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Abstract. We investigate a class of equations including generalized Monge–Ampere
equations as well as Weingarten equations and prove a maximum principle for suitable
functions involving the solution and its gradient. Since the functions which enjoy the
maximum principles are constant for special domains, we have a so called best possible
maximum principle that can be used to find accurate estimates for the solution of the
corresponding Dirichlet problem. For these equations we also give a variational form
which may have its own interest.
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1. Introduction

Let Ω ⊂ R
N , N ≥ 2, be a bounded domain and let u be a smooth function

defined in Ω. If x = (x1 . . . , xN) ∈ Ω we put ui =
∂u
∂xi

, i = 1, · · · , N , and define
A = [uij], the (symmetric) Hessian matrix of u. For 1 ≤ k ≤ N let

S(k)(λ1, . . . , λN)

be the k-th elementary symmetric function of the eigenvalues of A. Famous
equations investigated by L. Caffarelli, L. Nirenberg and J. Spruck in [2] are
the following:

S(k)(λ1, . . . , λN) = 1. (1.1)

Blow-up solutions of the same equations are discussed by P. Salani in [11]. One
can generalize equations (1.1) as follows. Let g(s) be a positive smooth real
function satisfying

G(s) = g(s) + 2sg′(s) > 0. (1.2)
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Define the matrix

Q = I −
2g′(|∇u|2)

G(|∇u|2)
R, R = ∇u(∇u)t, (1.3)

where I is the N × N unit matrix and (∇u)t is the transposed matrix of ∇u.
Note that Q is symmetric and positive definite. One finds

Q−1 = I +
2g′(|∇u|2)

g(|∇u|2)
R. (1.4)

Using the Hessian matrix A = [uij] of u, define the new matrix

E = [eij] = g(|∇u|2)Q−1A. (1.5)

By standard results on matrix theory [1], E is similar to a diagonal matrix
with entries µ1, . . . , µN , the (real) eigenvalues of E. For 1 ≤ k ≤ N let
σ(k)(µ1, . . . , µN) be the k-th elementary symmetric function of the eigenvalues
of E. In this paper we deal with the equations

σ(k)(µ1, . . . , µN) = 1. (1.6)

For g = 1 we have E = A and equations (1.6) coincide with equations (1.1).

For g = (1 + s)−
1

2 we find Q = I +R, and we have

E = (1 + |∇u|2)−
1

2Q−1A.

In this situation µ1, . . . , µN coincide with the principal curvatures of the surface
u = u(x) in R

N+1, and the corresponding equations (1.6) describe the Wein-
garten surfaces investigated by L. Caffarelli, L. Nirenberg and J. Spruck in [3].

Let α ∈ R with

0 ≤ α ≤

(

N

k

)− 1

k

. (1.7)

If G(s) is the function introduced in (1.2) and if α satisfies (1.7), we define

Ψ(x) =
1

2

∫ |∇u|2

0

G(s)ds− αu

In Section 3 we prove that if u is a solution to equation (1.6), then the function Ψ
cannot assume its maximum value in Ω unless it is a constant. For g = 1 and
g(s) = (1 + s)−

1

2 this result has been proved in [8] by G. A. Philippin and the
second author. We also show that if Ω is a ball, then we have Ψ(x) = constant,

therefore our result is a best possible maximum principle. In Section 4 we give
a variational form for the invariants σ(k)(µ1, . . . , µN).
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2. Newton tensor

Let E be a matrix similar to the diagonal matrix diag{µ1, . . . , µN}. For k =
1, . . . , N − 1, the k-th Newton tensor T (k) is defined as

T (k) = σ(k)I − T (k−1)Et, T (0) = I, (2.1)

where I is the N ×N unit matrix, Et is the transposed of E and σ(k) denotes
the k-th elementary symmetric function of the eigenvalues of E. By (2.1) one
finds

T (k) = σ(k)I − σ(k−1)Et + · · ·+ (−1)k(Et)k.

Since T (k) is polynomial in Et, it is clear that

T (k)Et = EtT (k). (2.2)

A representation of the invariant σ(k) in terms of the entries eij of the matrix E
has been given by R. C. Reilly [9]:

σ(k) =
1

k!

(

i1 · · · ik
j1 · · · jk

)

ei1j1 · · · eikjk
, (2.3)

where the generalized Kronecker symbol
(

i1···ik
j1···jk

)

has the value 1 (respectively−1)

if the indexes i1, . . . , ik are distinct and (j1, . . . , jk) is an even (respectively
odd) permutation of (i1, . . . , ik), otherwise it has value zero. Moreover, the
summation convention over repeated indexes from 1 to N is in effect.

We also have a formula for the entries T
(k)
ij of the Newton tensor [9]

T
(k)
ij =

1

k!

