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An Existence Result

for a Class of Extended Inclusion Problems

with Applications to Equilibrium Problems

Y. P. Fang and N. J. Huang

Abstract. Let X be a real reflexive Banach space, K ⊂ X a nonempty, closed and
convex set, and F : K×K → 2X (the family of all the subsets of X) be a multi-valued
mapping. In this paper, we consider the following extended inclusion problem: find
x∗ ∈ K such that K ⊂ F (x∗, x∗). Under suitable conditions, we establish an existence
result for the extended inclusion problem. As applications, we give some existence
theorems for equilibrium problems.
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1. Introduction and Preliminaries

Given a set K and a bifunction f : K ×K → R, the equilibrium problem is to
find x ∈ K such that

f(x, y) ≥ 0 ∀y ∈ K,

which was introduced by Blum and Oettli [5]. The equilibrium problem has
been studied extensively because it provides a unifying framework for many
important problems, such as optimization, variational and variational-like in-
equalities, minimax inequality problems. They are widely applied to study the
problems arising in economics, mechanics, and engineering science. In recent
years, many existence results concerning equilibrium problems and variational
inequalities problems have been established by different methods (see, for ex-
ample, [1, 2], [4]–[8], [10]–[12], [14]–[16], [19] and the references therein). Re-
cently, Di Bella [9] introduced and studied a class of inclusion problems, which
is formulated to find x∗ ∈ K such that K ⊂ T (x∗), where K is a nonempty,
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closed and convex subset of a real Banach space X, and T : K → 2X is a
multi-valued mapping. He obtained a general existence result for the inclusion
problem, which extends the corresponding result by Ricceri [19]. Di Bella [9]
also pointed out that the inclusion problem includes the variational inequality
problem as a special case. In fact, the equilibrium problem also can be regarded
as a special case of the above inclusion problem by defining T : K → 2X by

T (x) = {y ∈ X : f(x, y) ≥ 0} ∀x ∈ K.

In this paper, we further introduce and study the extended inclusion problem,
which is to find x∗ ∈ K such that K ⊂ F (x∗, x∗), where F : K × K → 2X

is a multi-valued mapping. The extended inclusion problem provides a unify-
ing framework for the extended variational inequality problem introduced by
Chen [8], some variational-like problems studied in [1, 7], the extended equi-
librium problem in [10] and the inclusion problem introduced by Di Bella [9].
Under suitable conditions, we prove the solvability of the extended inclusion
problem. As applications, we give some existence results for equilibrium prob-
lems and variational inequality problems.

Given two real Banach spaces X and Y , and a multi-valued mapping T :
X → 2Y . T is said to be lower semi-continuous if, for each open set Ω ⊂ Y ,
the set T−(Ω) = {x ∈ X : T (x) ∩ Ω 6= ∅} is open in X. T is said to be upper
semi-continuous if, for each closed set A ⊂ Y , the set T−(A) is closed in X. T is
said to have a closed graph if the set Graph (T ) = {(x, y) ∈ X×Y : y ∈ T (x)} is
closed inX×Y . WhenR(T ) = {y ∈ Y : y ∈ T (x) for some x ∈ X} is contained
in a compact subset of Y , it is known that T is upper semi-continuous if and
only if T has a closed graph (see [3]).

The paper is organized as follows: In Section 2, we give our main result by
establishing an existence result for the extended inclusion problem. As appli-
cations of our result, we give some existence results for equilibrium problems.

2. Existence results

For our main result, we first present an existence result for the inclusion prob-
lem.

Lemma 2.1. Let K be a nonempty, compact and convex subset of a finite
dimensional Banach space X and T : K → 2X be a multi-valued mapping
satisfying the following conditions:

(i) x ∈ T (x) for all x ∈ K;

(ii) the multi-valued mapping T c : K → 2X defined by T c(x) = X\T (x) is
lower semi-continuous with convex values.

