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What do we Learn from the

Discrepancy Principle?

Peter Mathé

Abstract. The author analyzes the discrepancy principle when smoothness is given
in terms of general source conditions. As it turns out, this framework is particularly
well suited to reveal the mechanism under which this principle works. For general
source conditions there is no explicit way to compute rates of convergence. Instead
arguments must be based on geometric properties. Still this approach allows to
generalize previous results. The analysis is accomplished with a result showing why
this discrepancy principle inherently has the early saturation for a large class of
regularization methods of bounded qualification.
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1. Introduction

We shall study linear operator equations

yδ = Ax+ δξ (1)

for a compact and injective operator acting between Hilbert spaces X and Y
and with bounded deterministic noise ξ, i.e., ‖ξ‖ ≤ 1. The analysis can easily
be extended to non-injective operators, in which case the projection onto the
closure of the range of A will appear, as well as to non-compact ones, when a
more thorough spectral calculus must be applied. This can be easily seen in the
respective places. We aim at solving such equations by means of regularization,
which is controlled by some parameter α.

If the smoothness of the true solution x is known, then theoretical results
tell us how to choose the parameter α. Otherwise a data-driven choice of the
parameter is necessary. Several strategies for choosing the parameter are known.
The most classical one is the discrepancy principle. It is often called Morozov’s

discrepancy principle, see [6], although it can already be found in Phillips’
original paper [8].
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Previous analysis of the discrepancy principle under general source condi-
tions was carried out in [7]. Theorem 3.8 below corresponds to Theorem 3.1,
and the results in § 4 in that study. It is the intention of the author to derive this
result from a unified point of view, especially from some recent interpolation
inequality and the notion of qualification of the chosen regularization. By do-
ing this, the impact of the discrepancy principle to different components in the
error decomposition becomes transparent. We give some additional discussion
in Remarks 3.5 and 3.9.

We accomplish the study by discussing the issue of saturation of the dis-
crepancy principle. Again we may extend previous results, as e.g. in [1], by
geometric reasoning.

2. Regularization under known smoothness

We will analyze regularization by means of operator families in the form of
gα : (0, ‖A∗A‖]→ R

+, i.e., the regularized solution based on data yδ is given as

xα,δ := gα(A
∗A)A∗yδ, α > 0, (2)

for the operator A from equation (1). For technical reasons we shall assume
that for each t the mapping α 7→ gα(t) is continuous from the left, throughout.
We recall the following

Definition 2.1 (see [5]). A family gα, 0 < α ≤ ‖A∗A‖, is called regularization,
if there are constants γ∗ and γ for which

sup
0<λ≤‖A∗A‖

|1− λgα(λ)| ≤ γ, 0 < α ≤ ‖A∗A‖

sup
0<λ≤‖A∗A‖

√
λ |gα(λ)| ≤

γ∗√
α
, 0 < α ≤ ‖A∗A‖.

The regularization gα is said to have qualification ρ, for an increasing function
ρ : (0, ‖A∗A‖]→ R+, if

sup
0<λ≤‖A∗A‖

|1− λgα(λ)| ρ(λ) ≤ γρ(α), 0 < α ≤ ‖A∗A‖.

Notice that the mapping rα(A
∗A) := I−A∗Agα(A∗A) is norm bounded by γ.

Throughout we shall measure smoothness relative to the operator A in terms
of the following type of conditions:

Aϕ(R) := {x, x = ϕ(A∗A)v for some v ∈ X with ‖v‖ ≤ R} .
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Here ϕ : (0, ‖A∗A‖] → R
+ is continuous increasing and ϕ(0+) = 0. Such func-

tions are called index functions. These give rise to weighted Hilbert spaces Xϕ

as follows:

As mentioned earlier we restrict the construction to compact operators A.
In this case A∗A admits a (monotonic) singular value decomposition for an
orthonormal system u1, u1, . . . , given by

A∗Ax =
∞
∑

j=1

sj〈x, uj〉uj, x ∈ X.

Then the weighted Hilbert space Xϕ is the completion of finite expansions x =
∑n

j=1〈x, uj〉uj with respect to the scalar product

〈x, y〉ϕ :=
∞
∑

j=1

〈x, uj〉〈y, uj〉
ϕ2(sj)

.

In this case we have Aϕ(R) = {x, ‖x‖ϕ ≤ R}.
For the regularizing properties of gα the interplay between the qualification ρ

and the actual smoothness ϕ of the solution, in particular properties of the
quotient Φ(t) := ϕ(t)/ρ(t), 0 < t ≤ ‖A∗A‖, are relevant. The approach below
is equivalent, though different from the one in [5].

