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Associated Spaces Defined by

Ordinary Differential Equations

Le Thu Hoai and Wolfgang Tutschke

Abstract. The paper deals with initial value problems for desired functions u(t, x)
depending on the time t and one spacelike variable x. In case the initial function ϕ(x)
satisfies an associated (ordinary) differential equation, the solution u(t, x) satisfies the
associated differential equation for each t. If the general solution of the associated
differential equation is known, one gets a system of ordinary differential equations for
the desired coefficients depending on t. In any case, the solution can be obtained as
fixed point of a related integro-differential operator.
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1. Statement of the problem

Solutions of the initial value problem

∂tu = F
(

t, x, u, ∂xu, . . . , ∂
k
xu
)

(1)

u(0, x) = ϕ(x), (2)

(where t means the time and x is a single real variable) are fixed points of the
operator

U(t, x) = ϕ(x) +

∫ t

0

F
(

τ, x, u, ∂xu, . . . , ∂
k
xu
)

dτ. (3)

If the initial function ϕ satisfies an associated equation Gϕ = 0, then there
exists a (uniquely determined) solution also satisfying the associated equation
for each t. A pair F , G (where the coefficients of G do not depend on t) is said
to be associated if Gu = 0 implies G(Fu) = 0 for each t.

Le Thu Hoai: Hanoi University of Technology, Faculty of Applied Mathematics and
Informatics, Dai Co Viet Road 1, 10000 Hanoi, Vietnam; hoailethu@yahoo.com
W. Tutschke: Graz University of Technology, Department of Mathematics D, Steyr-
ergasse 30/3, A-8010 Graz, Austria; tutschke@tugraz.at



386 Le Thu Hoai and W. Tutschke

2. Estimation of the integro-differential operator

Let I = {x : x1 ≤ x ≤ x2} be a bounded and closed interval on the x-
axis. Let B(I) the Banach space of functions u which are k times continuously
differentiable in I equipped with the supremum norm

‖u‖ = max
(

sup
I

|u|, sup
I

|u′|, . . . , sup
I

|u(k)|
)

(if I is not closed and/or not bounded, B(I) is the space of k times continuously
differentiable functions u for which u and the derivatives up to the order k are
bounded). Consider the rectangle MT = I × [0, T ], where T will be fixed later.

Now let B∗(MT ) be the Banach space of functions u(t, x) defined and con-
tinuous in MT such that ‖u(t, ·)‖ is finite for each t. Define

‖u‖
∗
= sup

0≤t≤T

‖u(t, ·)‖ .

Suppose G is a linear and homogeneous ordinary differential operator defined
in I,

Gu ≡ u(k) − a1(x)u
(k−1) − . . .− ak(x)u = 0,

whose coefficients are supposed to be k times continuously differentiable. Con-
sider the subspace BG∗ (MT ) of B∗(MT ) containing all functions u(t, x) which
satisfy the differential equation Gu(t, ·) = 0 for each t. For functions u(t, x)
belonging to BG∗ (MT ), the derivative of order k can be replaced by the lower
order derivatives. Therefore we have in the integrand of (3) only derivatives
of u up to the order k − 1. Provided the right-hand side F(t, x, u, p1, . . . , pk)
is k times continuously differentiable with respect to x, u, p1, . . . , pk (and the
initial function ϕ is also k times continuously differentiable), the image U(t, x)
can be differentiated with respect to x under the sign of integration. That way
one obtains a representation of ∂xU by an integral whose integrand contains u
and its derivatives ∂j

xu up to the order k. Again we can replace ∂k
xu by lower

order derivatives, and so ∂2
xU exists. Repeating this construction we see, finally,

that U has derivatives with respect to x up to the order k. All these derivatives
can be represented by integrals whose integrands contain only derivatives of u
up to the order k − 1.

