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Abstract. A method of stochastic approximation is studied in the framework of the
general convergence theory for families of linear polynomial operators of interpolation
type. The description of the corresponding computational procedure, in particular, its
input parameters, is given. Some optimization problems and aspects of implementa-
tion of the algorithm by means of Maple are discussed. It is shown that the algorithm
can be applied not only to problems of "pure approximation" in the spaces Lp with
0 < p ≤ +∞, but also to problems of signal processing, especially, if one is interested
in strong oscillating data or data containing an essential stochastic item.
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1. Introduction

In this paper we discuss a method and an algorithm of stochastic approximation,
which are based on approximations by families of linear polynomial operators
given on the Lp-space of functions defined on the d-dimensional torus T

d with
0 < p ≤ +∞ by setting

Lϕ
n;λ(f, x) = (2n+ 1)

−d
∑

|k|≤n

f
(
tkn + λ

)
Wn

(
x− tkn − λ

)
(f ∈ Lp, n ∈ N0).

(1.1)
Here λ ∈ R

d is a parameter,

W0(h) ≡ 1, Wn(h) =
∑

|k|≤n

ϕ
(
k
n

)
eikh (n ∈ N), (1.2)
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ϕ(·) is a real valued centrally symmetric continuous function with support con-
tained in the unit ball of R

d satisfying ϕ(0) = 1, and

tkn =
2πk

2n+ 1

(
k ∈ Z

d
)
. (1.3)

The families (1.1) were systematically studied in [1] and [4] – [6]. The main
property our method is based on is that the averaged approximation error in Lp,
0 < p ≤ +∞, with respect to the parameter λ can be estimated up to a constant
by the best approximation of order ³ n, if the generator ϕ of the kernel satisfies
the following additional conditions: ϕ(ξ) = 1 at the neighborhood of 0, and
its Fourier transform belongs to Lp̃(R

d), where p̃ = min(1, p). One of the
possible versions of this result we need in this paper will be given in Section 2
(Theorem 1). We also show that the same quality of approximation can be
achieved, if the parameter λ is randomly chosen. This result enables us to
elaborate the procedure we have called algorithm of stochastic approximation
(SA-algorithm), which reduces the problem of trigonometric approximation for
all admissible parameters 0 < p ≤ +∞ to the problem of interpolation with
randomly shifted nodes (Theorem 2).

Formula (1.1) is very close in a certain sense to the formulas determining
the classical methods of trigonometric approximation, namely, the interpolation
means and the Fourier means. More precisely, the interpolation means are given
by (1.1) with λ = 0, and the Fourier means are obtained, if λ = 0 again, and
the summation over the discrete set of points tkn is replaced by the integration
over the continuous parameter. For the complete comparison of approximation
properties of all three methods we refer to [6]. Here we notice that the families of
linear polynomial operators of interpolation type can be used for approximation
in all Lp-spaces with 0 < p ≤ +∞ in contrast to the interpolation means and
the Fourier means which are relevant only for p = +∞ and 1 ≤ p ≤ +∞,
respectively.

From the computational point of view the approximation algorithm based
on the interpolation means (I-algorithm) is much more economical in comparison
with the procedure based on the Fourier means (F-algorithm). Indeed, the cal-
culation of Ln;0(f, x) is reduced to the calculation of the discrete Fourier coeffi-
cients (the Fourier-Lagrange coefficients) of f , that is, to the Fast Fourier Trans-
form (FFT). Because of this reason the I-algorithm consists of O((n log n)d)
operations, where n is the order of the approximation polynomial in the sense
of (1.2), in contrast to the F-algorithm, where the number of operations is es-
sentially larger, mainly, because of necessity to compute the Fourier coefficients,
that is, integrals from functions oscillating at least up to n times. Indeed, by
means of applying standard cubatures, such a computation is reduced to the
FFT as well. However, as the simplest test for cosnx shows, the number of
nodes N , that is, the length of the sequence to be transformed with the help of
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the FFT, one needs to achieve any acceptable accuracy, should be much greater
than n.

