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Local Growth Envelopes of Besov Spaces

of Generalized Smoothness

António M. Caetano and Walter Farkas

Abstract. The concept of local growth envelope (ELGA, u) of the quasi-normed func-
tion space A is applied to the Besov spaces of generalized smoothness B

σ,N
p,q (Rn).
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1. Introduction

The main aim of this paper is to give a unified approach to the question of
determining the growth envelope for Besov spaces. It might be considered
as an extension of [5], as far as Besov-type spaces are concerned. In fact, the
techniques used to deal with the so-called critical case considered in that paper –
and quite different from the interpolation techniques used in [4] –, together with
some breakthrough related to what should be the form of a local growth envelope
function, opened the way to the consideration of the problem of determining
the growth envelopes of function spaces of Besov type as general as the ones
considered in [7].

Actually the idea of unification began in [5], where in some parts it was not
necessary to distinguish between the so-called critical and subcritical cases; this
is used in the present work, as for the general spaces we consider now it doesn’t
make much sense to make that distinction.

We are thus able to completely determine the growth envelopes of spaces
of the type Bσ,N

p,q (Rn), apart from some limiting cases where the techniques
break. However, the situation here is not much worse than what happens for
the classical spaces Bs

p,q(R
n), as we also point out that, by specialising our
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parameters in order to get the latter spaces, our limiting cases correspond to a
limiting case for classical spaces where the picture is also not clear.

We give now a more detailed account of what is proved in the present paper.
Functions spaces of generalized smoothness have been considered since the mid-
dle of the seventies of the last century, in particular by the Russian school, and
have been again in the centre of interest in recent times. In particular because
they are relevant in recent investigations in the theory of stochastic processes,
where they appear in a natural way. For a short description of this and some
historical remarks, we refer the interested reader to [7], where other relevant
references can also be found.

The main objective here is to characterise the ability of local growth for
functions of the spaces Bσ,N

p,q (Rn), when these spaces are not continuously em-
bedded in L∞. This is partly done by studying the behaviour of the local growth
envelope function

ELG|B
σ,N
p,q (t) := sup

{
f ∗(t) : ‖f |Bσ,N

p,q (Rn)‖ 6 1
}

near 0, where f ∗ stands for the decreasing rearrangement of f (so we need f to
be in Lloc

1 (Rn)).

When dealing with the classical Besov spaces Bs
pq(R

n) (which, in our general
setting, correspond to N = (2j)j∈N0 and σ = (2js)j∈N0), D. Haroske [19] and

H. Triebel [33] have proved that ELG|B
s
pq(t) behaves like t

s
n
− 1

p near 0 in the sub-

critical case and like | log t|
1
q′ near 0 in the critical case (with q′ standing for the

conjugate exponent of q and where q is here assumed to be greater than 1, as
otherwise the question is of no interest).

In [4] and [5], A. Caetano and S. Moura proved that if N = (2j)j∈N0 and
σ = (2jsΨ(2−j))s∈N0 , for a so-called admissible function Ψ in the context of
those papers, the corresponding ELG|B

σ,N
p,q (t) behaves like

(∫ 1

t
1
n

y(s−
n
p )q′Ψ(y)−q′ dy

y

) 1
q′

(1.1)

near 0, with some natural restrictions and conventions. They also prove there
that this seemingly complicated expression reduces to simple ones in some im-
portant special cases, so that it is possible to recover the expressions obtained
previously by D. Haroske and H. Triebel in the classical context. However, the
expression (1.1) is of interest in our broader context, because of its ability to
be generalized. In fact, with natural restrictions and off ‘limiting’ cases (see
Section 4.4 for the precise assertion and explanations), we show here that the
behaviour of general ELG|B

σ,N
p,q (t) near 0 is

(∫ 1

t
1
n

y−
n
p
q′Λ(y−1)−q′ dy

y

) 1
q′

, (1.2)
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for some suitable function Λ which, in particular, satisfies the relation Λ(Nj) ∼
σj, j ∈ N0.

Following the ideas of D. Haroske from [19] and of H. Triebel from [33] when
introducing the concept of local growth envelope, and denoting by Φq′(t) the
expression (1.2), we also study the behaviour of an individual f ∗ against Φq′

and the Borel measure µq′ associated with − log2 Φq′ in some interval (0, ε] (for
some small positive ε), thus proving that the best exponent v such that

(∫ ε

0

(
f ∗(t)

Φq′(t)

)v

µq′(dt)

) 1
v

6 c
∥∥f |Bσ,N

p,q (Rn)
∥∥ , (1.3)

for some constant c = c(v) and all f ∈ Bσ,N
p,q , is q, just like in the classical

setting. Notice that, when N = (2j)j∈N0 , σ = (2jn/p)j∈N0 and v = q, (1.3) can
be written as

(∫ ε

0

(
f ∗(t)

| log2 t|

)q
dt

t

) 1
q

6 c
∥∥f |Bn/p

p,q (R
n)
∥∥ , (1.4)

which may become apparent that we are pushing forward in a direction already
followed by many other authors. We refer the reader to [33, 11.8 (v), 13.5] for
historical references to the subject and related more recent developments, where
the names of Adams, Brézis, Brudnyi, Cwikel, Edmunds, Gold’man, Hansson,
Kaljabin, Kerman, Krbec, Maz’ya, Moser, Netrusov, Peetre, Pick, Pohozaev,
Pustylnik, Schmeisser, Strichartz, Triebel, Trudinger, Wainger, Yudovich and
Ziemer are cited. See also related recent results of B. Opic and W. Trebels [27]
and P. Gurka and B. Opic [17].

2. Preliminaries

2.1. Sequences.

Assumption 1. By an admissible sequence we will always mean a sequence
γ = (γj)j∈N0 of positive numbers such that there are two constants 0 < κ0 6

κ1 <∞ with
κ0 γj 6 γj+1 6 κ1γj for any j ∈ N0. (2.1)

We shall need the following notation with respect to an admissible sequence

γ
j
:= inf

k>0

γj+k

γk
and γj := sup

k>0

γj+k

γk
, j ∈ N0. (2.2)

Note that, in particular, γ
1
and γ1 are the best constants κ0 and κ1 in (2.1),

respectively.
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To illustrate the flexibility of (2.1) we recall below an example discussed
in [7].

Example 2.1. Let s ∈ R be fixed and

γj = 2jsΨ(2−j), j ∈ N0,

where Ψ is a positive monotone function on (0, 1], and there are positive con-
stants b0 and b1 such that for all j ∈ N0

b0 Ψ(2−j) 6 Ψ(2−2j) 6 b1 Ψ(2−j).

Then it is easy to see that γ is an admissible sequence: we can take κ0 =
min(b0, 1,Ψ(2−1)Ψ(1)−1) · 2s and κ1 = max(b1, 1,Ψ(2−1)Ψ(1)−1) · 2s in (2.1).

2.2. Functions. The functions we are going to introduce now will be central
in the estimates which will be presented later.

Definition 2.2. A function Λ : (0,∞) → (0,∞) will be called admissible if it
is continuous and if for any b > 0 it satisfies

Λ(bz) ∼ Λ(z) for any z > 0, (2.3)

in the sense that for any b > 0 there exist c1, c2 > 0 such that c1Λ(z) 6 Λ(bz) 6

c2Λ(z) for any z > 0.

Example 2.3. Let (Nj)j∈N0 be a sequence of positive numbers such that for
some λ0 > 1 it holds λ0Nj 6 Nj+1 for all j ∈ N0. Let (σj)j∈N0 be an admissible
sequence. Then the function Λ : (0,∞)→ (0,∞) defined by

Λ(z) =

{
σj+1−σj
Nj+1−Nj

z + σj −
(σj+1−σj)Nj

Nj+1−Nj
, if z ∈ [Nj, Nj+1), j ∈ N0

σ0, if z ∈ (0, N0)

is admissible and satisfies Λ(Nj) = σj for any j ∈ N0. Moreover, Λ(z) ∼ σj for
z ∈ [Nj, Nj+1], j ∈ N0, with equivalence constants independent of j.

Definition 2.4. Let n ∈ N and 0 < p 6 ∞ have been fixed. Let Λ : (0,∞)→
(0,∞) be an admissible function and 0 < ω < 1. For u ∈ (0,∞] we define
Φu : (0, 1− ω]→ R by

Φu(t) :=

(∫ 1

t
1
n

y−
n
p
u Λ(y−1)−u dy

y

) 1
u

, if 0 < u <∞

and

Φu(t) := sup
t
1
n 6y61

y−
n
pΛ(y−1)−1, if u =∞.
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Lemma 2.5. The function Φu from Definition 2.4 is positive, monotonically
decreasing and continuous. If u 6=∞ then Φu is differentiable and its derivative
is given by

Φ′
u(t) = −

1

un
t−

u
p
−1Λ(t−

1
n )−uΦu(t)

1−u , t ∈ (0, 1− ω].

We omit the proof of this lemma, as it is quite similar to the proof of
Proposition 2.5 in [5].

Lemma 2.6. Let Λ : (0,∞)→ (0,∞) be an admissible function and 0 < ω < 1,
and let Φu be the function from Definition 2.4. Then for any constants C > 0
and t0 := 1−ω

max{1,C}
the equivalence Φu(Ct) ∼ Φu(t) holds for t ∈ (0, t0] in the

sense that there exist two constants c1, c2 > 0 such that c1 Φu(t) 6 Φu(Ct) 6

c2 Φu(t) for any such t.

The proof of this lemma is based essentially on property (2.3) and is quite
elementary. The same can be said about the following proposition, the proof of
which can, moreover, be adapted from a corresponding discretization result in
[5, Proposition 2.7]. Both results will be quite useful in the sequel.

Proposition 2.7. Let (Nj)j∈N0 be as in Assumption 2 below. Let Λ : (0,∞)→
(0,∞) be an admissible function such that Λ(z) ∼ Λ(Nj), z ∈ [Nj, Nj+1], j ∈
N0, with equivalence constants independent of j. Let Φu be the function from
Definition 2.4 with ω = 1 − N−n

J0
, where J0 ∈ N0 satisfies NJ0 > 1. Given

t ∈ (0, N−n
J0

], let k = k(t) be the unique nonnegative integer such that N−1
k+1 <

t
1
n 6 N−1

k . Let 0 < u <∞. Given any integer j0 > J0,

Φu(t) ∼

(
k∑

j=j0

(
N

n
p

j Λ(Nj)
−1
)u
) 1

u

in (0, N−n
j0

].