Then there exists x∗ ∈ K such that K ⊂ T (x∗).
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Proof. Define T c
K
: K → 2K by T c

K
(x) = K ∩ T c(x) = K\T (x). We claim that

there exists x∗ ∈ K such that T c
K
(x∗) = ∅. Assume by absurd that T c

K
(x) 6= ∅

for all x ∈ K. Condition (ii) implies that T c

K
is lower semi-continuous with

nonempty and convex values. By the Michael selection theorem [13], there
exists a continuous single-valued mapping g : K → K with g(x) ∈ T c

K
(x) for

all x ∈ K. By the Brouwer fixed point theorem, there exists u ∈ K such that
u = g(u) ∈ K\T (u), which contradicts condition (i). Hence there exists x∗ ∈ K
such that T c

K
(x∗) = ∅. So follows the conclusion.

Remark 2.2. Some existence results for the inclusion problem were proved in
Theorems 3.1 and 3.2 of Di Bella in [9]. But our assumption is different and
the proof is more simple.

Now we present our main result as follow:

Theorem 2.3. Let K be a nonempty, bounded, closed and convex subset of a
real reflexive Banach space X and F : K×K → 2X be a multi-valued mapping.
Assume that the following conditions hold:

(i) x ∈ F (y, x) for all x, y ∈ K;

(ii) for each z ∈ K and each finite dimensional subspace D of X with KD =
K ∩K 6= ∅, the multi-valued mapping F c(z, ·) : KD → 2X is lower semi-
continuous with convex values;

(iii) for each z ∈ K and each finite dimensional subspace D of X with KD 6= ∅,
the set {x ∈ KD : KD ⊂ F (z, x)} is convex and closed;

(iv) if (xα, zα) ∈ K × K, (xα, zα) converges to (x, z) ∈ K × K weakly, and
K ⊂ F (zα, xα) for all α, then K ⊂ F (z, x).

Then there exists x∗ ∈ K such that K ⊂ F (x∗, x∗).

Proof. Define D by

D = {D : D is a finite dimensional subspace of X with KD 6= ∅}.

For any given z ∈ K and D ∈ D, consider the following auxiliary problem:

(AP)z
D
: Find u ∈ KD such that KD ⊂ F (z, u).

Conditions (i) and (ii) imply that for each z ∈ K, F (z, ·) satisfies all the con-
ditions of Lemma 2.1. By Lemma 2.1, problem (AP )z

D
is solvable for all z ∈ K

and D ∈ D. Define a multi-valued T : KD → 2KD as follows:

T (z) =
{

u ∈ KD : u solves problem (AP)z
D

}

∀z ∈ KD.

By the arguments above and condition (iii), it is easy to verify that T (z) is
nonempty, closed, and convex for all z ∈ KD. Now we show that T is also
upper semi-continuous. Let (zα, uα) ∈ Graph(T ) and (zα, uα) converge to (z, u)
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with respect to the norm topology of X×X. It follows from condition (iv) that
(z, u) ∈ Graph(T ). Thus T has a closed graph and so is upper semi-continuous.
By the known Kakutani–Fan–Glicksberg fixed point theorem (see [13, p. 171]),
there exists u∗ ∈ KD such that KD ⊂ F (u∗, u∗). For any D ∈ D, denote by SD
the solution set of the following problem:

Find u ∈ K such that KD ⊂ F (u, u).

Obviously, SD is nonempty and bounded for all D ∈ D. Denote by S
w

D
the weak

closure of SD inK. Clearly S
w

D
is weakly compact. For anyDi ∈ D, i = 1, . . . , n,

let L be the subspace spanned by
⋃

n

i=1
Di. It is easy to see that SL ⊂ SDi

since
Di ⊂ L for each i. Thus SL ⊂

⋂

n

i=1
SDi

. This implies that {S
w

D
: D ∈ D} has a

finite intersection property. It follows from [17, Theorem 1.2.3] that
⋂

D∈D

S
w

D
6= ∅.

Let x∗ ∈
⋂

D∈D
S
w

D
. We assert thatK ⊂ F (x∗, x∗). In fact, for any givenD ∈ D,

there exists {xα} ⊂ SD such that xα converges to x∗ weakly since x∗ ∈ S
w

D
. It

follows that for any given D ∈ D, KD ⊂ F (xα, xα). Condition (4) implies that
KD ⊂ F (x∗, x∗) for all D ∈ D. Therefore, K =

⋃

D∈D
KD ⊂ F (x∗, x∗). The

proof is complete.