The SA-algorithm we discuss in this paper enables us to keep the simplicity
of the I-algorithm, which is applied to continuous functions only, for all admis-
sible parameters 0 < p ≤ +∞. It should be noticed in this respect that we
have not found in the literature any other computational procedure for approx-
imation in the Lp-spaces with 0 < p < 1. As it was already mentioned above
such a combination of "nice properties" is achieved by random translations of
interpolation nodes. These random shifts can be controlled by an additional
parameter 0 < ε < 1 which we call probability error. In the limiting case of
approximation by interpolation means it is equal to 0.

The paper is organized as follows. In Section 2 we formulate and prove
the basic theorem on stochastic approximations. The discussion on the input
parameters and their relations are given in Section 3. Section 4 contains the
computational procedure. Some optimization problems are posed and discussed
in Section 5. Some aspects of implementation of the SA-algorithm on the Maple-
platform are described in Section 6. Section 7 contains the results applying the
SA-algorithm to test functions and a discussion of possible applications and
further developments. In particular, the problem of detecting a main analytical
component of a process whose development partially depends on the influence
of some uncontrolled random effects, as well as the ways of applying the SA-
algorithm to its solution are described.

2. Theorem on stochastic approximation

Our starting point is a result on the quality of the approximation by families
of type (1.1)–(1.2) which can be easily obtained following the ideas presented
in [6] (see, in particular, (2.8) and Theorem 7.7). As usual,

Eσ(f)p = inf
Tσ
‖f − Tσ‖p (f ∈ Lp, σ ≥ 0),

where the infinum is taken over all real valued trigonometric polynomials with
spectrum contained in the ball of radius σ centered at the origin, is the best
approximation to f of order σ in the space Lp. By G(q, ρ), where 0 < q ≤ 1,
0 < ρ < 1, we denote the class of real valued centrally symmetric continuous
functions ϕ satisfying

ϕ(ξ) =

{
1, |ξ| ≤ ρ

0, |ξ| > 1 ,
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whose Fourier transform ϕ̂ belongs to Lq(R
d). We use the symbol Lp for the

Lp-space of functions of two variables x and λ, which is equipped with the norm

‖ · ‖p =

{
(2π)−

d
p ‖ ‖ · ‖p;x‖p;λ, 0 < p < +∞

‖ ‖ · ‖p;x‖p;λ, p = +∞ .

where ‖ ‖ · ‖p;z denotes the (quasi-)norm with respect to the variable z.

Theorem 1. Let 0 < p ≤ +∞, 0 < ρ < 1 and ϕ ∈ G(p̃, ρ), where p̃ = min(1, p).
Then

∥∥f − Lϕ
n;λ(f)

∥∥
p
≤ c(d, p, ϕ)Eρn(f)p (f ∈ Lp, n ∈ N0), (2.1)

where

c(d, p, ϕ) =




1 + (2π)−d 3d(1−

1

p
)‖ϕ̂‖L1(Rd), 1 ≤ p ≤ +∞

(
1 + (2π)−d 3d(1−p)‖ϕ̂‖p

Lp(Rd)

) 1

p

, 0 < p < 1
(2.2)

Theorem 1 shows that the approximation by families of linear polynomial
operators of interpolation type gives almost the best order of approximation
in average on the parameter λ for 0 < p < +∞. Combining this result
with the classical Chebyshev inequality we will show that the same outcome
can be obtained with an a priori defined probability error, if the parameter λ

is randomly chosen, or, in other words, the interpolation nodes are randomly
shifted without loss of uniformity of the grid. The one-dimensional version
of the theorem below without estimates for the constant can be found in [1].
Henceforth, the probability of an event A is denoted with P{A}. We use also
the symbol E for the mathematical expectation.

Theorem 2 (Basic theorem on stochastic approximation). Let γ > 1, 0 < p <

+∞, 0 < ρ < 1, ϕ ∈ G(p̃, ρ), where p̃ = min(1, p). Let also m ∈ N and ηj,
j = 1, . . . ,m, be independent random vectors uniformly distributed on the unit
cube [0, 1]d. Then for f ∈ Lp and n ∈ N0

P

{
min

j=1,...,m
‖f − Lϕ

n;θj
(f)‖p ≤ γc(d, p, ϕ)Eρn(f)p

}
≥ 1− γ−pm, (2.3)

where θj = τηj, j = 1, . . . ,m, and τ = 2π
(2n+1)

.