In particular, for any k0 ∈ N and any K0 ∈ N we have

Φu(t) ∼

(
k−k0∑

j=j0

(
N

n
p

j Λ(Nj)
−1
)u
) 1

u

in (0, N−n
j0+k0

]

and

Φu(t) ∼

(
k+K0∑

j=j0

(
N

n
p

j Λ(Nj)
−1
)u
) 1

u

in (0, N−n
j′0

],

where j ′0 := max(j0 − K0, J0). If u = ∞, then the right-hand sides of the

equivalences stated above are replaced by supj(N
n
p

j Λ(Nj)
−1), the supremum being

taken over corresponding j’s.
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Remark 2.8. It might be useful to note that the summations stated in the
proposition above can also start in 0 or in any number between 0 and j0. The
situation is similar in the integral representation for Φu in Definition 2.4: we
can as well choose for upper limit of integration any real number greater than 1,
in the sense of equivalent representations.

3. Function spaces of generalized smoothness

Function spaces of generalized smoothness have been introduced and considered
by several authors, in particular since the middle of the seventies up to the end
of the eighties with different starting points and in different contexts.

In [7] some of these different aspects concerning function spaces of gen-
eralized smoothness were discussed taking up some basic ideas from various
settings but from the standpoint of a Fourier analytic characterisation. In par-
ticular in [7] an atomic decomposition for spaces of generalized smoothness was
obtained and that result will play a key role in our later considerations, see
Theorem 3.14 below.

3.1. Definitions and basic facts.

Assumption 2. From now on we will denote N = (Nj)j∈N0 a sequence of real
positive numbers such that there exist two numbers 1 < λ0 6 λ1 with

λ0Nj 6 Nj+1 6 λ1Nj for any j ∈ N0. (3.1)

In particular N is admissible and is a so-called strongly increasing sequence
(compare [7, Definition 2.2.1]), which in particular guarantees that there exists
a number l0 ∈ N such that

2Nj 6 Nk for any l, k such that j + l0 6 k. (3.2)

We would like to point out that the condition λ0 > 1 played a key role in [7] in
order to get atomic decompositions in function spaces of generalized smoothness.

It should be noted that the sequence N = (Nj)j∈N0 plays the same role as
the sequence (2j)j∈N0 in the classical construction of the spaces Bs

p,q and F s
p,q.

This will be clear from the following considerations.

For a fixed sequence N = (Nj)j∈N0 as in Assumption 2 we define the asso-
ciated covering ΩN = (ΩN

j )j∈N0 of R
n by

ΩN
j = {ξ ∈ R

n : |ξ| 6 Nj+l0}, if j = 0, 1, · · · l0 − 1

and

ΩN
j = {ξ ∈ R

n : Nj−l0 6 |ξ| 6 Nj+l0}, if j > l0

where l0 was defined in (3.2).
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Definition 3.1. For a fixed N = (Nj)j∈N0 as in Assumption 2, and for the
associated covering ΩN = (ΩN

j )j∈N0 of R
n, a system ϕN = (ϕN

j )j∈N0 will be
called a (generalized) partition of unity subordinated to ΩN if:

(i) for any j ∈ N0,

ϕN
j ∈ C

∞
0 (Rn) and ϕN

j (ξ) > 0 if ξ ∈ R
n ;

(ii) for any j ∈ N0,
suppϕN

j ⊂ ΩN
j ;

(iii) for any γ ∈ N
n
0 there exists a constant cγ > 0 such that for any j ∈ N0,

|DγϕN
j (ξ)| 6 cγ (1 + |ξ|

2)−γ/2 for any ξ ∈ R
n ;

(iv) there exists a constant cϕ > 0 such that

0 <
∞∑

j=0

ϕN
j (ξ) = cϕ <∞ for any ξ ∈ R

n.

For ϕ ∈ S(Rn) and f ∈ S ′(Rn) we will use the notation ϕ(D)f (x) =
[F−1 (ϕFf)](x), where F and F−1 stand, respectively, for the Fourier and in-
verse Fourier transform.

If (fj)j∈N0 is a sequence of complex-valued Lebesgue measurable functions
on R

n, then

‖(fj)j∈N0 | `q(Lp)‖ :=

(
∞∑

j=0

‖fj |Lp‖
q

) 1
q

with appropriate modification if q =∞.

Definition 3.2. Let (σj)j∈N0 be an admissible sequence. Let (Nj)j∈N0 be an
admissible sequence satisfying Assumption 2 and let ϕN be a system of functions
as in Definition 3.1. Let 0 < p 6 ∞ and 0 < q 6 ∞. The Besov space of
generalized smoothness is

Bσ,N
p,q :=

{
f ∈ S ′ :

∥∥f |Bσ,N
p,q

∥∥ :=
∥∥(σj ϕ

N
j (D)f)j∈N0 | `q(Lp)

∥∥ <∞
}
.

Remark 3.3. Note that if 0 < p < ∞ and 0 < q 6 ∞, then the Triebel–
Lizorkin space of generalized smoothness F σ,N

p,q is defined in an analogous way,
by interchanging the roles of the quasi-norms in Lp and in `q.

In order to keep this work at a reasonable length we decided to shift the
problem concerning envelopes for F -spaces to a later paper.

One should note that if 1 < p < ∞ one can consider a weaker assumption
on the sequence N in the above definition, namely λ0Nj 6 Nj+1, λ0 > 1 (for
any j ∈ N0), as discussed in [7].
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The main tool in defining function spaces of generalized smoothness of Besov
and Triebel–Lizorkin type for 1 < p < ∞ is the classical Fourier-multiplier
theorem of Michlin–Hörmander type stated in [30, Theorem 2.2.4].

To extend the definition of the spaces of generalized smoothness to p=∞,
p = 1, and to 0 < p < 1, the assumption Nj+1 6 λ1Nj (for any j ∈ N0) is
necessary. The reason is, that we cannot use in these cases the above mentioned
Fourier-multiplier theorem. A substitute of it is a Fourier-multiplier theorem
which was proved in spaces of entire analytic functions with the help of max-
imal functions, see [31, Theorems 1.6.2, 1.6.3]. These facts are discussed in
[7, Section 3].

Remark 3.4. Note that if Nj = 2j and σ = σs = (2js)j∈N0 with s real, then
the above spaces coincide with the usual Besov spaces Bs

p,q on R
n.

These scales of spaces, together with the Triebel–Lizorkin spaces F s
p,q, in-

clude many well-known function spaces and were systematically treated in the
books of H. Triebel, see [30], [31], [32] and [33] and the references therein. Fur-
ther background material can be found in the books of D. E. Edmunds and
H. Triebel, see [6] and of T. Runst and W. Sickel, see [28], books in which the
theory is complemented by several other aspects (entropy numbers, nonlinear
partial differential equations, etc.).

Remark 3.5. The Bσ,N
p,q are quasi-Banach spaces which are independent of the

choice of the system (ϕN
j )j∈N0 , in the sense of equivalent quasi-norms (and this

is the reason why we may omit in our notation reference to (ϕN
j )j∈N0).

Remark 3.6. As in the classical case, compare [30, Theorem 2.3.2] or [31,
Proposition 2.3.3], the embeddings S ↪→ Bσ,N

p,q ↪→ S ′ hold true for all admissible
values of the parameters and sequences. If p, q <∞, then S is dense in Bσ,N

p,q .

If 1 < p < ∞ and 1 < q < ∞ many results are already known from the
works of G. A. Kalyabin and M. L. Goldman, see for example [10] – [16] and
[20] – [25].

It was shown in [7, Section 3.3] that the function spaces considered so far in
this work cover (besides the classical Besov spaces Bs

p,q) many other classes of
function spaces of generalized smoothness of Besov type known in the literature.

3.2. Embeddings. In what follows we will present some embedding results
which will be useful when discussing envelopes for generalized smoothness but
which are also of independent interest for the general theory of these spaces.
We start fixing the notation.

Notation 1. We will use the convention 1
∞

= 0. If r is a real number then
r+ = max(r, 0). If 0 < r 6 ∞, then r′ is given by 1

r′
=
(
1− 1

r

)
+
. In particular

if 0 < r 6 1, then r′ =∞.



Growth Envelopes of Besov Spaces 273

Theorem 3.7. Let N = (Nj)j∈N0 be an admissible sequence as in Assumption 2
and let σ = (σj)j∈N0 and τ = (τj)j∈N0 be two further admissible sequences. Let
0 < p1 6 p2 6 ∞, 0 < q1, q2 6 ∞ and 1

q∗
:=
(

1
q2
− 1

q1

)
+
. If

(
σ−1
j τj N

n
(

1
p1

− 1
p2

)

j

)

j∈N0

∈ `q∗ ,

then Bσ,N
p1,q1

↪→ Bτ,N
p2,q2

.

The ideas used in a proof of such result have been around for quite some
time (see, for example, [26, Proposition 1.1.13])

Remark 3.8. Note that if Nj = 2j, σj = 2js1 and τj = 2js2 (j ∈ N0) then from
the above theorem we immediately get:

if 0 < q1 6 q2 6 ∞ and if s1 −
n
p1

> s2 −
n
p2
, then (classical spaces)

Bs1
p1,q1

↪→ Bs2
p2,q2

;

if 0 < q2 < q1 6 ∞ and if s1 −
n
p1

> s2 −
n
p2
, then (classical spaces)

Bs1
p1,q1

↪→ Bs2
p2,q2

.

These results are well-known, see for example [31, Theorem 2.7.1 and Proposi-
tion 2.3.2/2]. For a forerunner of our general result in the above theorem one
should see also [26, Proposition 1.1.13] .