Additionally we assume that F and its derivatives mentioned above satisfy
a Lipschitz condition with repect to u, p1, . . . , pk, that is

∣

∣F(t, x, u, p1, . . . , pk)−F(t, x, v, q1, . . . , qk)
∣

∣

≤ L00|u− v|+ L01|p1 − q1|+ . . .+ L0k|pk − qk|.
(4)

Denote the Lipschitz constants of F after i differentiations with respect to x by
Li0, Li1, . . . , Lik, i = 1, . . . , k. Notice that F and its derivatives satisfy such a
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Lipschitz condition if F is linear in u, p1, . . . , pk and the coefficients and their
derivatives (up to the order k) are bounded. Then the Lipschitz constants are
given by bounds for the absolute value of the coefficients and their derivatives
(see Example 4.1 below).

Consider two elements u and v of BG∗ (MT ) and their images U and V re-
spectively. The above integral representations of U and V and their derivatives
and the Lipschitz conditions of type (4) for F and its derivatives lead to the
estimate

‖U − V ‖
∗
≤ N ·max

i,j
Lij · T · ‖u− v‖

∗
, (5)

where N is the number of terms to be estimated. This shows that the opera-
tor (3) is contractive if T is small enough. Generally speaking, the operator (3)
does not map the space BG∗ (MT ) into itself. This, however, is the case if F
and G form an associated pair. Then the contraction-mapping principle can be
applied, and we get a uniquely determined fixed point in BG∗ (MT ).

Replacing the above norm ‖·‖
∗
by the weighted norm

‖u‖σ = sup
0≤t≤T

∥

∥e−σtu(t, ·)
∥

∥ ,

one has |∂j
xu− ∂j

xv| ≤ eσt ‖u− v‖σ (weighted Lp-norms are used in L. v. Wolfers-
dorf’s and J. Janno’s paper [2]). Thus in the integral representation of ∂j

xU−∂j
xV

the additional factor eστ occurs leading to
∫ t

0

eστdτ =
1

σ
(eσt − 1) <

1

σ
eσt.

Writing eσt as e−σt on the left-hand side of the estimate of |∂j
xU−∂j

xV |, it follows

‖U − V ‖σ ≤
1

σ
·N ·max

i,j
Lij · ‖u− v‖σ (6)

instead of (5). Provided σ is large enough, the operator is thus contractive for
each T .

3. The final result

Summarizing the above arguments, we have proved the following conservation
law:

Theorem 3.1. Suppose the operator G is associated to the right-hand side F .
Suppose, further, that F and its derivatives mentioned above are Lipschitz-
continuous. In case the (k times continuously differentiable) initial function ϕ

satisfies an associated differential equation and T is small enough, the initial
value problem under consideration possesses a uniquely determined solution
u(t, x) in the space BG∗ (MT ). In other words, the side condition Gu(t, ·) = 0
is satisfied for each t with 0 ≤ t ≤ T .



388 Le Thu Hoai and W. Tutschke

Denote by BGσ (MT ) the Banach space of functions u defined in MT for
which ‖u‖σ is finite. Suppose F is defined for all t with 0 ≤ t ≤ T . Then the
estimate (6) shows:

Corollary 3.2. Using the weighted norm ‖·‖σ with

σ > N ·max
i,j

Lij ,

the initial value problem is solvable in BGσ (MT ) without making T smaller.

Note that the existence of a solution of the initial value problem with an
initial function ϕ satisfying Gϕ = 0 does not exclude the existence of further
solutions which satisfy additionally boundary conditions. These additional so-
lutions u(t, x), however, cannot be solutions of the side condition Gu(t, ·) = 0
for each t.

Provided the general solution
∑k

j=1 µjϕj(x) of the associated differential
equation Gu = 0 is known, the desired solution has the same form for each t.
This yields the following statement:

Theorem 3.3. Suppose the right-hand side F is linear and homogeneous in u

and its derivatives up to the order k. Suppose, further, that the initial function
ϕ satisfies an associated differential equation for which one knows the general
solution. Then the desired solution has the form

∑k

j=1 µj(t)ϕj(x). Substituting
this linear combination into the differential equation (1) and comparing the
coefficients of the ϕj(x), one obtains a first order system for the µj(t) whose
initial values µj(0) are uniquely determined by the given initial function.