Proof. Taking into account that the random vectors θj are independent and
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that they have the same distribution law we get (c ≡ c(d, p, ϕ))

P
{
min

j=1,...,m
‖f − Lϕ

n;θj
(f)‖p ≤ γcEρn(f)p

}

= 1− P

{ m⋂

j=1

{
‖f − Lϕ

n;θj
(f)‖p > γcEρn(f)p

}}

= 1−
m∏

j=1

P
{
‖f − Lϕ

n;θj
(f)‖p > γcEρn(f)p

}

= 1−
(
P
{
‖f − Lϕ

n;θ1
(f)‖p > γcEρn(f)p

})m

= 1−
(
P
{
‖f − Lϕ

n;θ1
(f)‖pp > (γcEρn(f)p)

p })m
.

(2.4)

By Chebyshev’s inequality we have

P
{
‖f− Lϕ

n;θ1
(f)‖pp > (γcEρn(f)p)

p
}
≤ (γcEρn(f)p)

−p E
(
‖f− Lϕ

n;θ1
(f)‖pp

)
. (2.5)

Since

dFθ1(λ) = τ−d dλ (λ ∈ [0, τ ]d),

where Fθ1 is the distribution function for θ1 and, as it follows immediately from
(1.1), the function ‖f −Lϕ

n;λ(f)‖p is τ -periodic on each λi, i = 1, . . . , d, we get

E
(
‖f − Lϕ

n;θ1
(f)‖pp

)
= τ−d

∫

[0,τ ]d
‖f − Lϕ

n;λ(f)‖
p
p dλ

= (2π)−d

∫

Td

‖f − Lϕ
n;λ(f)‖

p
p dλ

= ‖f − Lϕ
n;λ(f)‖

p
p .

(2.6)

Combining (2.4)–(2.6) we obtain

P
{
min

j=1,...,m
‖f−Lϕ

n;θj
(f)‖p≤ γcEρn(f)p

}
≥ 1−

(
( γcEρn(f)p)

−p ‖f−Lϕ
n;λ(f)‖

p
p

)m
.

Now (2.3) follows immediately from (2.1).

3. Input parameters

Now we discuss the input parameters of the SA-algorithm. They can be split
into three groups: given, operating and dependent parameters. The parameters
of the first group are determined by the problem to be solved. We present them
in the following table.
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Name Range

d dimension N

p metric (0,+∞)

f function to be approximated Lp(T
d)

σ order of best approximation [0,+∞)

ε probability error (0, 1)

Table 1. Given parameters

In contrast to the first group the operating parameters can be chosen according
to our decision. Some optimization problems caused by this "freedom" will be
discussed later. The parameters of the second group are gathered in the Table 2.

Name Range

ρ relative order of best approximation to the order of kernel (0, 1)

ϕ generator of the kernel G(p̃, ρ)

γ constant of exceeding "theoretical level" (1,+∞)

Table 2. Operating parameters

The depending parameters are presented in the Table 3.

Name Range

n order of the kernel N0

m number of random shifts N

Table 3. Depending parameters

In view of (1.2) n is a non-negative integer. In the multivariate case n means
the radius of the ball on the lattice Z

d, and the requirement to be integer does
not look very natural. However, the number 2n + 1 has to be an integer even
in this case, in order to guarantee the periodicity of the set of interpolation
nodes (see (1.3)). Thus, the parameter n, if it is not 0, has to be an integer or
a number of type s − 1

2
, where s is an integer. Sometimes, as we shall see in
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Section 6, the second possibility turns out to be more preferable. In contrast
to n the parameter σ can be any real non-negative number.

Since the sequence of best approximations is decreasing, the order of the
kernel, that is, the order of the approximating polynomial, should be chosen in
such a way that the parameter of the best approximation ρn will be as close as
possible to the prescribed σ. By this remark we get

n = min {k : kρ ≥ σ}, (3.1)

where k is s or s− 1
2
, s ∈ N.

In order to be able to apply the FFT-procedure, we have to require that
the number 2n + 1, that is, the number of nodes of the grid, is a power of 2.
In view of (3.1) this implies that

n = 2r−1 − 1
2
, r = min

{
q ∈ N : q ≥ log2

(
2σ
ρ
+ 1
)}

(3.2)

In order to attain the required probability precision the right-hand side of (2.3)
has to be greater than 1− ε, that is,

γ−pm < ε. (3.3)

Taking into account that the parameter m, which influences the number of
operations, should be chosen as small as possible, we get from (3.3) the explicit
formula for the optimal number of random shifts of the grid

m =

[
log 1

ε

p log γ

]
+ 1. (3.4)

4. Computational procedure

In this section we describe the procedure of stochastic approximation in more
detail.