Remark 3.9. Let N = (Nj)j∈N0 be an admissible sequence as in Assumption 2
and let 0 < p 6 ∞ and 0 < q 6 ∞. Recall that in [7, Theorem 3.1.7] it was
proved that we have the following identity at the level of zero smoothness:

Bσ0,N
p,q = B0

p,q, where σ0 = (1)j∈N0 . (3.3)

In fact (3.3) was stated in [7] only for 1 < p < ∞, 1 6 q 6 ∞, but it is easy
to see, following the lines of the proof of Theorem 3.1.7 in [7], that the identity
holds for all 0 < p, q 6 ∞.

As a simple consequence of Theorem 3.7, (3.3) and [31, Proposition 2.5.7],
we get the following.

Corollary 3.10. Let N = (Nj)j∈N0 be an admissible sequence with λ0 > 1
in (3.1) and let σ = (σj)j∈N0 be an admissible sequence. Let 0 < p 6 ∞ and
0 < q 6 ∞. If (

σ−1
j N

n
p

j

)
j∈N0

∈ `q′ , then Bσ,N
p,q ↪→ C,

where here C stands for the space of complex-valued, bounded and uniformly
continuous functions on R

n endowed with the sup-norm.

Remark 3.11. Actually we really have an equivalence in this result, as will be
shown later as a consequence of our results on growth envelope functions. If
1 < p, q <∞ such an equivalence was first proved by G. A. Kalyabin in [24].
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3.3. Atomic decompositions. An important tool in characterising function
spaces of generalized smoothness is the atomic decomposition theorem. Follow-
ing [7, Section 4.4] we will state here this theorem for Besov spaces of generalized
smoothness.

Recall that the sequence N is always as in Assumption 2. Let Z
n be the

lattice of all points in R
n with integer-valued components. If j ∈ N0 and

m = (m1, ...,mn) ∈ Z
n we denote Qjm the cube in R

n centred at N−1
j m =

(N−1
j m1, ..., N

−1
j mn) which has sides parallel to the axes and side length N−1

j .
If Qjm is such a cube in R

n and c > 0 then cQjm is the cube in R
n concentric

with Qjm and with side length cN−1
j .

We are now prepared to introduce the N -atoms (associated to the se-
quence N).

Definition 3.12.

(i) LetM ∈ N0, c
∗ > 1. A function a : R

n → C which isM times differentiable
(continuous if M = 0) is called an 1M -N-atom if

supp a ⊂ c∗Q0m for some m ∈ Z
n (3.4)

|Dαa(x)| 6 1, if |α| 6 M. (3.5)

(ii) Let σ = (σj)j∈N0 be an admissible sequence, let 0 < p 6 ∞, M,L+1 ∈ N0,
c∗ > 1. A function a : R

n → C which is M times differentiable (continuous
if M = 0) is called an (σ, p)M,L-N-atom if

supp a ⊂ c∗Qjm for some j ∈ N ,m ∈ Z
n (3.6)

|Dαa(x)| 6 σ−1
j N

n
p
+|α|

j , if |α| 6 M (3.7)∫

Rn

xγa(x)dx = 0, if |γ| 6 L. (3.8)

If the atom a is located at Qjm (that means supp a ⊂ c∗Qjm with j ∈ N0 ,
m ∈ Z

n, c∗ > 1), then we will denote it by ajm.

This concept generalises the smooth (isotropic) atoms from the works of
M. Frazier and B. Jawerth, [8] and [9], which correspond to Nj = 2j and σj = 2js

with real s.

We give some technical explanations. The value of the number c∗ > 1
in (3.4) and (3.6) is unimportant (but it should be kept fixed). It simply makes
clear that at the level j some controlled overlapping of the supports of ajm must
be allowed.

The moment conditions (3.8) can be reformulated as Dγ â(0) = 0 if |γ| 6 L,
which shows that a sufficiently strong decay of â at the origin is required. If
L < 0, then (3.8) simply means that there are no moment conditions.
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The reason for the normalising factor in (3.5) and (3.7) is that in this way
there exists a constant c > 0 such that for all these atoms we have ‖a |Bσ,N

p,q ‖ 6 c.
Hence, as in the classical case, atoms are normalised building blocks satisfying
some moment conditions.

Before we state the atomic decomposition theorem we have to introduce the
sequence space bp,q.

Definition 3.13. Let 0 < p 6 ∞, 0 < q 6 ∞. Then bp,q is the collection of all
sequences λ = {λjm ∈ C : j ∈ N0 ,m ∈ Z

n} such that

‖λ | bp,q‖ =

(
∞∑

j=0

( ∑

m∈Zn

|λjm|
p

) q
p

) 1
q

(with the usual modification if p =∞ and/or q =∞) is finite.

Theorem 3.14. Let N = (Nj)j∈N0 be an admissible sequence as in Assump-
tion 2. Let σ = (σj)j∈N0 be an admissible sequence with κ0, κ1 the corresponding
constants, as in (2.1). Let 0 < p 6 ∞, 0 < q 6 ∞, and let M , L + 1 ∈ N0 be
such that

M >
log2 κ1

log2 λ0

(3.9)

L > −1 + n

(
log2 λ1

log2 λ0

1

min(1, p)
− 1

)
−

log2 κ0

log2 λ0

. (3.10)

Let c∗ > 1 be fixed as in Definition 3.12. Then f ∈ S ′ belongs to Bσ,N
p,q if, and

only if, it can be represented as

f =
∞∑

j=0

∑

m∈Zn

λjmajm , (3.11)

convergence being in S ′, where ajm are 1M -N-atoms (j = 0) or (σ, p)M,L-N-
atoms (j ∈ N) and λ ∈ bp,q, where λ = {λjm : j ∈ N0,m ∈ Z

n}. Further-
more, inf ‖λ | bp,q‖, where the infimum is taken over all admissible representa-
tions (3.11), is an equivalent quasi-norm in Bσ,N

p,q .

For further comments, remarks, examples related to the above theorem we
refer the interested reader to [7].

3.4. Rearrangement properties and embeddings in Lloc
1 . If f is an ex-

tended complex-valued measurable function on R
n which is finite a.e., then the

decreasing rearrangement of f is the function defined on [0,∞) by

f ∗(t) := inf
{
λ > 0 : mf (λ) 6 t

}
, t > 0,
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with mf being the distribution function given by

mf (λ) :=
∣∣{x ∈ R

n : |f(x)| > λ}
∣∣, λ > 0.

As usual, the convention inf ∅ = ∞ is assumed and | · | denotes the Lebesgue
measure when applied to measurable subsets of R

n. Moreover, the maximal
function of f ∗ is the function

f ∗∗(t) :=
1

t

∫ t

0

f ∗(τ) dτ, t > 0.

We assume that the reader is familiar with basic facts concerning rearrange-
ments. These may be found in [1], for example. In particular we shall need the
sub-additivity property

(f + g)∗∗(t) 6 f ∗∗(t) + g∗∗(t), t > 0.

By analogy, in the case of a (multiple) sequence (αm)m∈Zn ⊂ C, its decreasing
rearrangement is defined as the sequence (α∗

l )l∈N, where

α∗
l := inf{λ > 0 : #{m ∈ Z

n : |αm| > λ} < l} , l ∈ N .

We also define

α∗∗
l :=

1

l

l∑

k=1

α∗
k , l ∈ N .

Proposition 3.15. Let p ∈ (1,∞]. Let (αm)m∈Zn, (α∗
l )l∈N and (α∗∗

l )l∈N be as
above. Then

‖(αm)m∈Zn | `p‖ = ‖(α
∗
l )l∈N | `p‖ 6 ‖(α∗∗

l )l∈N | `p‖ 6
p

p− 1
‖(α∗

l )l∈N | `p‖ ,

where p
p−1

should be interpreted as 1 when p =∞.

Proof. The result is obvious for p =∞. As to the case p ∈ (1,∞), the equality
(which, actually, holds also for 0 < p 6 1) follows from [1, Proposition 1.8 in
Chapter 2, p. 43] applied to the counting measure in Z

n and the last inequality
is due to Hardy and Landau [18, pp. 239–240].

Recall that whenever a sequence N is considered, Assumption 2 is implied.
The following lemma is an analogue to [26, Lemma 1.3.6]. Though it has an
elementary proof, it plays a key role in proving the next proposition.

Lemma 3.16. Let c∗ > 1 and x ∈ R
n. Given a j ∈ N0 then x belongs to at

most K cubes c∗Qjm, m ∈ Z
n, where K does not depend on j and m (but may

depend on c∗ and on the dimension n).
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The proof of next proposition is similar (up to the last part) to the proof of
Proposition 3.7 in [5], so we decided to omit it too. Recall q ′ is the conjugate
of q (with q′ =∞ when 0 < q 6 1).

Proposition 3.17. Let c∗ > 1 and (dj)j∈N0 be a sequence of positive numbers.
Let (ajm)j∈N0,m∈Zn be a sequence of complex-valued measurable functions on R

n

such that, for each j and m, suppajm ⊂ c∗Qjm and |ajm(x)| 6 dj, for all x ∈ R
n,

where Qjm is a cube as defined in the previous subsection. Let (λjm)j∈N0,m∈Zn

be a sequence of complex numbers and define, for any j ∈ N0,

fj(x) :=
∑

m∈Zn

λjmajm(x) , x ∈ R
n. (3.12)

(i) There are positive constants C and D, depending only on n and c∗, such
that

f ∗j (t) 6 Ddj

∞∑

l=1

λ∗jlχjl(t) , t > 0 , j ∈ N0

f ∗∗j (t) 6 Ddj

∞∑

l=1

λ∗∗jl χjl(t) , t > 0 , j ∈ N0 , (3.13)

where χjl is the characteristic function of the set [CN−n
j (l − 1), CN−n

j l),
l ∈ N, (λ∗jl)l∈N is the decreasing rearrangement of (λjm)m∈Zn, j ∈ N0, and

λ∗∗jl := 1
l

∑l
k=1 λ

∗
jk, l ∈ N.

(ii) If, for some j ∈ N0 and 0 < p 6 ∞, we have (λjm)m∈Zn ∈ `p(Z
n), then

fj ∈ Lp, for the same j and p.