Remark 2.4. When F (z, x) ≡ F (x), we can obtain a corresponding existence
result for the inclusion problem.

3. Applications

In this section, we shall apply Theorem 2.3 to present the solvability of the
extended equilibrium problem. In what follows, unless otherwise specified, we
always let X be a real reflexive Banach space, K ⊂ X be a nonempty, bounded,
closed, and convex set. For our further results, we recall some concepts and
lemmas.

Definition 3.1. A bifunction f : K ×K → R is said to be pseudomonotone if,
for any x, y ∈ K, f(x, y) ≥ 0 implies f(y, x) ≤ 0.

Definition 3.2. A bifunction f : K ×K → R is said to be hemicontinuous if,
for any given x, y ∈ K, the mapping t 7→ f(x+ t(y−x)), y) is continuous at 0+.

Definition 3.3. A function g : K → R is said to be completely continuous if g
is continuous with respect to the weak topology of X.

To obtain the existence of the extended equilibrium problem, we need the
following lemmas which can be found in [4, 5].
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Lemma 3.4 (see [4, 5]). Let K be a nonempty convex set, x0 ∈ K a given
point, and f : K×K → R be a hemicontinuous and pseudomonotone bifunction
satisfying the following conditions:

(i) f(x, x) ≥ 0 for all x ∈ K;

(ii) If x, y, z ∈ K, f(x, y) ≤ 0, and f(x, z) < 0, then f(x, ty + (1 − t)z) < 0
for all 0 < t < 1.

Then the following are equivalent:

(I) f(x0, y) ≥ 0 for all y ∈ K;

(II) f(y, x0) ≤ 0 for all y ∈ K.

Lemma 3.5 (see [4, 5]). Let K be a nonempty, bounded, closed and convex
subset of X and f : K×K → R be a hemicontinuous pseudomonotone bifunction
satisfying the following conditions:

(i) f(x, x) ≥ 0 for all x ∈ K;

(ii) if x, y, z ∈ K, f(x, y) ≤ 0, and f(x, z) < 0, then f(x, ty + (1 − t)z) < 0
for all 0 < t < 1;

(iii) for any given x ∈ K, f(x, ·) is convex;

(iv) for any given x ∈ K, f(x, ·) is continuous.

Then there exists x∗ ∈ K such that f(x∗, z) ≥ 0 for all z ∈ K. In addition, the
solution set is bounded, closed and convex.

Now we apply Theorem 2.3 and the above lemmas to prove the solvability
of a class of extended equilibrium problems.

Theorem 3.6. Let K be a nonempty, bounded, closed, convex subset of a real
reflexive Banach space X, and ϕ : K×K×K → R be a function satisfying the
following conditions:

(1) for any given u ∈ K, ϕ(u, ·, ·) is pseudomonotone;

(2) for any fixed u,w ∈ K and fixed finite dimensional subspace D ⊂ X with
KD 6= ∅, ϕ(u, ·., v) : KD → R is continuous;

(3) ϕ(u, v, v) ≥ 0 for all u, v ∈ K;

(4) if u, x, y, z∈K,ϕ(u, x, y)≤0 and ϕ(u, x, z)<0, then ϕ(u, x, ty+(1−t)z)<0
for all 0 < t < 1;

(5) for any given u, x ∈ K, ϕ(u, x, ·) is convex;

(6) for any given v ∈ K, ϕ(·, v, ·) is completely continuous.

Then there exists x∗ ∈ K such that ϕ(x∗, x∗, y) ≥ 0 for all y ∈ K.

Proof. Define a multi-valued map F : K ×K → 2X as follows:

F (z, x) = {y ∈ X : ϕ(z, x, y) ≥ 0} ∀z, x ∈ K.

In the following, we show that F satisfies all the conditions of Theorem 2.3.
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Step 1. Condition (i) of Theorem 2.3 follows directly from assumption (3).

