Gf‖L2(R+×R+;x2ν−1dx dy) ≤
√

π

8

[

Γ(1
2
+ ν)

]
3

2

[

Γ(1 + ν)

Γ(1
2
+ 2ν)

]
1

2

‖f‖L2(R+;dτ). (4.3)

Inequality (4.3) implies that the norm ‖G‖2,2 of the operator G in this case is
such that

‖G‖2,2 ≤
√

π

8

[

Γ(1
2
+ ν)

]
3

2

[

Γ(1 + ν)

Γ(1
2
+ 2ν)

]
1

2

.

Now we prove that transformation (1.1) is of type (1,∞). We have

Theorem 2. The index transformation (1.1) is a bounded operator

G : L1 (R+; dτ)↔ L∞,ν (R+ × R+) , ν > 0,



202 S. B. Yakubovich

with the norm ‖G‖1,∞ ≤ 2√
π
supx>0 |xνK0(2x)|, i.e., for all (x, y) ∈ R+ × R+

|xν [Gf ](x, y)| ≤ 2√
π
sup
x>0

|xνK0(2x)| ‖f‖1, ν > 0,

where the space L∞,ν (R+ × R+) is normed by

‖f‖L∞,ν(R+×R+) = ess sup
(x,y)∈R+×R+

|xνf(x, y)|.

Proof. By taking integral representation (2.9) for the product of the modified
Bessel function we substitute it in (1.1) and change the order of integration via
Fubini’s theorem and the absolute convergence of the corresponding iterated
integral. Indeed, appealing to the differentiation and asymptotic properties for
the modified Bessel functions [1, Chapter 9] we find for x > 0

x2

2

∫ ∞

0

|f(τ)|
∫ ∞

0

K1

(

2
√

y2 + x2 cosh2( t
2
)
)

√

y2 + x2 cosh2( t
2
)

sinh t| sin tτ | dt dτ

≤ x2

2

∫ ∞

0

|f(τ)|
∫ ∞

0

K1

(

2
√

y2 + x2 cosh2( t
2
)
)

√

y2 + x2 cosh2( t
2
)

sinh t dt dτ

=

∫ ∞

0

|f(τ)|
∫ ∞

0

d

dt

[

−K0

(

2
√

y2 + x2 cosh2( t
2
)

)]

dt dτ

= K0

(

2
√

y2 + x2
)

‖f‖1

≤ K0 (2x) ‖f‖1 <∞ .

So, invoking (2.8) we can write transformation (1.1) in the form

[Gf ](x, y) = x2√
2

∫ ∞

0

K1

(

2
√

y2 + x2 cosh2( t
2
)
)

√

y2 + x2 cosh2( t
2
)

sinh t(Fsf)(t) dt.

Consequently,

|xν [Gf ](x, y)| ≤
√
2 sup

t>0
|(Fsf)(t)| |xνK0 (2x)| ‖f‖1 =

2√
π
sup
x>0

|xνK0(2x)| ‖f‖1,

which completes the proof of Theorem 2.

Now we are ready to prove an analog of the Hausdorff–Young theorem
(cf. [2]) for transformation (1.1).
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Theorem 3. The index transformation (1.1) is a bounded operator

G : Lp (R+; dτ)↔ Lq

(

R+ × R+;x
νq−1dx dy

)

, ν > 0,

where 1 ≤ p ≤ 2 and p−1 + q−1 = 1. It satisfies the norm inequality

‖Gf‖Lq(R+×R+;xνq−1dx dy)

≤ 21−
5

qπ
2

q
− 1

2

[

Γ(1
2
+ ν)

]
3

q

[

Γ(1 + ν)

Γ(1
2
+ 2ν)

]
1

q
[

sup
x>0

|xνK0(2x)|
]1− 2

q

‖f‖Lp(R+;dτ),
(4.4)

and therefore

‖G‖p,q ≤ 21−
5

qπ
2

q
− 1

2

[

Γ(1
2
+ ν)

]
3

q

[

Γ(1 + ν)

Γ(1
2
+ 2ν)

]
1

q
[

sup
x>0

|xνK0(2x)|
]1− 2

q

. (4.5)

Proof. In fact, by inequality (4.3) we observe that transformation (1.1) is of
type (2, 2). Meantime Theorem 2 states that this operator is of type (1,∞).
Hence by the Riesz–Thorin convexity theorem [2] the index transformation (1.1)
is an operator of type (p, q), i.e., it maps the space Lp(R+; dτ) into Lq(R+ ×
R+;x

νq−1dx dy), where q−1 = θ
2
, 0 ≤ θ ≤ 1. This means that 2 ≤ q ≤ ∞ and

we find

‖Gf‖Lq(R+×R+;xνq−1dx dy)

≤
[

√

π

8

[

Γ(1
2
+ ν)

]
3

2

[

Γ(1 + ν)

Γ(1
2
+ 2ν)

]
1

2

]θ
[

2√
π
sup
x>0

|xνK0(2x)|
]1−θ

‖f‖Lp(R+;dτ)

= 21−
5

qπ
2

q
− 1

2

[

Γ(1
2
+ ν)

]
3

q

[

Γ(1 + ν)

Γ(1
2
+ 2ν)

]
1

q
[

sup
x>0

|xνK0(2x)|
]1− 2

q

‖f‖Lp(R+;dτ).

Thus we get inequality (4.4). This immediately implies (4.5). Theorem 3 is
proved.
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