(iii) Let 0 < p 6 ∞, 0 < q 6 ∞ and assume (λjm)j∈N0,m∈Zn ∈ bp,q, where bp,q
was introduced in Definition 3.13. If, moreover,

(
dj ·N

− n
max(1,p)

j

)
j∈N0

∈ `q′ , (3.14)

then the series
∑∞

j=0 fj converges in Lmax(1,p) to a function f satisfying

f ∗∗(t) 6

∞∑

j=0

f ∗∗j (t) , t > 0 .

Corollary 3.18. Let N = (Nj)j∈N0 be an admissible sequence with λ0 > 1
in (3.1) and let σ = (σj)j∈N0 be an admissible sequence. Let 0 < p 6 ∞ and
0 < q 6 ∞. If (

σ−1
j N

n( 1
p
−1)

+

j

)
j∈N0

∈ `q′ , (3.15)

where q′ is conjugate to q (with q′ =∞ when 0 < q 6 1), then Bσ,N
p,q ↪→ Lmax(1,p).



278 A. M. Caetano and W. Farkas

Proof. From the atomic decomposition theorem (Theorem 3.14) we know that
any f ∈ Bσ,N

p,q is an infinite sum, in S ′, of fj’s as in Proposition 3.17, where

(λjm)j∈N0,m∈Zn ∈ bp,q, d0 =1 and dj =σ−1
j N

n
p

j for j ∈ N. Since (3.14) is in this
case equivalent to (3.15), part (iii) of Proposition 3.17 guarantees that

∑∞
j=0 fj

also converges to f in Lmax(1,p).

Remark 3.19. Note that if 1 < p < ∞ and 1 < q < ∞ the above result says
that if the sequence (σj)j∈N0 has additionally the property (σ−1

j )j∈N0 ∈ lq′ , then
all elements of Bσ,N

p,q are at least functions in Lp. This fact is well known from
the earlier works of M. L. Goldman and G. A. Kalyabin. Our Corollary 3.18 is
the natural generalisation of these results.

Remark 3.20. As an immediate consequence we get that if σ, N , p and q are
as in Corollary 3.18 and if (3.15) is satisfied, then Bσ,N

p,q ⊂ Lloc
1 .

4. Local growth envelopes for Bσ,N
p,q

4.1. Fundamentals about envelopes. As we have briefly mentioned in the
Introduction, regarding the study of local growth envelopes in the context of
the spaces Bσ,N

p,q , of interest are the spaces so that

Bσ,N
p,q ⊂ Lloc

1 but Bσ,N
p,q 6↪→ L∞.

Assume N = (Nj)j∈N0 and σ = (σj)j∈N0 are admissible sequences and for the
first one one has λ0 > 1. As to the inclusion

Bσ,N
p,q ⊂ Lloc

1 , (4.1)

this is the case if (
σ−1
j N

n( 1
p
−1)

+

j

)
j∈N0

∈ `q′ , (4.2)

as pointed out in Remark 3.20. Though the inclusion (4.1) may also occur
if (4.2) is false, we really need that assumption – and even a little bit more,
namely





(σ−1
j )j∈N0 ∈ `min(q,1), if p > 1

(
σ−1

j N
n( 1

p
−1)+δ

j

)
j∈N0

∈ `min(q,1), for some δ > 0, if 0 < p 6 1
(4.3)

– in order to prove one of our main results (see Proposition 4.5 below).

Remark 4.1. Using min(q, 1)6q′ it immediately follows that (4.3) implies (4.2).
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On the other hand, we believe that, by assuming (4.3), we are “only” ex-
cluding what can be called “border” situations. In fact, in the classical case
Nj = 2j, σj = 2js, with s ∈ R, (4.3) turns out to be equivalent to s > n( 1

p
−1)+,

and it is known that for s < n( 1
p
−1)+ the corresponding inclusion fails, while in

the “borderline” s = n( 1
p
− 1)+ one needs extra information on the parameters

in order to distinguish between “inclusion” and “no inclusion” – see [29].

As to Bσ,N
p,q not being continuously embedded in L∞, one knows from Corol-

lary 3.10 that only (
σ−1
j N

n
p

j

)
j∈N0

/∈ `q′ (4.4)

is worth considering. Therefore, though the (extended real-valued, decreasing)
function

ELG|B
σ,N
p,q (t) := sup

{
f ∗(t) :

∥∥f |Bσ,N
p,q

∥∥ 6 1
}
, t > 0,

which will help us measure the ability of local growth for functions in Bσ,N
p,q ,

makes perfectly good sense by merely assuming that Bσ,N
p,q ⊂ Lloc

1 , we will tend
to restrict our attention to the situations when the admissible sequences (σj)j∈N0

and (Nj)j∈N0 (this one with the further assumption λ0 > 1 in (3.1)) satisfy (4.3)
and (4.4). We can say, in such a case, that ELG|B

σ,N
p,q (which will then be finite

for t > 0, in view of Proposition 4.5 below) defines a decreasing function which
is positive in (0, ε], for some ε ∈ (0, 1), and which tends to∞ as t goes to 0 (see
Proposition 4.8 below). Therefore, it will make sense to ask for the behaviour
of ELG|B

σ,N
p,q (t) near zero, which will give an indication of the ability of local

growth for functions in Bσ,N
p,q .

Let ELG be the set of all functions f : (0, ε]→ R
+, for any ε ∈ (0, 1], which

are decreasing and consider the following equivalence relation in ELG: given
f, g ∈ ELG, one says that f and g are equivalent (and write f ∼LG g) if

∃ c1, c2 > 0 : ∀ t ∈ (0, ε], c1 g(t) 6 f(t) 6 c2 g(t),

where (0, ε] is the smallest of the domains of f and g.

Definition 4.2. The local growth envelope function of Bσ,N
p,q , for σ, p, q and N

as stated above, is the equivalence class [ELG|B
σ,N
p,q ]. We shall also call local

growth envelope function of Bσ,N
p,q any representative in such a class. We even

call local growth envelope function of Bσ,N
p,q any function f : (0, ε] → R

+, for
some ε ∈ (0, 1], – even if not decreasing – such that f ∼ ELG|B

σ,N
p,q in (0, ε], and

use it to represent the equivalence class [ELG|B
σ,N
p,q ].

Remark 4.3. Note that different equivalent quasi-norms taken in the same
space Bσ,N

p,q give rise to the same equivalence class [ELG|B
σ,N
p,q ].

Let again σ, p, q and N be as stated above. Assume there exists a continuous
representative ELGB

σ,N
p,q ∈ [ELG|B

σ,N
p,q ] (we shall later see that this is indeed the
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case). Let (0, ε], 0 < ε < 1, be its domain. Define H(t) := − log2 ELGB
σ,N
p,q (t)

and note that H is a (finite) real increasing function on (0, ε] which tends
to −∞ when t goes to 0. There is only a Borel measure (i.e., a measure defined
on the Borel sets) µH in (0, ε] such that µH

(
[a, b]

)
= H(b) − H(a), ∀ [a, b] ⊂

(0, ε]. Its restriction to each such [a, b] is the Stieltjes-Borel measure associated
with H|[a,b].

In the important case when H happens to be continuously differentiable in
(0, ε], we have µH(dt) = H ′ dt, and for the functions we want to integrate we
can calculate the integrals as improper Riemann integrals.

Definition 4.4. Let σ, p, q,N be as stated above. Then

E
LG
Bσ,N

p,q :=
(
[ELG|B

σ,N
p,q ], u

)

is called the local growth envelope of Bσ,N
p,q , if u is the minimum (assuming that

it exists) of all v > 0 such that

∃ c(v) > 0 : ∀ f ∈ Bσ,N
p,q ,

(∫

(0,ε]

(
f ∗(t)

h(t)

)v

µH(dt)

)1
v

6 c(v)
∥∥f |Bσ,N

p,q

∥∥, (4.5)

where h(t) is a continuous representative in [ELG|B
σ,N
p,q ] with domain (0, ε],

0 < ε < 1.

We must remark that this definition makes sense, namely that the infimum
of all such v’s is independent of the chosen continuous representative h(t) in
[ELG|B

σ,N
p,q ], as follows by using some standard arguments of measure and inte-

gration theory, the definition of ELG|B
σ,N
p,q and [33, Proposition 12.2]. Recall,

on the other hand, that we are assuming that there exists at least one such
representative – and we have already mentioned that this is indeed the case,
as will be apparent later. Recall also that the definition of ELG|B

σ,N
p,q guaran-

tees that (4.5) holds at least for v = ∞. Remark also that the definition does
not discard the possibility that there is no such thing called the local growth
envelope of Bσ,N

p,q : this would be the case if the infimum of the mentioned v’s
were not a minimum. We shall, however, see (in the following subsections) that
the minimum is really attained, and therefore all mentioned spaces have local
growth envelopes.

Instead of
(
[ELG|B

σ,N
p,q ], u

)
, we shall usually write

(
h(t), u

)
for the local

growth envelope of Bσ,N
p,q with the assumptions made above, where h(t) is any

continuous representative in [ELG|B
σ,N
p,q ]. Instead of h(t), we can also use in

the couple any local growth envelope function as considered in Definition 4.2,
though it must be borne in mind that for the construction of the measure µH

we shall only use continuous representatives in [ELG|B
σ,N
p,q ].
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4.2. Estimates from above.

Proposition 4.5. Let 0 < p, q 6 ∞. Let (Nj)j∈N0 be a sequence as in Assump-
tion 2 and (σj)j∈N0 be an admissible sequence. Assume that

(
σ−1
j N

n
p

j

)
j∈N0

/∈ `q′ ,

and (4.3) holds. Let Λ be an admissible function such that Λ(z) ∼ σj, z ∈
[Nj, Nj+1], j ∈ N0, with equivalence constants independent of j, and let Φq′,
defined in (0, N−n

J0
], be the function from Definition 2.4 (with q′ instead of u),

where J0 ∈ N is chosen such that NJ0 > 1. Then there exists an ε ∈ (0, 1) and
c > 0 such that

ELG|B
σ,N
p,q (t) 6 cΦq′(t) , for any t ∈ (0, ε], (4.6)

and, for each v ∈ [q,∞], there exists c(v) > 0 such that

(∫ ε

0

(
f ∗(t)

Φq′(t)

)v

µq′(dt)

) 1
v

6 c(v)
∥∥f |Bσ,N

p,q

∥∥, for any f ∈ Bσ,N
p,q , (4.7)

with the modification

sup
0<t6ε

f ∗(t)

Φq′(t)
6 c(v)

∥∥f |Bσ,N
p,q

∥∥ if v =∞, (4.8)

where µq′ denotes the Borel measure associated with − log2 Φq′ in (0, ε] (in ac-
cordance with Subsection 4.1).