We agree to denote by Φ̄(t) := sups>t Φ(s), t > 0, the decreasing majorant
of Φ, possible equal to ∞ throughout.

Definition 2.2. The qualification ρ covers ϕ with constant C, if

Φ̄(t) ≤ CΦ(t), 0 < t ≤ ‖A∗A‖.
The basic implication of this definition is captured in

Proposition 2.3. Suppose x ∈ Aϕ(R). If the qualification ρ of some regular-

ization gα covers ϕ with constant C, then

‖rα(A∗A)x‖ ≤ CγRϕ(α).

Proof. Observe that under x ∈ Aϕ(R) we have

‖rα(A∗A)x‖ ≤ R sup
0<t≤‖A∗A‖

|rα(t)|ϕ(t).

For t ≤ α we obtain from monotonicity that |rα(t)|ϕ(t) ≤ γϕ(α). Otherwise
we can bound

sup
t>α
|rα(t)|ϕ(t) = sup

t>α
|rα(t)| ρ(t)Φ(t) ≤ γρ(α)Φ̄(α) ≤ Cγρ(α)Φ(α) = Cγϕ(α).

In both cases we obtain the required upper bound, because C ≥ 1.

As an important consequence we recall the following result from [5]. It will
be convenient to assign every index function ϕ the related index function

Θ(t) :=
√
tϕ(t), 0 < t ≤ ‖A∗A‖. (3)
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Theorem 2.4. Let ϕ be any index function, and let ᾱ be chosen to satisfy

Θ(ᾱ) = δ
R
. If the qualification of gα covers ϕ with constant C, then

e
(

Aϕ(R), gᾱ, δ
)

≤ R (Cγ + γ∗)ϕ
(

Θ−1
(

δ
R

))

, 0 < δ ≤ R‖A∗A‖.

3. The discrepancy principle

The classical discrepancy principle can be phrased as follows: Let gα be a
regularization scheme and xα,δ as in (2). Determine α∗ by

α∗ := sup {α ≤ ‖A∗A‖, ‖Axα,δ − yδ‖ ≤ τδ} . (4)

By left continuity of α 7→ gα, the supremum is attained by α∗. For this choice of
regularization parameter we consider xα∗,δ as final approximation to the exact
solution x. Notice, that by construction of xα,δ it holds true that ‖Axα,δ−yδ‖ =
‖rα(AA∗)yδ‖.
Remark 3.1. In practice, we start with large α0, e.g. α0 := ‖A∗A‖, and
decrease stepwise αn+1 :=

αn

q
, for some q > 1. Thus, we may find the “optimal”

regularization parameter only up to some bandwidth.

Let us introduce the auxiliary xα := gα(A
∗A)A∗y = gα(A

∗A)A∗Ax with x
being the true solution to (1).

Lemma 3.2. Let α∗ be chosen according to (4) for τ > γ. At y = Ax the

following assertions are valid:

‖rα∗(AA∗)y‖ ≤ (τ + γ)δ. (5)

For any α > α∗ it holds true that

‖rα(AA∗)y‖ ≥ (τ − γ)δ. (6)

Proof. Using the triangle inequality we deduce

‖rα∗(AA∗)y‖ ≤ ‖rα∗(AA∗)(y − yδ)‖ + ‖rα∗(AA∗)yδ‖.
For α∗ the second term is bounded by τδ. Plainly, the first one is bounded
by γδ, which proves (5). By reverting the inequality and using α > α∗ the
bound (6) can be proved similarly.

The error analysis will use the following obvious error decomposition:

‖x− xα,δ‖ ≤ ‖x− xα‖ + ‖xα − xα,δ‖, (7)

where the first summand is noise-free and the second one is the (pure) noise
term. As can be seen below, the above choice from (4) has implications to both,
the noise term and the noise-free term in the error decomposition.

Below we shall frequently need properties of concave index functions, and
we find it convenient to recall some of their properties.
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Lemma 3.3. The following properties hold true for concave index functions ϕ:

1. For 0 < α < 1 we have ϕ(αt) ≥ αϕ(t), 0 < t ≤ ‖A∗A‖.
2. The mapping t 7→ ϕ(t)

t
is non-increasing.

3. For each t the mapping r 7→ rϕ
(

t
r

)

is increasing.

