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Fewer Convergence Conditions

for the Halley Method

J. A. Ezquerro and M. A. Hernández

Abstract. We present a new semilocal convergence result of Newton-Kantorovich
type for Halley’s method, where fewer convergence conditions are required than all
the existing ones until now.
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1. Introduction

A large number of problems in applied mathematics and engineering are solved
by finding the solutions of certain equations. The most commonly used solution
methods are iterative: from one or several initial approximations a sequence is
constructed that converges to a solution of the equation. Considerable effort
has been devoted to the study of iterative methods for the determination of
solutions of F (x) = 0, where F is a nonlinear operator defined on a non-empty
open convex subset Ω of a Banach space X with values in another Banach
space Y .

Newton’s method is the most best-known iterative method to solve F (x)=0,
but Halley’s process is possibly the second one and perhaps the most rediscov-
ered method in the world (see [3] and [7]). Here we consider the Halley method
for solving F (x) = 0, which is of R-order three (see [2, 8]) and is based on the
algorithm

xn+1 = xn −
[

I +
1

2
LF (xn)

(

I − 1

2
LF (xn)

)−1
]

F (xn)
−1F (xn), n ≥ 0,

where x0 ∈ Ω, I is the identity operator on X and LF (x) is the degree of
logarithmic convexity [4], defined by LF (x) = F ′(x)−1F ′′(x)[F ′(x)−1F (x)] ∈

J. A. Ezquerro and M. A. Hernández: Department of Mathematics and Computation,
University of La Rioja, Spain; jezquer@dmc.unirioja.es , mahernan@dmc.unirioja.es



250 J. A. Ezquerro and M. A. Hernández

L(X,X), where L(X,X) is the set of bounded linear operators from X into X,
and such that

LF (x)(−) = F ′(x)−1F ′′(x)(F ′(x)−1F (x),−),

provided that F ′(xn)
−1 and

(

I − 1
2
LF (xn)

)−1
exist at each step. The opera-

tors F ′(x) and F ′′(x) denote the first and the second Fréchet-derivatives of the
operator F .

The convergence of the Halley method has been examined extensively by
several authors. Basic results concerning the convergence of the method have
been published under assumptions of Newton-Kantorovich type. Safiev [6] pre-
sented a convergence theorem for the Halley iteration under the following con-
ditions:

‖Γ0‖ ≤ β, ‖Γ0F (x0)‖ ≤ η, ‖F ′′(x)‖ ≤M, and ‖F ′′′(x)‖ ≤ N, x ∈ Ω,

where it is supposed that Γ0 = F ′(x0)
−1 ∈ L(Y,X) exists at some x0 ∈ Ω.

Since then, a large number of convergence results concerning this method and
related techniques have been published, see [2] and [8], where an abundant list
of references can be found.

The convergence conditions given by Safiev can be modified by replacing
the strongest one ‖F ′′′(x)‖ ≤ N , x ∈ Ω, with

‖F ′′(x)− F ′′(y)‖ ≤ K‖x− y‖, K ≥ 0, x, y ∈ Ω, (1)

or the milder one

‖F ′′(x)− F ′′(y)‖ ≤ L‖x− y‖p, L ≥ 0, p ∈ [0, 1], x, y ∈ Ω (2)

(see [1, 2, 4, 8]). These two last conditions mean that F ′′ is Lipschitz continuous
in Ω and F ′′ is (L, p)-Hölder continuous in Ω, respectively. According to this,
the number of equations that can be solved by the Halley method is limited. For
instance, we cannot analyze the convergence of the Halley process to a solution
of equations where sums of operators which satisfy (1) or (2) are involved, as
it is shown in the following nonlinear integral equation of mixed Hammerstein
type:

x(s) = 1 +

∫ 1

0

G(s, t)
(

x(t)
5

2 + 1
5
x(t)3

)

dt, s ∈ [0, 1], (3)

where x ∈ C[0, 1], s, t ∈ [0, 1], and the kernel G is the Green function

G(s, t) =

{

(1− s)t, t ≤ s

s(1− t), s ≤ t.
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Here we reconsider the convergence of Halley’s iteration in Banach spaces
and a convergence theorem is provided by assuming only that the operator F ′′

is bounded in the domain Ω, where the solution x∗ must exist. Obviously this
new convergence theorem requires fewer convergence conditions than all the
previous ones appearing in the literature.

To finish, the theoretical significance of the Halley method is used to draw
conclusions about the existence and uniqueness of solution and about the region
in which it is located, without finding the solution itself. This is sometimes more
important than the actual knowledge of the solution (see [5]). And we apply
this analysis to equation (3).

Throughout the paper we denote B(x, r) = {y ∈ X; ‖y − x‖ ≤ r} and
B(x, r) = {y ∈ X; ‖y − x‖ < r}.

2. A convergence theorem

Initially we give the conditions that the operator F and the starting point x0

must satisfy to establish a semilocal convergence theorem for Halley’s process.
Conditions for the existence of a solution x∗ of F (x) = 0 are given, along with
the domains of existence and uniqueness of x∗.