Proof. We will omit the details of calculations which are similar to the ones
used in the proof of [5, Proposition 4.1]. First note that the hypotheses imply
that p 6= ∞ and Bσ,N

p,q ⊂ Lloc
1 . Fix c∗ > 1 as in Proposition 3.17 and consider

the corresponding constants C and D. Define ε := CN−n
k0

6 N−n
J0

, for a suitable
chosen k0 ∈ N.

Step 1: Here we assume 1 < p < ∞ and q = ∞ and we prove (4.6) and the
modified version (4.8) of (4.7).

Given f ∈ Bσ,N
p,∞ consider a corresponding atomic decomposition

∑∞
j=0 fj

(convergence in S ′), where fj have the same meaning as in (3.12), for given
atoms ajm in Bσ,N

p∞ and complex numbers λjm satisfying (λjm)j∈N0,m∈Zn ∈ bp,∞.
Together with our hypotheses, this guarantees that Proposition 3.17 can be

applied with d0 = 1, dj := σ−1
j N

n
p

j , j ∈ N. In particular, f is also the limit, in
Lp, of the series

∑∞
j=0 fj. This justifies the following inequality:

sup
0<t6ε

f ∗(t)

Φ1(t)
6 sup

k>k0

(∑k
j=0 f

∗∗
j (CN−n

k+1)

Φ1(CN
−n
k )

+

∑∞
j=k+1 f

∗∗
j (CN−n

k+1)

Φ1(CN
−n
k )

)
. (4.9)
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Since, for 0 6 j 6 k, CN−n
k+1 ∈ (0, CN−n

j ), then (3.13), Lemma 2.6, Proposi-
tion 2.7, Remark 2.8 and Proposition 3.15 allow us to write

∑k
j=0 f

∗∗
j (CN−n

k+1)

Φ1(CN
−n
k )

6 c1

∑k
j=0 σ

−1
j N

n
p

j · λ
∗
j1

∑k
j=0 σ

−1
j N

n
p

j

6 c1
∥∥(λjm)j∈N0,m∈Zn | bp,∞

∥∥, (4.10)

where c1 > 0 is independent of f and the atomic decomposition taken. For
j > k + 1 we have CN−n

k+1 ∈ [CN−n
j [Nn

j N
−n
k+1], CN

−n
j ([Nn

j N
−n
k+1] + 1)) and by

Proposition 3.17 with l = [Nn
j N

−n
k+1] + 1 we have

∞∑

j=k+1

f ∗∗j (CN−n
k+1) 6 c1

∞∑

j=k+1

σ−1
j N

n
p

j · λ
∗∗
j,[Nn

j N−n
k+1]+1

. (4.11)

Decomposing

∞∑

l=1

λ∗∗pjl =
∞∑

m=0

[Nn
m+1N

−n
k+1]∑

h=[Nn
mN−n

k+1]+1

λ∗∗pjh ,

where the inner sum is zero if [Nn
mN

−n
k+1] + 1 > [Nn

m+1N
−n
k+1], we get

∞∑

l=1

λ∗∗pjl >

∞∑

m=0

(
[Nn

m+1N
−n
k+1]− [Nn

mN
−n
k+1]

)
λ∗∗p
j,[Nn

m+1N
−n
k+1]

>
(
[Nn

j N
−n
k+1]− [Nn

j−1N
−n
k+1]

)
λ∗∗p
j,[Nn

j N−n
k+1]+1

.

Let α be the smallest natural number such that

λnα
0 >

1

λn
0 − 1

.

Clearly if j > k + α + 2 one has Nn
j−1N

−n
k+1 > λnα

0 . So for any j and k with
j > k + α + 2 we have [Nn

j N
−n
k+1] − [Nn

j−1N
−n
k+1] > (λn

0 − 1 − λ−nα
0 )Nn

j−1N
−n
k+1.

Consequently, for any j and k with j > k + α + 2 we have

∞∑

l=1

λ∗∗pjl > c2N
n
j−1N

−n
k+1 λ

∗∗p

j,[Nn
j N−n

k+1]+1

and this implies

λ∗∗
j,[Nn

j N−n
k+1]+1

6 c3N
−n

p

j N
n
p

k

(
∞∑

l=1

λ∗∗pjl

) 1
p

for any j > k + α + 2. (4.12)
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Moreover,

λ∗∗
j,[Nn

j N−n
k+1]+1

6 λ∗∗j,2 6

(
∞∑

l=1

λ∗∗pjl

) 1
p

if k + 1 6 j 6 k + α + 1.

Since for k + 1 6 j 6 k + α + 1 we have Nj ∼ Nk with equivalence constants
independent of j and k (but depending on α) we can see that (4.12) holds true
for all j > k + 1 up to a different constant c3. So we can insert (4.12), for all
j > k + 1, in (4.11) and using Proposition 3.15 we get

∞∑

j=k+1

f ∗∗j (CN−n
k+1) 6 c4

∞∑

j=k+1

σ−1
j N

n
p

k ·
∥∥(λ∗∗jl )l∈N | `p

∥∥

6 c4

(
∞∑

j=k+1

σ−1
j N

n
p

k

)
· sup
j∈N0

∥∥(λjm)m∈Zn | `p
∥∥.

Then Lemma 2.6, Proposition 2.7, (3.13) and Proposition 3.15 allow us to write

∑∞
j=k+1 f

∗∗
j (CN−n

k+1)

Φ1(CN
−n
k )

6 c5

∑∞
j=k+1 σ

−1
j N

n
p

k

∑k
j=1 σ

−1
j N

n
p

j

∥∥(λjm)j∈N0,m∈Zn | bp,∞
∥∥

6 c5

(
∞∑

j=1

σ−1
j

)
∥∥(λjm)j∈N0,m∈Zn | bp,∞

∥∥
(4.13)

where the constants are independent of f and the atomic decomposition taken
and we recall notation (2.2).

Using our assumption (4.3) and putting (4.9), (4.10) and (4.13) together,
we get

sup
0<t6ε

f ∗(t)

Φ1(t)
6 c6

∥∥(λjm)j∈N0,m∈Zn | bp,∞
∥∥ <∞ ,

for some c6 > 0 independent of f and the atomic decomposition taken, and,
with the help of Theorem 3.14,

sup
0<t6ε

f ∗(t)

Φ1(t)
6 c7

∥∥f |Bσ,N
p,∞

∥∥.

From this it easily follows, in the case p > 1 and q = ∞, that (4.6) holds and,
in particular, that ELG|B

σ,N
p,∞(t) is finite for each t ∈ (0, ε].

Step 2: We assume now 1 < p < ∞ and 1 < q < ∞ and will prove (4.6)
and (4.7).

We start with the proof of (4.7) when v = q. Given f ∈ Bσ,N
p,q consider

a corresponding atomic decomposition
∑∞

j=0 fj (convergence in S ′), where fj
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have the same meaning as in (3.12), for given atoms ajm in Bσ,N
p,q and complex

numbers λjm satisfying (λjm)j∈N0,m∈Zn ∈ bp,q. Together with our hypotheses,

this guarantees that Proposition 3.17 can be applied with d0 = 1, dj := σ−1
j N

n
p

j ,
j ∈ N. In particular, f is also the limit, in Lp, of the series

∑∞
j=0 fj.

Noting that for CN−n
k+1 6 t 6 CN−n

k one has Λ(t−
1
n ) ∼ σk we get using the

properties of the measure µq′ , namely Lemma 2.5,

(∫ ε

0

(
f ∗(t)

Φq′(t)

)q

µq′(dt)

) 1
q

= c1

(∫ ε

0

f ∗(t)q

Φq′(t)qq
′
·

1

nq′
t−

q′

p
−1 Λ

(
t−

1
n

)−q′
dt

) 1
q

= c1

(
1

nq′

) 1
q

(
∞∑

k=k0

∫ CN−n
k

CN−n
k+1

(
f ∗(t)

Φq′(t)q
′

)q

t−
q′

p
−1 Λ

(
t−

1
n

)−q′
dt

) 1
q

6 c2

(
∞∑

k=k0

(
f ∗∗(CN−n

k+1)

Φq′(CN
−n
k )q′

)q

σ−q′

k N
n
(
q′

p
+1

)

k N−n
k

) 1
q

. (4.14)

Based on (4.14) we get the following inequalities:

(∫ ε

0

(
f ∗(t)

Φq′(t)

)q

µq′(dt)

) 1
q

6 c2

(
∞∑

k=k0

(∑k
j=0 f

∗∗
j (CN−n

k+1)

Φq′(CN
−n
k )q′

)q

σ−q′

k N
n
p
q′

k

) 1
q

+ c2

(
∞∑

k=k0

(∑∞
j=k+1 f

∗∗
j (CN−n

k+1)

Φq′(CN
−n
k )q′

)q

σ−q′

k N
n
p
q′

k

) 1
q

=: S1 + S2.

(4.15)

We will estimate S1 and S2 separately. For 0 6 j 6 k we have CN−n
k+1 ∈

(0, CN−n
j ). So (3.13), Lemma 2.6, Proposition 2.7, Remark 2.8, Proposition 3.15

and a generalization of Hardy’s inequality (cf. [18, p. 247]) allow us to write

S1 6 c3




∞∑

k=k0

σ−q′

k N
n
p
q′

k



∑k

j=0 σ
−1
j N

n
p

j λ∗j,1
∑k

j=0 σ
−q′

j N
n
p
q′

j



q


1
q

6 c4
∥∥(λjm)j∈N0,m∈Zn | bp,q

∥∥.