Consequently, the application of fixed-point methods is not necessary in
case one knows the general solution of an associated differential equation. So
the method of associated differential operators can lead to explicit solutions (see
the Examples 4.4, 4.5 and 4.6).

4. Examples and a concluding remark

Example 4.1. Suppose F(t, x, u, p1, p2) = p2 and Gu ≡ u′′ − a(x)u′ − b(x)u.
Determine the Lipschitz constants of F and its derivatives with respect to x up
to the second order if C is a bound of |a|, |a′|, |a′′|, |b|, |b′| and |b′′|.

Since the integrands for U , ∂xU and ∂2
xU are

∂2
xu

a∂2
xu+ (a

′ + b)∂xu+ b′u

(a′ + a2 + b)∂2
xu+ (a

′′ + 2aa′ + ab+ 2b′)∂xu+ (a
′b+ ab′ + b′′)u,
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we get

L00 = 0, L01 = 0, L02 = 1

L10 = C, L11 = 2C, L12 = C

L20 = 2C
2 + C, L21 = 3C

2 + 3C, L22 = C2 + 2C,

and we have N = 7.

Example 4.2. The first order differential equation

∂tu = ∂xu+ u2 (7)

shows that the method of associated differential equations can also be applied
if the right-hand side F does not satisfy a global Lipschitz condition.

Indeed, Gu ≡ u′ = 0 is associated to the right-hand side of (7). Conse-
quently, constant initial functions ϕ lead to a conservation law. If ϕ(x) ≡ λ =
const, then the construction of characteristics gives the solution

u(t, x) =
λ

1− λt
,

which is constant for each t.

Linear operators F of order k with k times continuously differentiable co-
efficients depending on x possess always associated systems of order k:

Example 4.3. To the right-hand side

Fu =
k
∑

j=0

Ak−j(x)∂
j
xu

there exist always associated operators

Gu ≡ u(k) −

k
∑

j=1

aj(x)u
(k−j)

whose coefficients can be obtained from a system of ordinary differential equa-
tions.

Consider G(Fu). Using the side condition Gu = 0, the derivatives of order
k in Fu can be replaced by lower order derivatives. That way one gets

G(Fu) = ∂k
x

(

A0

k
∑

j=1

aj∂xu
k−j

)

−

k
∑

i=1

ai∂
k−i
x

(

A0

k
∑

j=1

aj∂xu
k−j

)

. (8)
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Again and again replacing the derivatives of order k by lower order derivatives,
one gets finally a linear combination of u, ∂xu, . . . , ∂

k−1
x u. Clearly, we have

G(Fu) = 0 if all coefficients of this linear combination vanish identically. The
resulting system has the form

A0a
(k)
j + lower order derivatives of a1, . . . , ak = 0, j = 1, . . . , k, (9)

since the highest order derivatives of a1, . . . , ak come only from the first sum
on the right-hand side of (8). Provided A0 6= 0, this is a system of ordinary
differential equations of order k for a1, . . . , ak.

Note that one gets the system (9) for the aj also if the Ak−j depend not
only on x but also on t. Nevertheless, it is possible that the solutions aj depend
only on x (see Example 4.5 below).

It can happen that a system for the coefficients of an associated equation
is not globally solvable in the interval I but only in a subinterval I ′ of I. Then
one gets a conservation law only in the subinterval I ′.

Generally speaking, in case the general solution of an associated differential
equation is known, then the corresponding solutions can be determined by solv-
ing a system of ordinary differential equations for the coefficients of the general
solution (instead of solving the equivalent integro-differential equation). This
will be shown by the next three examples:

Example 4.4. The second order operator

F(t, x, u, ∂xu, ∂
2
xu) = ∂2

xu+ A(x)u. (10)

and G ≡ u′′ − au′ − bu = 0 are an associated pair if a and b satisfy the second
order system

a′′ + 2aa′ + 2(b′ + ∂xA) = 0

b′′ + 2a′b+ ∂2
xA− a∂xA = 0.