Suppose that Γ0 = F ′(x0)
−1 ∈ L(Y,X) exists at some x0 ∈ Ω, where

L(Y,X) is the set of bounded linear operators from Y into X.

Theorem 1. Let F : Ω ⊆ X → Y be a twice continuously differentiable operator

on a non-empty open convex domain Ω and

‖Γ0F (x0)‖ ≤ η and ‖Γ0F
′′(x)‖ ≤M, x ∈ Ω .

If both the conditions α0 = Mη < 4−
√

6
5

and B(x0, Rη) ⊆ Ω, where R =
2−3α0

2(1−3α0+α2
0
)
, are satisfied, then Halley’s method starting from x0 generates a se-

quence {xn} that converges to an isolated solution x∗ ∈ B(x0, Rη) of F (x) = 0.
Moreover x∗ is unique in Ω0 = B(x0,

2
M
−Rη) ∩ Ω.

Proof. Taking into account the hypotheses we have ‖LF (x0)‖ ≤ α0. Moreover,
by the Banach lemma, H(x0)

−1 exists and ‖H(x0)
−1‖ ≤ 2

2−α0
, where H(x) =

I − 1
2
LF (x). Furthermore,

‖x1 − x0‖ ≤
2

2− α0

‖Γ0F (x0)‖ < Rη

and consequently x1 ∈ B(x0, Rη). By the Banach lemma, since

‖I − Γ0F
′(x1)‖ =

∥

∥

∥

∥

∫ 1

0

Γ0F
′′(x0 + t(x1 − x0)) dt (x1 − x0)

∥

∥

∥

∥

≤ 2α0

2− α0

< 1,
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Γ1 exists and ‖Γ1F
′(x0)‖ ≤ 2−α0

2−3α0
. So x1 is well-defined. From the approxima-

tion

Γ0F (x1) = −
1

2
LF (x0)H(x0)

−1Γ0F (x0)

+

∫ 1

0

Γ0F
′′(x0 + t(x1 − x0))(1− t) dt (x1 − x0)

2,

it follows ‖Γ0F (x1)‖ ≤ α0(4−α0)
(2−α0)2

‖Γ0F (x0)‖ and

‖Γ1F (x1)‖ ≤ ‖Γ1F
′(x0)‖‖Γ0F (x1)‖ ≤

α0(4− α0)

(2− α0)(2− 3α0)
‖Γ0F (x0)‖.

Next, from ‖LF (x1)‖ ≤ ‖Γ1F
′′(x1)‖‖Γ1F (x1)‖ ≤ α2

0
(4−α0)

(2−3α0)2
= α1 < 1 and the

Banach lemma, we obtain that H(x1)
−1 exists and ‖H(x1)

−1‖ ≤ 2
2−α1

. After
that, since α1 < α0,

‖x2 − x1‖ ≤
2

2− α1

‖Γ1F (x1)‖ ≤
2 θ

2− α0

‖Γ0F (x0)‖,

where θ = α0(4−α0)
(2−α0)(2−3α0)

. Besides, since θ < 1,

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤
2 (1 + θ)

2− α0

‖Γ0F (x0)‖ < Rη.

We can now construct the decreasing scalar sequence

αn =
α2
n−1(4− αn−1)

(2− 3αn−1)2
, n = 1, 2, 3 . . . ,

and following an inductive procedure we can replace x1 by x2, x2 by x3 and, in
general, xn−1 by xn to confirm that Γn exists and the next:

‖ΓnF
′(xn−1)‖ ≤ 2−αn−1

2−3αn−1

‖Γn−1F (xn)‖ ≤ αn−1(4−αn−1)
(2−αn−1)2

‖Γn−1F (xn−1)‖
‖ΓnF (xn)‖ ≤ αn−1(4−αn−1)

(2−αn−1)(2−3αn−1)
‖Γn−1F (xn−1)‖ ≤ θn‖Γ0F (x0)‖ < η

‖LF (xn)‖ ≤
(
∏n

i=1 ‖ΓiF
′(xi−1)‖

)

‖Γ0F
′′(xn)‖‖ΓnF (xn)‖ ≤ αn

H(xn)
−1 exists and ‖H(xn)

−1‖ ≤ 2
2−αn

‖xn+1 − xn‖ ≤ 2
2−αn

‖ΓnF (xn)‖
‖xn+1 − x0‖ ≤ 2

2−α0

1−θn+1

1−θ
‖Γ0F (x0)‖ < Rη.

The proof of the previous items is similar to that mentioned above for the case
n = 1.
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Then we can derive that {xn} is a Cauchy sequence. Observe

‖ΓnF (xn)‖ ≤
αn−1(4− αn−1)

(2− αn−1)(2− 3αn−1)
‖Γn−1F (xn−1)‖ ≤ . . .