(4.16)
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We are going now to estimate S2 in (4.15). For j > k + 1 we have again
CN−n

k+1 ∈ [CN−n
j [Nn

j N
−n
k+1], CN

−n
j ([Nn

j N
−n
k+1] + 1)) and

λ∗∗
j,[Nn

j N−n
k+1]+1

6 c5N
−n

p

j N
n
p

k

(
∞∑

l=1

λ∗∗pjl

) 1
p

,

so that from (3.13), Lemma 2.6, Proposition 2.7, Remark 2.8, Proposition 3.15
and a generalized Minkowski inequality we can write

S2 6 c6




∞∑

k=k0

σ−q′

k N
n
p
q′

k




∑∞
j=k+1 σ

−1
j N

n
p

j λ∗∗
j,[Nn

j N−n
k+1]+1

∑k
j=0 σ

−q′

j N
n
p
q′

j




q


1
q

6 c7

(
∞∑

l=1

σ−1
l

)
∥∥(λjm)j∈N0,m∈Zn | bp,q

∥∥

6 c8
∥∥(λjm)j∈N0,m∈Zn | bp,q

∥∥ (4.17)

due also to our assumption (4.3).

Putting together (4.16), (4.15), and (4.17) we get

(∫ ε

0

(
f ∗(t)

Φq′(t)

)q

µq′(dt)

) 1
q

6 c9
∥∥(λjm)j∈N0,m∈Zn | bp,q

∥∥

for some constant c9 > 0 independent of f and the atomic decomposition taken.
Applying the atomic decomposition theorem, Theorem 3.14, the case 1 < v =
q <∞ and p > 1 of (4.7) follows immediately.

To prove (4.7) for any v > q (or (4.8) for v =∞) one has only to apply [33,
Proposition 12.2]. From (4.8) it also easily follows that, still in the case p > 1,
1 < q < ∞, that (4.6) holds and, in particular, that ELG|B

σ,N
p,q (t) is finite for

each t ∈ (0, ε].

Step 3: We assume now that 1 < p < ∞ but 0 < q 6 1 and will prove (4.6)
and (4.7).

Again we will start proving (4.7) for v = q. Using Lemma 2.6 we have
Φ∞(C−1t) ∼ Φ∞(t) for t ∈ (0, N−n

J0
]; in particular this implies Φ∞(CN−n

k ) ∼
Φ∞(N−n

k ) for any k > k0. Using now Proposition 2.7 for t = N−n
k we get

Φ∞(N−n
k ) ∼ sup

J06j6k
N

n
p

j σ
−1
j ,

so there exist constants c1 > 0 and c2 > 0 such that

c1 sup
J06j6k

σ−1
j N

n
p

j 6 Φ∞(CN−n
k ) 6 c2 sup

J06j6k
σ−1
j N

n
p

j for any k > k0. (4.18)
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Due to hypothesis (4.4), which in our case is (σ−1
j N

n
p

j )j∈N0 /∈ `∞, we can con-
struct a strictly increasing sequence (tk)k∈N0 of natural numbers in the following
way:

(i) t0 = k0, i.e., is such that CN−n
t0 6 N−n

J0
;

(ii) tk+1, k ∈ N0, is the smallest integer satisfying

supj=J0,...,tk+1
σ−1
j N

n
p

j

supj=J0,...,tk
σ−1
j N

n
p

j

>
2c2
c1
, (4.19)

with c1, c2 as in (4.18).

Notice that then

supj=J0,...,tk
σ−1
j N

n
p

j

supj=J0,...,tk+1
σ−1
j N

n
p

j

∼
supj=J0,...,tk

σ−1
j N

n
p

j

supj=J0,...,tk+1−1 σ
−1
j N

n
p

j

>
c1
2c2

, k ∈ N0. (4.20)

Denote for any k ∈ N0 αk := CN−n
tk
. Then based on (4.18), (4.19), and (4.20),

there exists a constant 0 < c3 6 1 such that

c3
1

2
6

Φ∞(αk)

Φ∞(αk+1)
6

1

2
for any k ∈ N. (4.21)

Given f ∈ Bσ,N
p,q consider a corresponding atomic decomposition

∑∞
j=0 fj

(convergence in S ′), where fj have the same meaning as in (3.12), for given
atoms ajm in Bσ,N

p,q and complex numbers λjm satisfying (λjm)j∈N0,m∈Zn ∈ bp,q.
Together with our hypotheses, this guarantees that Proposition 3.17 can be

applied with d0 = 1, dj := σ−1
j N

n
p

j , j ∈ N. In particular, f is also the limit, in
Lp, of the series

∑∞
j=0 fj.

Then, recalling also the definition of the measure µ∞, we have

(∫ ε

0

(
f ∗(t)

Φ∞(t)

)q

µ∞(dt)

) 1
q

6 c4

(
∞∑

k=0

f ∗∗(αk+1)
q

Φ∞(αk)q
µ∞
(
[αk+1, αk]

)
) 1

q

6 c5

(
∞∑

k=0

1

Φ∞(αk)q

tk+1−1∑

j=0

f ∗∗j (αk+1)
q

+
∞∑

k=0

1

Φ∞(αk)q

∞∑

j=tk+1

f ∗∗j (αk+1)
q

) 1
q

=: c5 (S1 + S2)
1
q .

(4.22)

We will estimate S1 and S2 separately. Since for 0 6 j 6 tk+1 − 1 we have
αk+1 = CN−n

tk+1
∈ (0, CN−n

j ), with the convention tl = 0 if l < 0, using (3.13),
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(4.18), (4.21) and the fact λ∗∗j1 = λ∗j1, we get

S1 6 c6

∞∑

k=0

k+1∑

h=0

(
Φ∞(αh)

Φ∞(αk)

)q th−1∑

j=th−1

λ∗∗qj1

6 c7

(
∞∑

l=−1

2−lq

)(
∞∑

j=0

λ∗qj1

)
. (4.23)

To estimate S2 in (4.22) let now j > tk+1. Then CN
−n
tk+1

∈ [CN−n
j [Nn

j N
−n
tk+1

],

CN−n
j ([Nn

j N
−n
tk+1

] + 1)) so that, using (3.13),

∞∑

j=tk+1

f ∗∗j (αk+1)
q
6 c8

∞∑

j=tk+1

(
σ−1
j N

n
p

j

)q

λ∗∗q
j,[Nn

j N−n
tk+1

]+1
(4.24)

and, as in Step 1,

λ∗∗
j,[Nn

j N−n
tk+1

]+1
6 c9N

−n
p

j N
n
p

tk+1

(
∞∑

l=1

λ∗∗pjl

) 1
p

.

Inserting this in (4.24), and using Φ∞(αk) > c12 σ
−1
tk+1

N
n
p

tk+1
we get for S2, again

with the help of Proposition 3.15

S2 6 c10

∞∑

k=0

1

Φ∞(αk)q

∞∑

j=tk+1

σ−q
j N

n
p
q

j N
−n

p
q

j N
n
p
q

tk+1

(
∞∑

l=1

λ∗∗pjl

) q
p

6 c11

(
∞∑

l=0

σ−q
l

)
∥∥(λjm)j∈N0,m∈Zn | bp,q

∥∥q. (4.25)

Putting (4.23) and (4.25) in (4.22) and using our assumption (4.3) we get

(∫ ε

0

(
f ∗(t)

Φ∞(t)

)q

µ∞(dt)

) 1
q

6 c12
∥∥(λjm)j∈N0,m∈Zn | bp,q

∥∥

for some constant c12 > 0 independent of f and the atomic decomposition taken.
A simple application of Theorem 3.14 proves (4.7) in the case 0 < v = q 6 1
(and p > 1).

To prove (4.7) for any v > q (even for v =∞, in which case we are thinking
on (4.8)) one has again only to apply [33, Proposition 12.2]. From (4.8) it
also easily follows, still in the case p > 1, 0 < q 6 1, that (4.6) holds and, in
particular, that ELG|B

σ,N
p,q (t) is finite for each t ∈ (0, ε].

Step 4: We will extend now the validity of (4.6) and (4.7) to the case when
0 < p 6 1. There is no loss of generality in assuming 0 < δ < 1 in (4.3). Then
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let γ = δ
n−δ

> 0 and consider the (clearly) admissible sequence β = (βj)j∈N0 ,

where βj = σj N
n

1+γ

j N
−n

p

j for any j ∈ N0. A simple computation shows that

(
σ−1
j βj N

n( 1
p
− 1

1+γ )
j

)
j∈N0

∈ `∞

so that based on the embedding result stated in Theorem 3.7 we have

Bσ,N
p,q ↪→ Bβ,N

1+γ,q. (4.26)

Since (
β−1
j N

1
1+γ

j

)
j∈N0

/∈ `q′ and
(
β−1

j

)
j∈N0

∈ `min(q,1)

we may apply Steps 1–3 to the space Bβ,N
1+γ,q.

Let Γ be an admissible function such that Γ(z) ∼ βj, z ∈ [Nj, Nj+1], j ∈ N0,
with equivalence constants independent of j, and let Ψq′ , defined in (0, N−n

J0
],

be the function from Definition 2.4 (with q′ instead of u, 1 + γ instead of p and
Γ instead of Λ), where J0 ∈ N is chosen such that NJ0 > 1. Let θq′ be the Borel
measure associated with − log2 Ψq′ . From the previous steps we have

(∫ ε

0

(
f ∗(t)

Ψq′(t)

)v

θq′(dt)

) 1
v

6 c(v)
∥∥f |Bβ,N

1+γ,q

∥∥ for any f ∈ Bβ,N
1+γ,q, (4.27)

with appropriate change if v =∞. Using Proposition 2.7 we have (appropriate
modification if q′ =∞)

Ψq′(t) ∼

(
k∑

j=J0

(
β−1
j N

n
1+γ

j

)q′
) 1

q

′

∼

(
k∑

j=J0

(
σ−1
j N

n
p

j

)q′
) 1

q

′

∼ Φq′(t)

for t ∈ (0, N−n
J0

], so that combining this with (4.26), (4.27) and [33, Proposi-
tion 12.2] we get (4.7) for v <∞, or (4.8) if v =∞. Similarly as in the previous
steps one gets also (4.6) and the finiteness of ELG|B

σ,N
p,q (t) for t ∈ (0, ε].