In the first step the random independent uniformly distributed on [0, 1]d

vectors ηj, j = 1, . . . ,m, where m is calculated by means of formula (3.4),
should be generated. For this purpose standard programs and tools of applied
stochastics can be used. Then we determine θj = τηj, j = 1, . . . ,m.

In the second step we apply the Fast Fourier Transform (see, for instance,
[2] or [8] for more details) to the sets of the values of a given function on the
shifted uniform grids

Fj =
{
f (tνn + θj)) : ν ∈ Z

d, 0 ≤ νi ≤ 2n, i = 1, . . . , d
}

yFFT

F̂j =
{
c
(n)
k (fj) : k ∈ Z

d, 0 ≤ ki ≤ 2n, i = 1, . . . , d
}
,

(4.1)
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j = 1, . . . ,m, where

c
(n)
k (fj) = (2n+ 1)

−d

2n∑

ν1=0

· · ·

2n∑

νd=0

fj (t
ν
n) e

−ik(tνn+θj) (k ∈ Z
d), (4.2)

are the Fourier-Lagrange coefficients of the function fj = f(· + θj).
*) By (4.2)

and (1.1) we obtain

Lϕ
n;θj
(f ;x) =

∑

|k|≤n

ϕ
(
k
n

)
c
(n)
k (fj)e

ikx (j = 1, . . . ,m). (4.3)

In the third step we calculate the errors

‖f − Lϕ
n;θj
(f)‖p (j = 1, . . . ,m) , (4.4)

and choose the minimal one. If it corresponds to the index j0, then by The-
orem 2 the polynomial Lϕ

n;θj0
(f) approximates a given function f up to the

approximation error γc(d, p, ϕ)Eρn(f)p with probability not less than 1− ε.

Finally, we notice that we apply the formula (1.1) m times, finding the
minimum of m numbers requires m operations and the number of operations
one needs to produce m random values is linear dependent on m. Thus, the
complete SA-algorithm has the same property.

5. Optimization problems

In this Section we give some remarks concerning the optimal choice of the
parameters and we pose the corresponding optimization problems.

The quality of the computational procedure above is mainly determined by
the following characteristics:

- nearness to the best possible theoretical approximation order (γ, ρ);

- reliability of the outcome (ε);

- number of operations (m),

where in brackets the main responsible parameters are given. Formula (3.4)
shows that the improvement of any of these characteristics can be achieved on
account of the other ones. Which parameter should be given the preference
mainly depends on the specific characters of the problem to be solved.

The parameters ρ and ϕ do not influence the properties of the SA-algorithm
itself. On the other hand, they are responsible for the quality of estimate (2.1).
We are not able to give the complete theoretical solution of the problem of their

*) Clearly, the function c
(n)
k

given on Z
d has a period 2n + 1 with respect to each ki.
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optimal choice. However, we discuss some general principles which enable us to
find quasi-optimal values by computer experiments.

The parameter ρ is present in both the constant c(d, p, ϕ) and in the value
Eρn(f)p. In view of (2.2) the behavior of c(d, p, ϕ) is determined by the norm
of the Fourier transform of the generator of the kernel. Let us consider the case
1 ≤ p ≤ +∞. Using that ϕ(0) = 1 we obtain a trivial estimate from below

‖ϕ̂‖L1(Rd) ≥ 1. (5.1)

Taking into account that in the one-dimensional case the value 1 is attained, for
instance, for the generator of the classical Fejer means, that is, for ρ = 0, and
that the norm of the generator of the Fourier partial sums, for which ρ = 1, is
infinity, we can conjecture that the smaller ρ the better the constant c(d, p, ϕ).
On the other hand, the smaller ρ the greater the value Eρn(f)p. These two
trends which contradict each other determine the choice of ρ.