Step 2. By the definition of F , F c(z, x) = {y ∈ X : ϕ(z, x, y) < 0} for
all z, x ∈ K. By assumption (2), it is easy to see that F c(z, ·) is lower semi-
continuous. We also know that F c(z, x) is convex from assumption (5). Hence
condition (ii) of Theorem 2.3 holds.

Step 3. For any given z ∈ K and any finite dimensional subspace D
of X with KD = K ∩ D 6= ∅, consider the following problem: find u ∈ KD

such that ϕ(z, u, y) ≥ 0 for all y ∈ KD. By assumptions (1)–(5), it follows
from Lemma 3.5 that the above problem admits a nonempty, closed and convex
solution set. That is to say that the set {x ∈ KD : KD ⊂ F (z, x)} is nonempty,
closed and convex. So condition (iii) of Theorem 2.3 is satisfied.

Step 4. Let (xα, zα) ∈ K×K, (xα, zα) converge to (x, z) ∈ K×K weakly,
and K ⊂ F (zα, xα) for all α. It follows from the definition of F that, for
any α, ϕ(zα, xα, y) ≥ 0 for all y ∈ K. By Lemma 3.4, ϕ(zα, y, xα) ≤ 0 for all
y ∈ K. Assumption (6) implies that ϕ(z, y, x) ≤ 0 for all y ∈ K. Again from
Lemma 3.4, one has ϕ(z, x, y) ≥ 0 for all y ∈ K. That is to say K ⊂ F (z, x).
So follows condition (iv) of Theorem 2.3. Based on Theorem 2.3, there exists
x∗ ∈ K such that K ⊂ F (x∗, x∗), i.e., ϕ(x∗, x∗, y) ≥ 0 for all y ∈ K. The proof
is complete.

Remark 3.7. In [10], a vectorial version of the problem in Theorem 3.6 was
studied under (S)+-conditions.

Remark 3.8. The problem in Theorem 3.6 includes as special cases some
variational-like inequality problems studied in [1, 7].

From Theorem 3.6, we obtain the existence of solutions of the extended
variational inequality in [8].

Corollary 3.9. Let A : K × K → X∗ (the dual space of X) be a nonlinear
mapping satisfying the following conditions:

(i) for each z ∈ K, A(z, ·) is pseudomonotone;

(ii) for each x,w ∈ K,〈A(·, x), w〉 is continuous with respect to the weak topol-
ogy of X;

(iii) for each z ∈ K and any finite dimensional subspace D of X with KD 6= ∅,
A(z, ·) : KD → X∗ is continuous.

Then there exists x∗ ∈ K such that 〈A(x∗, x∗), y − x∗〉 ≥ 0 for all y ∈ K.

Proof. Define ϕ : K ×K ×K → R by

ϕ(z, x, y) = 〈A(z, x), y − x〉 ∀x, y, z ∈ K.

In the following, we shall show that all the assumptions of Theorem 3.6 are
satisfied. The assumptions (3) and (5) of Theorem 3.6 follow directly from the
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definition of ϕ. Conditions (ii) and (iii) imply that assumptions (2) and (6)
of Theorem 3.6 hold. For fixed u ∈ K, the pseudomonotonicity of ϕ(u, · , · )
follows from the pseudomonotonicity of A(u, ·). Next, we show assumption (4)
of Theorem 3.6 is satisfied. Let u, x, y, z ∈ K such that ϕ(u, x, y) ≤ 0 and
ϕ(u, x, z) < 0. It follows that 〈A(u, x), y − x〉 ≤ 0 and 〈A(u, x), z − x〉 < 0.
Hence,

ϕ(u, x, ty + (1− t)z) = 〈A(u, x), ty + (1− t)z − x〉 < 0 ∀t ∈ (0, 1).

Thus all the assumptions of Theorem 3.6 are satisfied. By Theorem 3.6, there
exists x∗ ∈ K such that ϕ(x∗, x∗, y) ≥ 0 for all y ∈ K, i.e., 〈A(x∗, x∗), y−x∗〉 ≥ 0
for all y ∈ K. The proof is complete.

Remark 3.10. Corollary 3.9 is a slight generalization of Theorem 2.1 in [8].
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