(

i1 · · · iki

j1 · · · jkj

)

ei1j1 · · · eikjk
. (2.4)

By (2.3) and (2.4) we find

tr{T (k)Et} = (k + 1)σ(k+1), (2.5)

where tr{M} denotes the trace of the matrix M . We shall use the equation

T
(k−1)
ij =

∂σ(k)

∂eij

, (2.6)

which follows by (2.3) and (2.4).
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3. Maximum principles

Let k be a fixed integer with 1 ≤ k ≤ N, and let g(s) be a smooth positive
function satisfying

G(s) = g(s) + 2s g′(s) > 0 (3.1)

for s ≥ 0. Typical examples are g(s) = (1 + γs)−
1

2 , γ ≥ 0. For p ∈ R
N define

Q = I −
2g′(|p|2)

G(|p|2)
R, R = p pt,

where I is the N ×N unit matrix, p is used as a column matrix, pt is its trans-
posed. Note that Q is symmetric and positive definite. Indeed, the eigenvalues
of Q are 1 (counted N − 1 times) and g

G
. We have

Q−1 = I +
2g′(|p|2)

g(|p|2)
R.

Let u = u(x) be a smooth function defined in a bounded domain Ω ⊂ R
N . If

A = [uij] is the Hessian matrix of u, define the new matrix

E = E(A, p) = g(|p|2)Q−1A. (3.2)

Although E is not, in general, symmetric, it is similar to a diagonal matrix with
entries µ1, . . . , µN , the (real) eigenvalues of E. If p = ∇u and g(s) = (1 + s)−

1

2

then µ1, . . . , µN are the principal curvatures of the surface u = u(x) contained
in R

N+1.

Let F (E) = σ(k)(µ1, . . . , µN), E = [eij], the k-th elementary symmetric
function of the eigenvalues of E. Since E depends on A and p, we introduce
the notation Z(A, p) = F (E), and define the associated matrices

A∗ =

[

∂Z

∂uij

]

, E∗ =

[

∂F

∂eij

]

.

Since F is homogeneous with respect to eij, also Z is homogeneous with respect
to uij and

tr{A∗A} = tr{E∗Et} = k F (E). (3.3)

By using the chain rule one finds

A∗ = g(|p|2)Q−1E∗. (3.4)

By (2.6) we have

E∗ =
[∂σ(k)

∂eij

]

= T (k−1),
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where T (k−1)=T (k−1)(Et) is the (k − 1)-th Newton tensor associated with the
matrix Et. By (2.2) we have

E∗Et = EtE∗. (3.5)

We have the following

Lemma 3.1. Let h ∈ R
N be an arbitrary column vector and let W = pht+hpt.

Then,

∂Z(A, p)

∂p
h = tr

{

E∗Et

[

2g′

G
WQ−1 + 4

(

g′

G

)′

pthRQ−1 +
2g′

g
pthI

]}

.

Proof. Since

Q(p) = I −
2g′(|p|2)

G(|p|2)
R, R = p pt,

we have

Q(p+ h) = I −
2g′(|p+ h|2)

G(|p+ h|2)
(p+ h)(p+ h)t

= I −

(

2g′

G
+ 4
(g′

G

)′

pth+ · · ·

)

(R +W + · · · )

= Q(p)−
2g′

G
W − 4

(g′

G

)′

pthR + · · ·

= Q

[

I −
2g′

G
Q−1W − 4

(g′

G

)′

pthQ−1R + · · ·

]

,

where dots stand for terms of higher order with respect to |h|. Hence,

Q−1(p+ h) =

[

I +
2g′

G
Q−1W + 4

(g′

G

)′

pthQ−1R + · · ·

]

Q−1

= Q−1 +
2g′

G
Q−1WQ−1 + 4

(g′

G

)′

pthQ−1RQ−1 + · · ·

Using this expansion we find

E(A, p+ h)

= g(|p+ h|2)Q−1(p+ h)A

=
(

g + 2g′pth+ · · ·
)

(

Q−1A+
2g′

G
Q−1WQ−1A+ 4

(g′

G

)′

pthQ−1RQ−1A+ · · ·

)

= E +
2g′

G
Q−1WE + 4

(g′

G

)′

pthQ−1RE +
2g′

g
pthE + · · · .
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Using the previous formula we find

Z(A,p+ h)

= F
(

E(A, p+ h)
)

= F

(

E +
2g′

G
Q−1WE + 4

(g′

G

)′

pthQ−1RE +
2g′

g
pthE + · · ·

)

= Z(A, p) + tr

{

E∗Et

[

2g′

G
WQ−1 + 4

(g′

G

)′

pthRQ−1 +
2g′

g
pthI + · · ·

]}

.