Before we comment on these observations in more detail, we notice that, if
ρ is somehow chosen, it remains the possibility to vary the function ϕ in the
ring ρ < |ξ| < 1. In view of (2.2) we can formulate the associated optimization
problem as follows. Given 0 < p ≤ 1 and 0 < ρ < 1. It is required to find a
function ϕ∗ ∈ G(p, ρ) giving the solution of the problem:

‖ϕ̂‖p −→ min (ϕ ∈ G(p, ρ)). (5.2)

Continuing the discussion on the choice of ρ and ϕ we demonstrate by the
example below that the optimal value of ρ depends on the smoothness properties
of the given function f . Let d = 1, p = +∞ and let f be smooth of order α > 0.
This condition can be understood in various meanings. Here we suppose that
f has continuous derivatives up to the order [α], so that f ([α]) satisfies a Hölder
condition with the parameter {α} = α− [α]. By the version of classical Jackson
estimate for smooth functions (see, for instance, [7, pp. 287–292]) one has

En(f) ≤
CM(f)

(ρn)α
(n ∈ N), (5.3)

where C depends only on α and

M(f) = sup
h>0

(
h−{α}

∥∥∆hf
[α](x)

∥∥) .

We consider the function

ϕρ(ξ) =





1, |ξ| ≤ ρ

ρ− |ξ|

1− ρ
+ 1, ρ < |ξ| ≤ 1

0, |ξ| > 1 .

(5.4)



376 K. Runovski et al.

By direct calculation we have

ϕ̂ρ(x) =
4 sin 1−ρ

2
x sin 1+ρ

2
x

(1− ρ)x2
. (5.5)

Using (5.5) it is easy to check that

‖ϕ̂ρ‖1 ³ (1− ρ)−1. (5.6)

By (2.2), (5.3) and (5.6) we obtain for the right-hand side of the inequality (2.1)

c(1,+∞, ϕρ)Eρn(f) ¹ C ′M(f)
(
ρ(1− ρ)

)−α
n−α,

where C ′ is an absolute constant. The function (ρ(1− ρ))−α has a minimum on
the interval (0, 1), which is attained at the point

ρ∗ =
α

α + 1
. (5.7)

In particular, for the class of methods generated by functions of type (5.4) the
classical Valleé-Poussin mean (ρ = 1

2
) turns out to be most relevant for functions

satisfying the Lipshitz condition (α = 1).

Now we can make the following conclusion which has the status of a practical
recommendation: for functions whose order of smoothness is equal to α the
kernel of Valleé-Poussin type corresponding to ρ∗ given by (5.7) should be chosen
in order to optimize the theoretical approximation error. In particular, the
smoother a given function the closer the kernel to the Dirichlet kernel (ρ = 1)
and the "worse" a function the closer the kernel to the Fejér kernel (ρ = 0)
should be. This observation is in a good correspondence to the following well-
known facts. The partial sums of the Fourier series ( ρ = 1) are most relevant
for approximation of smooth functions, but a "bad" tool of approximation for
"bad" functions. The Fejér means (ρ = 0) have the inverse property, namely,
they are a "good" tool of approximation for functions with the smoothness
0 < α < 1, but they are "blind" to its improvement. It would be of interest to
find similar relations for the multivariate case.

6. Some remarks on implementation

The first version of the SA-algorithm is implemented in Maple, which is a suit-
able environment for the solution of various mathematical problems. It seems
to be relevant also for our procedure [3]. Our choice of a programming platform
is mainly based on the following properties of Maple:
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- possibilities for symbolic computations;

- FFT as an internal procedure;

- internal generator of pseudo-random numbers.

In this version we consider the one-dimensional case (d = 1), only. The
function f(x) as an input parameter is represented by a special procedure,
so it can be given by a formula, by an algorithm or by a table of its values
on the grid of equidistant nodes. However, in the last case some interpolation
technique is required. In all experiments we have performed we put

ε = 0.15 , γ = 1.5 , ρ = 10
13

, σ = 24 , (6.1)

and the function ϕ ≡ ϕρ(ξ) of type (5.4) has been taken as the generator of the
kernel. By (5.5) the Fourier transform of ϕρ belongs to Lp(R), if and only if,
p > 1

2
. In our experiments we deal with p = 1 and p = 3

4
. By (3.2) we have

n = 31, 5 for the order of the kernel.

For the sake of convenience we rewrite formula (1.3) for nodes in the fol-
lowing form:

tkn =
πk

N
, k = 0, . . . , 2N − 1

(
N =

2n+ 1

2
= 32

)
. (6.2)

As we have already mentioned above, such a form of parameters and nodes
enables us to apply the FFT to calculate the Fourier-Lagrange coefficients.