Similar conditions can be obtained for the second order operator

F(t, x, u, ∂xu, ∂
2
xu) = A0(x)∂

2
xu+ A1(x)∂xu+ A2(x)u.

For the heat equation (A ≡ 0 in (10)) the associated pair has to satisfy

a′′ + 2aa′ + 2b′ = 0 (11)

b′′ + 2a′b = 0. (12)

In particular, all equations Gu ≡ u′′−au′−bu = 0 with constant coefficients are
associated to the one-dimensional heat equation. Choosing a = −2 and b = −1,
one gets (µ1+µ2x) exp(−x) as general solution of the corresponding associated
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equation. Initial functions ϕ(x) = (c1 + c2x) exp(−x) lead thus to solutions of
the form u(t, x) = (µ1(t) + µ2(t)x) exp(−x). The coefficients µ1 and µ2 have to
satisfy the first order system

µ′1 = µ1 − 2µ2

µ′2 = µ2.

This leads to the explicit solution

u(t, x) =
(

(c1 − 2c2t) + c2x
)

exp(t− x).

Explicit solutions can also be constructed by separation of variables: If
u(t, x) = µ(t)f(x), then the heat equation leads to

µ′ = cµ and f ′′ = cf,

where c is constant. The differential equations f ′′ = cf are special associated
differential equations Gu ≡ u′′−au′−bu = 0 with a = 0 and b = −c. Therefore,
the method of associated differential equations leads to more explicit solutions
as the usual separation of variables does. The construction of solutions with
the help of a general solution can also be interpreted as some kind of separation
of variables.

Notice that for the heat equation there exist also associated differential
equations with non-constant coefficients such as

a(x) = k1 tanh (k1(x+ k2)) , b ≡ 0,

where k1 and k2 are constants.

Example 4.5. The method of associated differential equations can also be
applied to equations ∂tu = Fu whose right-hand side depends on t. Consider,
for instance, ∂tu = ∂2

xu+exp(−t)u. One of its associated equations is u′′+u = 0.

Since cos x and sinx form a general solution of the associated equation
u′′ + u = 0, the equation ∂tu = Fu has solutions of the form

u(t, x) = µ(t) cosx+ ν(t) sinx.

The desired coefficients µ(t) and ν(t) have to satisfy the system

µ′ + µ
(

1− exp(−t)
)

= 0

ν ′ + ν
(

1− exp(−t)
)

= 0.

This leads to the solution

u(t, x) = exp
(

1− t− exp(−t)
)

(c1 cos x+ c2 sin x)

if the initial function is ϕ(x) = c1 cos x+c2 sinx. By the way, here the system (9)
is again the system (11), (12), that is, the system does not depend on t although
F does.
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Example 4.6. If Fu = u∂xu and Gu ≡ u′ − a(x)u = 0, then permissible
coefficients a(x) have to satisfy the ordinary differential equation a′ + a2 = 0.
Initial functions ϕ satisfying an associated differential equation have thus to
be linear functions ϕ(x) = µ0 + ν0x, where µ0 and ν0 are constants. The
conservation law implies the existence of solutions of the form u(t, x) = µ(t) +
ν(t)x. This leads to the system

µ′ = µν

ν ′ = ν2.

Solving this system, one gets the desired solution

u(t, x) =
1

1− ν0t
(µ0 + ν0x) .

Of course, since Fu = u∂xu is locally Lipschitz continuous, one can also ap-
ply the contraction-mapping principle to a ball of radius R centred at u(t, x) ≡ 0
provided R > max(supI |ϕ|, supI |ϕ

′|).

Remark 4.7. In case k = 1 and x = (x1, . . . , xn), n ≥ 2, initial value problems
of type (1), (2) can also be solved in associated spaces. However, the solution
does exist only in conical domains (see [1] where one can find further references).
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