3.1. Bounding the noise term. By Definition 2.1 the noise term allows for
the bound ‖xα − xα,δ‖ ≤ γ∗

δ√
α
, and lower bounds for α∗ yield upper bounds

for it.

Lemma 3.4. Suppose x ∈ Aϕ(R). Let Θ(t) be as in (3). If the qualification

of gα covers Θ with constant C, then for q > 1 we have Θ(qα∗) ≥ τ−γ
Cγ

δ
R
.

Consequently, under (4) and for δ ≤ Cγ R
τ−γ
‖A∗A‖ it holds true that

δ√
α∗
≤ Cγ

τ − γ
Rϕ

(

Θ−1
(

τ − γ

Cγ

δ

R

))

.

Proof. Let α := qα∗ and x = ϕ(A∗A)v with ‖v‖ ≤ R. If the qualification of gα
covers Θ with constant C, then by Lemma 3.2 we obtain

(τ − γ)δ ≤ ‖rα(AA∗)y‖ = ‖rα(A∗A)(A∗A)
1

2ϕ(A∗A)v‖ ≤ CγRΘ(α),

which proves the first statement. By definition of Θ we have for any 0 < t ≤
R‖A∗A‖ that t√

Θ−1( t

R
)
= Rϕ(Θ−1( t

R
)). The previous estimate yields

δ√
qα∗

≤ δ
√

Θ−1( τ−γ
Cγ

δ
R
)
=

Cγ

τ − γ

τ−γ
Cγ
δ

√

Θ−1( τ−γ
Cγ

δ
R
)
=

Cγ

τ − γ
Rϕ
(

Θ−1( τ−γ
Cγ

δ
R
)
)

.

Letting q → 1 allows to complete the proof.

Remark 3.5. For classical Hilbert scales, e. g., when ϕ(t) := tµ for some µ > 0,
this is well known and can be derived from [1, Chapter 4.3].

We emphasize that for the bound to be proved, the chosen regularization
must cover the smoothness Θ, which is a stronger assumption than needed for
known smoothness, see [5].

Notice that by Theorem 2.4, under known smoothness the optimal param-
eter ᾱ must satisfy Θ(ᾱ) = δ

R
. Thus the discrepancy principle tends to choose

α∗ ≥ ᾱ, provided the chosen regularization gα covers Θ. To put it differently,
either gα covers Θ, then α∗ ≥ ᾱ, or it does not, in the sense of Theorem 4.3,
below. If this is the case, then the optimal order cannot be obtained. The case
α∗ ≤ ᾱ, as considered in the proof of [7, Theorem 4.3 ] may hardly be met.
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3.2. Bounding the noise-free term. Recall the auxiliary quantities

xα := gα(A
∗A)A∗y and yα := Axα.

Lemma 3.2 also implies a bound for the noise free term.

Lemma 3.6. Let α∗ be chosen according to the discrepancy principle (4). If

the function t 7→ ϕ2((Θ2)−1(t)) is concave, then we obtain

‖x− xα∗‖ ≤ (τ + γ)Rϕ
(

Θ−1
(

δ
R

))

. (8)

Proof. Firstly, the noise free term rewrites as ‖xα − x‖ = ‖rα(A∗A)x‖. This
will be bounded by means of the following interpolation inequality, which holds
under the above concavity assumption, we refer to [4, Theorem 4]:

ϕ−1
(‖rα(A∗A)x‖ϕ/ϕ
‖rα(A∗A)x‖ϕ

)

≤ Θ−1
(‖rα(A∗A)x‖ϕ/Θ
‖rα(A∗A)x‖ϕ

)

.

After rewriting this we arrive at

‖rα(A∗A)x‖ ≤ ‖rα(A∗A)x‖ϕϕ
(

Θ−1
(‖rα(A∗A)x‖1/√t

‖rα(A∗A)x‖ϕ

))

.

Since x ∈ Aϕ(R) implies ‖rα(A∗A)x‖ϕ ≤ γR and r 7→ rϕ(Θ−1( t
r
))) is increasing

for each t this yields

‖rα(A∗A)x‖ ≤ γRϕ

(

Θ−1
(‖rα(A∗A)x‖1/√t

γR

))

. (9)

Using Lemma 3.2, under the discrepancy principle it holds true that

‖rα∗(A∗A)x‖1/√t = ‖Arα∗(A∗A)x‖ = ‖rα(AA∗)y‖ ≤ (τ + γ)δ.