In accordance with the SA-algorithm the grid is shifted by random values
θj, j = 1, . . . ,m, where m is given by (3.4). In our case m = 5 for p = 1
and m = 7 for p = 3

4
. By the procedure described in Section 4 we apply

the standard internal Maple generator of pseudo-random numbers to construct
independent and uniformly distributed random values ηj, j = 1, . . . ,m, in the
interval [0, 1], so, that θj = τηj, where τ = π

N
.

In order to avoid the possible appearance of the imaginary part in the out-
come, if formula (4.2) is directly applied, we use the standard real representation
of the Fourier-Lagrange coefficients (θ is one of θj)

ak ≡ a
(n)
k (f ; θ) =

1

N

2N−1∑

ν=0

f (tνn + θ) cos
(
k(tνn + θ)

)
(k = 0, . . . , N),

bk ≡ b
(n)
k (f ; θ) =

1

N

2N−1∑

ν=0

f (tνn + θ) sin
(
k(tνn + θ)

)
(k = 1, . . . , N − 1).

(6.3)
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It should be noticed that applying the internal Maple FFT-procedure to the
vector with the components f (tνn + θ), ν = 0, . . . , 2N − 1, we obtain the values

ck =
2N−1∑

ν=0

f (tνn + θ) cos (ktνn) (k = 0, . . . , N),

dk = −
2N−1∑

ν=0

f (tνn + θ) sin (ktνn) (k = 1, . . . , N − 1),

which do not coincide with coefficients (6.3). However, as it is easy to see, the
values we need can be obtained using the formulas

ak =
1

N
(ck cos kθ + dk sin kθ) (k = 0, . . . , N − 1),

bk =
1

N
(ck sin kθ − dk cos kθ) (k = 1, . . . , N − 1).

(6.4)

We notice that there is no need to recalculate an, because in accordance with
formula (4.3) (see also (6.5) below) it will be multiplied by ϕ(N

n
), which is equal

to 0.

This way is more effective in comparison with the direct calculation by
formulas (6.3) because recalculation (6.4) requires only O(N) arithmetic op-
erations; therefore, the Fourier coefficients (6.3) are calculated by O(N logN)
operations.

In order to calculate the approximation polynomial given by (4.3) we rewrite
this formula in its real form, that is, we use

Lϕ
n; θ(f ;x) =

a0

2
+

N−1∑

k=1

ϕ
(
k
n

)
(ak cos kx+ bk sin kx) . (6.5)

The approximation errors given by (4.4) are calculated by the direct rectangular
method of numerical integration with the step π

100
. Naturally, the complete

procedure is repeated m times.

Let us mention that this way to compute integrals is a quite rude method,
especially, if it is applied to strong oscillating functions. However, this fact
practically does not influence the quality of the algorithm because of the fol-
lowing reasons: in contrast to the F-algorithm the SA-algorithm contains only
m integrations independent of the order of the approximation polynomial; the
main second step does not contain integrations.
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7. Applications

In this section we describe the field of problems the SA-algorithm can be applied
to. As it was already mentioned in the Introduction, the I-algorithm being a
simple and economical one from the point of view of the number of operations
can not be applied to non-continuous processes.

In Figure 1 the result of the approximation of the "step-function"

X (ξ) =





0, −π ≤ ξ < 0

2, ξ = 0

1, 0 < ξ < π .

(7.1)

by its interpolation mean of order 32 with the Vallee-Poussin kernel of type (5.4)
with ρ = 10

13
is shown (σ = 24, n = 31.5). We see that if one of the nodes

coincides with the point of discontinuity the corresponding polynomial of inter-
polation type does not reflect the behavior of the given function.

–0.5

0

0.5

1

1.5

2

y

–3 –2 –1 1 2 3

x

Figure 1

For continuous, but strong oscillating functions the interpolation means turn
out to be not relevant as a tool of approximation as well. Indeed, for the
function sin(n+1

2
)x the interpolation mean of order n is, clearly, identical 0

independently on the choice of the kernel. This observation shows that the order
of an approximating polynomial should be much greater than the number of
oscillations, that causes the strong increase of the computational error because
of the necessity to add great numbers of different signs when calculating the
Fourier-Lagrange coefficients.