4.3. Estimates from below. The following lemma is essential in this section,
but might be also of independent interest.

Lemma 4.6. Given L ∈ N and λ0 > 1, there exists a C∞-function φ in R
n for

which

(i) there are positive constants C1, C2 and C3 with C1 < C3 < λ0C1 such that

φ(x) > C2 whenever |x|∞ 6 C1

φ(x) = 0 whenever |x|∞ > C3;
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(ii)
∫

Rn x
γφ(x) dx = 0 whenever γ1 + . . .+ γn 6 L with γ = (γj)

n
j=1 ∈ N

n
0 .

Moreover, C1, C2 and C3 can be chosen to depend only on n and λ0.

Proof. Consider h(y) := e
− 1

1−y2 if |y| < 1 and h(y) := 0 if |y| > 1. Given L ∈ N

and δ ∈ (0, 1], define

hδ,L(y) := h(y)−
L∑

l=0

ρδ,L h
(l)
(
δ−1(y − 1− δ)

)
, (4.28)

where the coefficients ρδ,L are uniquely determined by imposing that hδ,L obey
the following set of conditions:

∫

R

ykhδ,L(y) dy = 0, k = 0, . . . , L. (4.29)

In fact, this follows easily by plugging (4.28) in (4.29) and noticing that the
system obtained has triangular matrix with nonzero determinant. Let now

φδ,L(x) := hδ,L(x1)
n∏

m=2

h(xm), x := (xj)
n
j=1 ∈ R

n.

By using (4.29) it is easily verified that φδ,L obeys the required moment condi-
tions until the order L (that is, condition (ii) above, with φδ,L instead of φ).

On the other hand, it is also easy to see that

φδ,L(x) = 0 if |x|∞ > 1 + 2δ and φδ,L(x) > e
− n

2δ−δ2 if |x|∞ 6 1− δ,

so that condition (i) above is satisfied for C1 := 1−δ, C2 := e
− n

2δ−δ2 , C3 := 1+2δ
and φ := φδ,L if δ is chosen in (0, λ0−1

2+λ0
), which is clearly possible because λ0 > 1.

The proof is complete.

Proposition 4.7. Let N := (Nj)j∈N0 satisfy Assumption 2 and σ = (σj)j∈N0 be
an admissible sequence (with equivalence constants κ0, κ1). Let 0 < p, q 6 ∞.
Let b := (bj)j∈N ⊂ C be an eventually null sequence (that is, for which there
exists T ∈ N such that bj = 0 for j > T ) and L ∈ N satisfy (3.10). Then the
function f b given by

f b(x) :=
∞∑

j=1

bjσ
−1
j N

n
p

j φ(Njx), x ∈ R
n, (4.30)

where φ is a function fixed in accordance with the previous lemma, for the λ0

and L considered now, belongs to Bσ,N
p,q and there exists c1 > 0 (independent

of b) such that ∥∥f b |Bσ,N
p,q

∥∥ 6 c1‖b | `q‖. (4.31)
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If, moreover, bj > 0, for all j ∈ N, then there also exist c2 ∈ (0, 1] and c3 > 0
(independent of b and k) such that

(
f b
)∗
(c2N

−n
k ) > c3

k∑

j=1

bjσ
−1
j N

n
p

j , k ∈ N. (4.32)

Proof. Since the functions aj(x) := σ−1
j N

n
p

j φ(Njx), x ∈ R
n, j ∈ N, are (up

to constants, independently of j) (σ, p)M,L-N -atoms, for some fixed M ∈ N

with M > log2 κ1

log2 λ0
, and b ∈ `q, then (4.31) is an immediate consequence of

Theorem 3.14.

Consider now that bj > 0 for all j ∈ N. Let C1, C2 and C3 be the constants
associated with the fixed φ, as in Lemma 4.6. Note that whenever x ∈ R

n and
k ∈ N satisfy the relation C3λ

−1
0 N−1

k 6 |x|∞ 6 C1N
−1
k , it holds φ(Njx) > C2 if

1 6 j 6 k and φ(Njx) = 0 if j > k, and therefore

f b(x) > C2

k∑

j=1

bjσ
−1
j N

n
p

j .

Let now k ∈ N be given and 0 6 λ < C2

∑k
j=1 bjσ

−1
j N

n
p

j . Then

mfb(λ) >

∣∣∣∣
{
x ∈ R

n : |f b(x)| > C2

k∑

j=1

bjσ
−1
j N

n
p

j

}∣∣∣∣

>
∣∣{x ∈ R

n : C3λ
−1
0 N−1

k 6 |x|∞ 6 C1N
−1
k

}∣∣

= 2n
(
Cn

1 − Cn
3 λ

−n
0

)
N−n

k ,

hence for 0 6 t < 2n(Cn
1 − Cn

3 λ
−n
0 )N−n

k one has
(
f b
)∗
(t) > C2

∑k
j=1 bjσ

−1
j N

n
p

j ,

so the proof is complete if one chooses c2 := min{1, 2n−1(Cn
1 − Cn

3 λ
−n
0 )} and

c3 := C2.

Proposition 4.8. Let 0 < p, q 6 ∞. Let N := (Nj)j∈N0 satisfy Assumption 2
and σ := (σj)j∈N0 be an admissible sequence. Assume that Bσ,N

p,q ⊂ Lloc
1 . Then

there exists c > 0 such that

E
LG
|Bσ,N

p,q (t) > cΦq′(t), t ∈ (0, c2N
−n
J0

],

where c2 ∈ (0, 1] is the constant with the same name in Proposition 4.7, J0 ∈ N

is chosen such that NJ0 > 1 and Φq′, defined in (0, N−n
J0

], is the function of
Definition 2.4 (with q′ instead of u) built by means of an admissible function Λ
such that Λ(z) ∼ σj, for z ∈ [Nj, Nj+1], j ∈ N0, with equivalence constants
independent of j.
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Proof. Step 1: Let 1 < q 6 ∞. For each J ∈ N, denote by fJ the function f b

in (4.30) with b := (bj)j∈N the sequence defined by

bj :=




σ1−q′

j N
−n

p
(1−q′)

j

(∑J
k=1 σ

−q′

k N
n
p
q′

k

)− 1
q

for j = 1, . . . , J,

0 otherwise.

Notice that ‖b | `q‖ = 1. By (4.32), and using the same constants,

f ∗J (c2N
−n
J ) > c3

(
J∑

j=1

σ−q′

j N
n
p
q′

j

) 1
q′

,

and by (4.31) and the property (λf)∗ = |λ|f ∗ we obtain

ELG|B
σ,N
p,q (c2N

−n
J ) > c−1

1 c3

(
J∑

j=1

σ−q′

j N
n
p
q′

j

) 1
q′

, J ∈ N. (4.33)

Now let, for each given t ∈ (0, c2N
−n
J0

], J > J0 be such that c2N
−n
J+1 <

t 6 c2N
−n
J . Using (4.33), the monotonicity of ELG|B

σ,N
p,q , our hypotheses on Λ,

Proposition 2.7 and Lemma 2.6, we finally get

ELG|B
σ,N
p,q (t) > c4

(
J∑

j=J0

Λ(Nj)
−q′N

n
p
q′

j

) 1
q′

> c5 Φq′(c
−1
2 t) > c6 Φq′(t).

Step 2: Case 0 < q 6 1. For each k ∈ N, denote by fk the function f b in
(4.30) with b := (bj)j∈N the sequence defined by

bj :=

{
1 for j = k,

0 otherwise.

Notice that ‖b | `q‖ = 1. By (4.32), and using the same constants,

f ∗k (c2N
−n
J ) > c3 σ

−1
k N

n
p

k whenever J > k (k, J ∈ N). (4.34)

Now let, for each given t ∈ (0, c2N
−n
J0

], J > J0 be such that c2N
−n
J+1 < t 6

c2N
−n
J . Using (4.34), the monotonicity of ELG|B

σ,N
p,q , (4.31), the property (λf)∗ =

|λ|f ∗, our hypotheses on Λ, Proposition 2.7 and Lemma 2.6, we finally get

ELG|B
σ,N
p,q (t) > sup

{
f ∗(c2N

−n
J ) :

∥∥f |Bσ,N
p,q

∥∥ 6 1
}

> c−1
1 sup

{
f ∗k (c2N

−n
J ) : k = J0, . . . , J

}

> c4 sup
{
Λ(Nk)

−1N
n
p

k : k = J0, . . . , J
}

> c5 Φ∞(c−1
2 t)

> c6 Φ∞(t).
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We are now ready to prove the converse to Corollary 3.10.

Corollary 4.9. Let N = (Nj)j∈N0 be an admissible sequence with λ0 > 1
in (3.1) and let σ = (σj)j∈N0 be an admissible sequence. Let 0 < p 6 ∞

and 0 < q 6 ∞. If Bσ,N
p,q ↪→ C, then

(
σ−1
j N

n
p

j

)
j∈N0

∈ `q′ .

Proof. Since the assumption Bσ,N
p,q ↪→ C implies that Bσ,N

p,q ⊂ Lloc
1 , we can use

the proof of the preceding proposition and state that

ELG|B
σ,N
p,q (c2N

−n
J ) > c−1

1 c3

(
J∑

j=1

σ−q′

j N
n
p
q′

j

) 1
q′

, J ∈ N (4.35)

(usual modification if q′ = ∞), for some positive constants c1, c2 and c3 as
before. On the other hand, Bσ,N

p,q ↪→ C ↪→ L∞ imply that for any f ∈ Bσ,N
p,q with

‖f |Bσ,N
p,q ‖ 6 1, f ∗(0) = ‖f |L∞‖ 6 c4, for some constant c4 > 0, and therefore

ELG|B
σ,N
p,q (t) 6 c4, t > 0.

The result follows from the last inequality and from (4.35).