Inserting this into (9) and using concavity once more, the proof of (8) is com-
plete.

Remark 3.7. It is important to notice that the above bound in Lemma 3.6
does not use any assumption on the regularization. Thus, under the discrepancy
principle and for smooth x the noise free term can be made small even if the
chosen regularization does not cover the smoothness of x.

3.3. The error under the discrepancy principle. As an immediate con-
sequence of the above bounds we may formulate the main result. Let us recall
that the function ϕ is said to obey a ∆2-condition, if there is 0 < C2 < ∞ for
which ϕ(2t) ≤ C2ϕ(t), t > 0.



Discrepancy under General Source Conditions 417

Theorem 3.8. Suppose that x ∈ Aϕ(R) for an index function ϕ which obeys a

∆2-condition and that the qualification of gα covers Θ with constant C. More-

over we assume that t 7→ ϕ2((Θ2)−1(t)) is concave. Under the discrepancy

principle (4) there is a constant M =M(τ, γ, γ∗, C, C2) such that

‖xα∗,δ − x‖ ≤MRϕ
(

Θ−1
(

δ
R

))

, as δ → 0.

Remark 3.9. In [7] the authors prove similar bounds. It is interesting to discuss
the relation for two typical cases. First, for functions ϕ which have a concave
square ϕ2, the optimal order is proved in both studies. However, if ϕ2 is convex
which relates to higher smoothness, different requirements on the qualification
of the chosen regularization are made. In [7] a bound is proved under the
assumption that gα covers ϕ2, whereas here we require gα to cover Θ. Indeed,
for smoothness ϕ with convex square, the function ϕ(t)√

t
is increasing, such that

the function Φ(t) = Θ(t)
ϕ2(t)

is decreasing, and according to Definition 2.2, any

regularization which covers ϕ2 necessarily covers Θ. Thus the optimal order
of reconstruction can be proved for a larger class of regularization schemes.
As Theorem 4.3 will indicate, the minimal gap of

√
t between smoothness and

qualification is natural.
We add that for Tikhonov regularization, i.e., when γ = 1 and concave index

functions ϕ, in which case the qualification constant C = 1, the best choice for τ
is τ = 2, which results in an error bound ‖xα∗,δ − x‖ ≤ 4Rϕ(Θ−1( δ

R
)).

4. Saturation of the discrepancy principle

As can be drawn from the above result, we needed the regularization gα to
cover Θ instead of the true ϕ in order to achieve the best possible rate of ap-
proximation. This is not a lack of the proof, but reveals an intrinsic lack of
the discrepancy principle. For specific regularization methods, in particular for
Tikhonov regularization the following is well known, see [2]: The best possible
rate for the discrepancy principle applied to Tikhonov regularization is δ 7→

√
δ

as δ → 0, see [1, Proposition 4.20] for a proof. This rate corresponds to the op-
timal rate for ϕ(t) :=

√
t, although Tikhonov regularization covers smoothness

up to ρ(t) = t. Thus we loose smoothness by a factor of
√
t.

Next we will show that this is a rather general phenomenon. To this end
we shall impose the following restrictions on the regularization method gα. As
in [3] we suppose that

1. For some c > 0 the following lower bound is valid:

sup
0<λ≤a

√
λ |gα(λ)| ≥

c√
α
, 0 < α ≤ a. (10)
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2. For some increasing function ρ, the regularization has maximal qualifica-
tion ρ, i.e., for all 0 < λ ≤ a there is c := c(λ) > 0, for which

inf
0<α≤a

|rα(λ)|
ρ(α)

≥ c. (11)

3. For all 0 < α ≤ a the functions

λ −→ |rα(λ)|2 , 0 < λ ≤ a, (12)

are convex.

These assumptions are shown to be fulfilled for a variety of regularization meth-
ods, see [3].

To the maximal qualification ρ as in (11) we assign ϕ̄(t) := ρ(t)/
√
t. More-

over, we shall assume that ϕ̄ is an index function. The latter is certainly true,
if ρ2 was convex. Under all these assumptions the early saturation effect as
seen for Tikhonov regularization used with the discrepancy principle can be
generalized.

Lemma 4.1. Let α∗ be chosen according to the discrepancy principle (4). Under
assumptions (11) and (12) there is a constant C <∞ such that

ρ(α∗) ≤
Cδ

‖y‖R. (13)

Consequently we obtain δ√
α∗
≥ ‖y‖

C
Rϕ̄
(

ρ−1( δ
R
)
)

.