In difference to the interpolation means the Fourier means can be applied
to the approximation of functions in the Lp-spaces with 1 ≤ p ≤ +∞. How-
ever, such a strengthening seems to be of theoretical interest only. Indeed, the
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calculation of the Fourier means is reduced to the calculation of the Fourier co-
efficients, that is, to integrals. There are many methods to solve this problem.
One of the most popular one is the replacement of an integral by some cubature
formula. Any cubature contains the values of a given function at equidistant
nodes. Thus, the problem of calculating the Fourier means contains itself a
problem which is quite similar to the calculation of the interpolation means.
This implies that all restrictions connected with the application of the inter-
polation processes we discussed above are automatically valid if one deals with
Fourier means.

The SA-algorithm based on approximation by families of linear polynomial
operators of interpolation type does not contain the problem of calculating the
integrals whose number would be comparable with the order of the approximat-
ing polynomial, and it is applicable for all Lp-spaces with 0 < p ≤ +∞. Because
of these reasons it is a relevant procedure for approximation of discontinuous
strong oscillating and even non-integrable functions. Moreover, the number of
operations turns out to be equivalent to the number of operations of the FFT.
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In the Figure 2 we can see the result of applying of the SA-algorithm to
the function X (ξ) in the metric L1 (ρ = 10

13
, σ = 24, n = 31.5). In this situation

m = 5. The minimum of approximation errors in our experiment is equal to
0.2021 . . . which is reached, if η = 0.2900 . . ..

In Figure 3 we represent the approximation of the function g given on [0, 2π]
by

g(x) =

{
|x |−1, x 6= 0

20, x = 0

in the metric L3/4 by a relevant representative of the family of type (1.1) with
the Vallee-Poussin kernel (ρ = 10

13
, σ = 24, n = 31, 5). In this case m = 7 and
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the minimum of approximation errors in our experiment is equal to 2.9975 . . ..
It corresponds to η = 0.8913 . . ..
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We come back to Figures 1 and 2. Surely, this example seems to be quite
artificial because the exceptional point 0 is a priori defined. However, as it
follows from our considerations, the SA-algorithm does not take into account
such special data, even if it is not known where they are located. This ob-
servation enables us to apply the SA-algorithm to the processing of data con-
taining some exceptions from the general trend which, as a rule, are caused
by non-accurate measurements and many other factors out of our control, that
is, being of stochastic nature. More precisely, the SA-algorithm can eliminate
the stochastic component (noise) of any determined processes concentrated on a
discrete set. If the process we measure should be continuous by some analytical
argument, such a noise can be revealed "by eyes". If the process is a priori
discontinuous, for instance, if it describes crises situations, then the problem of
finding its main component seems to be not so easy. Recalling that the SA-
algorithm is practically an interpolation procedure, but with randomly shifted
nodes without loss of their "equidistancy", one can say that with the help of
this procedure we "struggle" against any presence of random components in
the vertical directions, which is out of our control, by means of an artificial
introduction of a limited controlled random factor in the horizontal direction.

The SA-algorithm can be successfully used to determine the nature of a local
event we are interested in. Indeed, if the approximation curve reacts on it (more
precisely, on the corresponding point on the graph of data), this event, appar-
ently, reflects the general trend in the development of the process we study and
it should be taken into account for further analysis and forecasting. Otherwise,
this event is accidental and will not essentially influence the further develop-
ment of the process. In future work we intend to give some applications of our
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method to data analysis in biology, political, economical and social sciences or
medicine.

Finally, we give an example of approximation of strong oscillating functions.
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In Figure 4 the graph of the function

f(x) =

{(
x(2π − x)

) 1

2 sin 1
x4 , 0 < x ≤ 2π

0, x = 0

is shown. Clearly, the number of its oscillations is infinite. We apply the
SA-algorithm to approximate f in the L1-metric with the parameters ρ = 10

13
,
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σ = 24, n = 31.5. The result is represented on the Figure 5. The approximation
error 0.6135 . . . is attained for η = 0.8250 . . .. It should be noticed that the per-
forming time turned out to be less than the time one needs to calculate the first
Fourier coefficient of function f by the internal Maple procedure for numerical
integration. This shows that the SA-algorithm is much more economical than
the algorithm based on the computation of the Fourier means.
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