4.4. The main theorem; examples and remarks.

Theorem 4.10. Let 0 < p, q 6 ∞. Let N = (Nj)j∈N0 satisfy Assumption 2 and
σ := (σj)j∈N0 be an admissible sequence. Assume that (4.3) and (4.4) both hold.
Let Λ be an admissible function such that Λ(z) ∼ σj, z ∈ [Nj, Nj+1], j ∈ N0,
with equivalence constants independent of j, and let Φq′, defined in (0, N−n

J0
], be

the function from Definition 2.4 (with q′ instead of u), where J0 ∈ N is chosen
such that NJ0 > 1. Then

E
LG
Bσ,N

p,q = (Φq′ , q). (4.36)

Proof. We remark that, in view of Propositions 4.5 and 4.8, we have just to
prove the optimality of the exponent q.

Step 1: Let first 1 < q 6 ∞. Assume that for some v ∈ (0,∞) there is a
constant c(v) > 0 such that

(∫ ε

0

( f ∗(t)
Φq′(t)

)v

µq′(dt)

)1
v

6 c(v)
∥∥f |Bσ,N

p,q

∥∥, for all f ∈ Bσ,N
p,q , (4.37)

where µq′ denotes the Borel measure associated with − log2 Φq′ in (0, ε], for
some 0 < ε 6 N−n

J0
. Notice that, by Proposition 2.7 and Lemma 2.6, there are

positive constants c7, c8 such that

c7

( k∑

j=J0

(
σ−1
j N

n
p

j

)q′) 1
q′

6 Φq′(c2N
−n
k ) 6 c8

( k∑

j=J0

(
σ−1
j N

n
p

j

)q′) 1
q′

, k > J0, (4.38)
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where c2 ∈ (0, 1] has the same meaning as in Proposition 4.7.

Due to hypothesis (4.4) we can construct a strictly increasing sequence
(tk)k∈N0 of natural numbers in the following way:

(i) t0 is such that N−n
t0 6 ε;

(ii) tk+1, k ∈ N0, is the smallest integer satisfying

∑tk+1

j=J0

(
σ−1
j N

n
p

j

)q′

∑tk
j=J0

(
σ−1
j N

n
p

j

)q′
>

(
2c8
c7

)q′

, (4.39)

with c7, c8 as in (4.38).

We remark that in such a case, for all k ∈ N0,

∑tk+1

j=J0

(
σ−1
j N

n
p

j

)q′

∑tk
j=J0

(
σ−1
j N

n
p

j

)q′
∼ 1. (4.40)

For each J ∈ N, let b = (bj)j∈N be defined by

bj :=





(
σ−1
j N

n
p

j

)−1+q′
(∑tk

l=J0

(
σ−1
l N

n
p

l

)q′
)− 1

q

for
j = tk−1 + 1, . . . , tk,

k = 1, . . . , J

0 otherwise.

We have

‖b | `q‖ =




J∑

k=1

tk∑

j=tk−1+1

(
σ−1
j N

n
p

j

)q′
( tk∑

l=J0

(
σ−1
l N

n
p

l

)q′
)−1




1
q

6 J
1
q

(with the usual modification if q = ∞). Clearly, bj > 0, for all j ∈ N. Denote
by fJ the corresponding function f b of Proposition 4.7. Then

∥∥fJ |Bσ,N
p,q

∥∥ 6 c1 J
1
q (4.41)

and

f ∗J (c2N
−n
tk

) > c3

tk∑

j=tk−1+1

bj σ
−1
j N

n
p

j

= c3

(
tk∑

l=J0

(
σ−1
l N

n
p

l

)q′
)− 1

q tk∑

j=tk−1+1

(
σ−1
j N

n
p

j

)q′
, k ∈ {1, . . . , J},

(4.42)
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From (4.37), using (4.41), the monotonicity of f ∗
J and Φq′ , (4.42), (4.38), (4.39)

and (4.40), we obtain for any J ∈ N,

J
1
q > c

(
J∑

k=1

(
f ∗J (c2N

−n
tk

)

Φq′(c2N
−n
tk+1

)

)v

µq′
(
[c2N

−n
tk+1

, c2N
−n
tk

]
)
)1

v

> c′

{
J∑

k=1

( tk∑

j=tk−1+1

(
σ−1
j N

n
p

j

)q′
)v( tk∑

j=J0

(
σ−1
j N

n
p

j

)q′
)−v

} 1
v

> c′′J
1
v .

This being true for all J ∈ N, then it must be v > q.

Step 2: Now let 0 < q 6 1. Then q′ = ∞. We modify appropriately Step 1.
Assume that (4.37) holds true for some v ∈ (0,∞). The counterpart of (4.38)
reads as follows:

c7 sup
j=J0,...,k

σ−1
j N

n
p

j 6 Φ∞

(
c2N

−n
k

)
6 c8 sup

j=J0,...,k
σ−1
j N

n
p

j , k > J0. (4.43)

Due to hypothesis (4.4), we can construct a strictly increasing sequence (tk)k∈N0

of natural numbers as in the preceding step, now with supremums instead of
sums (cf. also the construction in Step 3 of the proof of Proposition 4.5).

For each J ∈ N, let b = (bj)j∈N be defined by

bj :=

{
1 if j = tk, k ∈ {1, · · · , J}

0 otherwise.

We have ‖b | `q‖ = J
1
q . Then the corresponding function fJ , as in Step 1,

satisfies
∥∥fJ |Bσ,N

p,q

∥∥ 6 c1 J
1
q and f ∗J (c2N

−n
tk

) > c3 σ
−1
tk
N

n
p

tk
, k ∈ {1, . . . J}, (4.44)

where c1, c2 and c3 are as in Proposition 4.7. From (4.37), using the monotonic-
ity of f ∗J and Φ∞, (4.43), (4.44) and the properties of the sequence (tk)k∈N0 , we
obtain for any J ∈ N,

J
1
q > c

(
J∑

k=1

(
f ∗J (c2N

−n
tk

)

Φ∞(c2N
−n
tk+1

)

)v

µ∞
(
[c2N

−n
tk+1

, c2N
−n
tk

]
)
)1

v

> c′

{
J∑

k=1

(
σ−1
tk
N

n
p

tk

supj=J0,...,tk+1
σ−1
j N

n
p

j

)v
} 1

v

> c′′J
1
v .

This being true for all J ∈ N, then it must be v > q.
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Remark 4.11. Observe that the hypothesis (4.3) was not needed in Steps 1
and 2 of the preceding proof, but merely that Bσ,N

p,q ⊂ Lloc
1 . For the effect of

what is proved in Steps 1 and 2, we can even drop this assumption, since what
is actually proved there is that a property like (4.37) cannot stand for all regular
(even smooth) members of Bσ,N

p,q if v is less than q (as long as we keep all the
other hypotheses, of course). Don’t forget, however, that Steps 1 and 2 deal
only with part of the proof of formula (4.36).

Remark 4.12. We would like to point out that the theorem covers and extends
the results previously obtained by A. Caetano and S. Moura [4], [5], which
already covered the general statements of D. Haroske [19] and H. Triebel [33],
as far as growth envelopes for Besov-type spaces are concerned. To see this, one
just has to show that the spaces considered in Theorem 4.4 of [5] are included
in our main theorem. It is, in fact, an easy exercise to show that the spaces
Bσ,N

p,q considered there, namely with Nj = 2j and σj = 2jsΨ(2−j), j ∈ N0, where
n(1

p
− 1)+ < s 6

n
p
and Ψ is a so-called admissible function (in the context of

that paper) satisfying (Ψ(2−j)−1)j∈N /∈ `q′ when s =
n
p
, are such that (σj)j∈N0 is

admissible (in our sense), (Nj)j∈N0 satisfies Assumption 2 and, moreover, (4.3)
and (4.4) hold.

Remark 4.13. Our main theorem also covers and extends Theorem 6.3 (i)
of [2], where it is again an easy exercise to see that the spaces Bσ,N

p,q considered
there, namely with Nj = 2j, j ∈ N0, and σ an admissible sequence satisfying

n

(
1

p
− 1

)

+

< lim
l→∞

log2 σl

l
6 lim

l→∞

log2 σl

l
<
n

p
,

verify all the requirements of our main theorem.
In particular, the representatives for the corresponding growth envelope

functions, though possibly different, must all be equivalent near 0, for each
fixed set of parameters. The situation is similar to what already happened
when comparing the results of [4] and [5].

The following explains in a more intelligible way the relevance of the out-
come of the above theorem (the reader might want to have [33, Prop. 12.2] in
mind if seeking for a proof).

Corollary 4.14. Consider the same hypotheses of the main theorem and 0 <
ε 6 N−n

J0
. Let κ be a positive monotonically decreasing function on (0, ε] and

let 0 < u 6 ∞. Then

(∫ ε

0

(
κ(t)

f ∗(t)

Φq′(t)

)u

µq′(dt)

)1
u

6 c
∥∥f |Bσ,N

p,q

∥∥ (4.45)
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for some c > 0 and all f ∈ Bσ,N
p,q if, and only if, κ is bounded and q 6 u 6 ∞,

with the modification

sup
t∈(0,ε]

κ(t)
f ∗(t)

Φq′(t)
6 c

∥∥f |Bσ,N
p,q

∥∥ (4.46)

if u = ∞. Moreover, if κ is an arbitrary nonnegative function on (0, ε], then
(4.46) above holds if, and only if, κ is bounded.

Remark 4.15. Observe that, when 1 < q 6 ∞, the measure µq′(dt) in (4.45)
can be replaced by

dt

Φq′(t)q
′ t

q′

p Λ
(
t−

1
n

)q′
t
.

Remark 4.16. Envelopes can be used to show that some conditions are nec-
essary for something to happen. An example is in the proof of the converse
to Corollary 3.10 in Corollary 4.9. Sometimes it might be necessary to take
first advantage of lifts before growth envelopes can be used. An example where
things work out this way can be seen in [3], in the proof of the necessity of
conditions which were already known to be sufficient for the existence of an em-
bedding between function spaces. That proof is also of interest because it takes
also advantage of the knowledge of the index q of the local growth envelope
(Φq′ , q) in order to fulfil its task.
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