Proof. For any x 6= 0 let y and yα as before. As in [3] we use a variant of
Peierls–Bogolyubov inequality, see e.g. [3, Lemma 2.5], to deduce that under
assumption (12) it holds true that

‖rα∗(AA∗)y‖ ≥ ‖y‖rα∗
(‖A∗y‖2
‖y‖2

)

.

Thus, using Lemma 3.2 and assumption (11) we find c > 0 for which

(τ + γ)δ ≥ ‖rα∗(AA∗)y‖ ≥ c‖y‖ρ(α∗),
which proves (13) with C = τ+γ

c
. The remaining assertion follows by the same

arguments as used in the proof of Lemma 3.4.

We add some technical

Lemma 4.2. Let f, g be two index functions. Assume that g obeys a ∆2-

condition, i.e., there is C2 > 0 such that g(2t) ≤ C2g(t), 0 < t ≤ 1
2
‖A∗A‖.

The following assertion holds true:

f(t)

g(t)
→ 0 implies

g−1(t)

f−1(t)
→ 0, as t→ 0.
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Proof. Let n ≥ 1 be any integer. By iterating the ∆2-condition we obtain
for t > 0 small enough the estimate g(2nt) ≤ Cn

2 g(t) and as a consequence

g−1(C−n
2 g(t)) ≤ 2−nt. For t > 0 small enough let t = f(s). If f(s)

g(s)
≤ C−n

2 , then

g−1(t)

f−1(t)
=
g−1(f(s))

s
≤ g−1(C−n

2 g(s))

s
≤ 2−ns

s
= 2−n.

Because n ≥ 1 was arbitrary the lemma is proved.

With this preparation we can formulate the main result in this section.

Theorem 4.3. Assume that the regularization gα obeys (10)–(12). Suppose in
addition that ρ from (11) covers at least t 7→

√
t and obeys a ∆2-condition. If

the true solution x belongs to Aϕ(R) for some ϕ smoother than ϕ̄, i.e., ϕ(t)
ϕ̄(t)

→ 0

as t→ 0, and if t 7→ ϕ2((Θ2)−1(t)) is concave, then there is c > 0 such that for

α∗ chosen according to (4) it holds true that for x 6= 0 we have

sup
‖ξ‖≤1

‖x− xα∗,δ‖ ≥ cRϕ̄
(

ρ−1
(

δ
R

))

, as δ → 0.

Proof. Rewriting the error decomposition (7) and using (10) as well as the
estimate in Lemma 3.6 we can find constants c, c̄ > 0 for which

sup
‖ξ‖≤1

‖x− xα∗,δ‖ ≥ cδ/
√
α∗ − c̄ϕ

(

Θ−1
(

δ
R

))

.

By Lemma 4.1 this implies

sup
‖ξ‖≤1

‖x− xα∗,δ‖ ≥ c̃
(

ϕ̄
(

ρ−1
(

δ
R

)

− ϕ(Θ−1
(

δ
R

)))

= c̃ϕ̄(ρ−1
(

δ
R

)

(

1− ϕ
(

Θ−1
(

δ
R

))

ϕ̄
(

ρ−1
(

δ
R

))

)

.

By Lemma 4.2 the quotient ϕ(Θ−1( δ
R
))/ϕ̄(ρ−1

(

δ
R

)

) is small for δ
R
small enough,

which allows to complete the proof.

Example 4.4. Tikhonov regularization has maximal qualification ρ(t) = t and
consequently ϕ̄(t) =

√
t, such that for smooth x the bound in Theorem 4.3

provides

sup
‖ξ‖≤1

‖x− xα∗,δ‖ ≥ c
√
δ, δ → 0

and we recover the result from [1, Proposition 4.20].
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Remark 4.5. The above result should be compared with the saturation phe-
nomenon for regularization. Under the same assumptions (10)–(12) it was
proved in [3] that

sup
‖ξ‖≤1

‖x− xα∗,δ‖ ≥ cRρ
(

ψ−1
(

δ
R

))

, δ → 0.

where ψ(t) :=
√
tρ(t). So, saturation under the discrepancy principle occurs

exactly
√
t earlier than without discrepancy principle. For smoothness in terms

of powers t 7→ tµ this can be seen throughout, we refer to [1]: For methods
of qualification tµ optimal performance under the discrepancy principle can be
proved for smoothness tν up to 0 < ν ≤ µ− 1

2
.
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