≤
(

n−1
∏

i=0

αi(4− αi)

(2− αi)(2− 3αi)

)

‖Γ0F (x0)‖ ≤ θnη,

and consequently

‖xn+1 − xn‖ ≤
2

2− αn

‖ΓnF (xn)‖ ≤
2

2− α0

θnη.

Hence

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖+ ‖xn+m−1 − xn+m−2‖+ · · ·+ ‖xn+1 − xn‖

≤ 2 θn (1− θm)

(2− α0)(1− θ)
η

so that {xn} is convergent and limn xn = x∗. If n = 0, ‖xm−x0‖ ≤ 2
2−α0

1−θm

1−θ
η <

Rη and xm ∈ B(x0, Rη), m ≥ 1.

Now, by letting n → ∞ in ‖ΓnF (xn)‖ ≤ θn‖Γ0F (x0)‖, it follows that
‖ΓnF (xn)‖ → 0. Since ‖Γ0F (xn)‖ ≤ ‖Γ0F

′(xn)‖‖ΓnF (xn)‖ and the sequence
{‖Γ0F

′(xn)‖} is bounded, we obtain ‖F (xn)‖ → 0 and F (x∗) = 0 by the
continuity of F .

To show the uniqueness of x∗, we suppose that z∗ is another solution of
F (x) = 0 in Ω0 = B(x0,

2
M
−Rη) ∩ Ω. From the approximation

0 = Γ0(F (z∗)− F (x∗)) =

∫ 1

0

Γ0F
′(x∗ + t(z∗ − x∗)) dt (z∗ − x∗),

and the fact that the operator P =
∫ 1

0
Γ0F

′(x∗ + t(z∗− x∗)) dt is invertible, the
equality z∗ = x∗ follows. Observe that P is invertible since

∫ 1

0

‖Γ0(F
′(x∗ + t(z∗ − x∗))− F ′(x0))‖ dt

≤M

∫ 1

0

‖x∗ + t(z∗ − x∗)− x0‖ dt

≤M

∫ 1

0

(

(1− t)‖x∗ − x0‖+ t‖z∗ − x0‖
)

dt

<
M

2

(

Rη +
2

M
−Rη

)

= 1,

and the Banach lemma for the operator P holds.



254 J. A. Ezquerro and M. A. Hernández

3. Application

We now illustrate the previous study with an application to nonlinear integral
equation of mixed Hammerstein type (3), where the domains of existence and
uniqueness are provided.

Solving (3) is equivalent to solve F (x) = 0, where F : Ω ⊆ C[0, 1]→ C[0, 1],

[F (x)](s) = x(s)− 1−
∫ 1

0

G(s, t)
(

x(t)
5

2 + 1
5
x(t)3

)

dt, s ∈ [0, 1], (4)

and Ω is a suitable non-empty open convex domain. Observe that the first and
the second Fréchet derivatives of the previous operator are

[F ′(x)y](s) = y(s)−
∫ 1

0

G(s, t)
(

5
2
x(t)

3

2 + 3
5
x(t)2

)

y(t) dt

and

[F ′′(x)yz](s) = −
∫ 1

0

G(s, t)
(

15
4
x(t)

1

2 + 6
5
x(t)

)

z(t)y(t) dt. (5)

Notice that F ′′ does not satisfy (1) neither (2), but the conditions of Theorem 1
are, so that a solution of equation (3) can be approximated by the Halley
iteration.

Using the max-norm and taking into account that a solution x∗ of (3) in
C[0, 1] must satisfy

‖x∗‖ − 1

8
‖x∗‖ 5

2 − 1

40
‖x∗‖3 − 1 ≤ 0,

i.e., ‖x∗‖ ≤ ρ1 = 1.28982 . . . and ‖x∗‖ ≥ ρ2 = 2.28537 . . ., where ρ1 and ρ2 are

the positive roots of the real equation z− 1
8
z

5

2 − 1
40
z3− 1 = 0. Taking now into

account (4), it is needed that x∗ ≥ 0, then if we look for a solution such that
‖x∗‖ < ρ1, we can consider for example Ω = B(1, 1) ⊆ C[0, 1] as a non-empty
open convex domain.

Choosing x0(s) = 1, we have ‖I−F ′(x0)‖ ≤ 31
80

< 1, Γ0 is defined, ‖Γ0‖ ≤ 80
49

and ‖Γ0F (x0)‖ ≤ 12
49

= η. From (5), it follows

‖Γ0F
′′(x)‖ ≤ 1.24838 . . . = M and α0 = 0.305726 . . . <

4−
√
6

5
.

Moreover, B(x0, Rη) = B(1, 0.752111 . . .) ⊆ B(1, 1) = Ω.

Therefore, every condition of Theorem 1 holds and equation (3) has then a
solution x∗ in the domain {u ∈ C[0, 1]; ‖u−1‖ ≤ 0.752111 . . .}, which is unique
in {u ∈ C[0, 1]; ‖u− 1‖ < 0.849966 . . . }.
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