The lemma follows.

For p = ∇u and h = A∇u we have R = ∇u(∇u)t, W = RA + AR. Using
Lemma 3.1 we find

∂Z(A,∇u)

∂(∇u)
A∇u = tr

{

E∗Et2g
′

G
(RA+ AR)Q−1

}

+ (∇u)tA∇u tr

{

E∗Et

[

4
(g′

G

)′

RQ−1 +
2g′

g
I

]}

.

Using equation (1.3) we find 2g′

G
(RA+AR) = 2A−QA−AQ. Hence, recalling

that A = 1
g
QE = 1

g
EtQ, we have

tr
{

E∗Et2g
′

G
(RA+ AR)Q−1

}

= tr
{

E∗Et(2AQ−1 −QAQ−1 − A)
}

=
1

g
tr
{

E∗Et(2Et −QEt − EtQ)
}

=
2

g
tr
{

E∗(Et)2(I −Q)
}

=
4g′

g G
tr
{

E∗(Et)2R
}

.

We have used (1.3) and the equation tr
{

E∗EtQEt
}

= tr
{

E∗(Et)2Q
}

, true
because E∗Et = EtE∗. Therefore,

∂Z(A,∇u)

∂(∇u)
A∇u

=
4g′

g G
tr
{

E∗(Et)2R
}

+ (∇u)tA∇u tr

{

E∗Et

[

4
(g′

G

)′

RQ−1 +
2g′

g
I

]}

.

(3.6)

Our main result deals with the following equation:

Z(A,∇u) = F (E) = σ(k)(µ1, . . . , µN) = 1. (3.7)
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The Dirichlet problem for equation (3.7) in case of g = 1 or g = (1 + s)−
1

2 has
been investigated in [2] and [3]. A solution to (3.7) is called admissible if the
corresponding matrix A∗ =

[

∂Z
∂uij

]

is positive definite. We refer to [2, 3, 8, 11]

for existence, uniqueness and regularity results.

Theorem 3.2. Let α satisfy (1.7), let g satisfy (3.1) and let u(x) be an ad-

missible solution of the nonlinear elliptic equation (3.7) in a bounded domain

Ω ⊂ R
N . Then the function

Ψ(x) =
1

2

∫ |∇u|2

0

G(s) ds− αu (3.8)

cannot assume its maximum value in Ω unless it is a constant.

Proof. Differentiating Ψ we find

Ψi = Gui`u` − αui

Ψij = 2G′ui`u`ujsus +Guij`u` +Gui`uj` − αuij.
(3.9)

With B = [Ψij] we have

tr{A∗B} = 2G′ tr{A∗ARA}+G tr{A∗A`}u`+G tr{A∗A2}−α tr{A∗A}. (3.10)

Using the equations (3.2), (3.4) with p = ∇u, and recalling that QE = E tQ

(by (3.2)) and that E∗Et = EtE∗ (by (3.5)) we find

tr{A∗A2} = tr{A2A∗} =
1

g
tr{EtQEtE∗} =

1

g
tr{E∗(Et)2Q}. (3.11)

Consider first g′ 6= 0. Using (1.3) and (3.11) we find

tr{A∗ARA} =
G

2g′
tr{A∗A(I −Q)A}

=
G

2g′
tr{A∗A2} −

G

2g′
tr{A∗AQA}

=
G

2gg′

[

tr{E∗(Et)2Q} − tr{Q−1E∗EtQ2EtQ}
]

=
G

2gg′
tr{E∗(Et)2(Q−Q2)}.

Using the last equation and the formula Q−Q2 = 2g′g
G2

R we find

tr{A∗ARA} =
1

G
tr{E∗(Et)2R}. (3.12)

If g′ = 0 then G = g, Q = I and E = gA, therefore (3.12) holds trivially in this
situation.
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Differentiating the equation Z(A,∇u) = 1 with respect to x` and multiply-
ing by u` we find

∂Z

∂uij

uij`u` +
∂Z

∂ui

ui`u` = 0,

or, using matrix notation,

tr{A∗A`}u` +
∂Z(A,∇u)

∂(∇u)
A∇u = 0.

The latter equation and (3.6) yield

tr{A∗A`}u` = −
4g′

g G
tr{E∗(Et)2R}

− (∇u)tA∇u tr

{

E∗Et

[

4
(g′

G

)′

RQ−1 +
2g′

g
I

]}

.

(3.13)

Since F (E) = F (eij) is homogeneous of degree k with respect to eij, also
Z(A,∇u) = Z(uij, ui) is homogeneous of degree k with respect to uij and,
using equation (3.7) we find

tr{A∗A} = tr{E∗Et} = k σ(k) = k. (3.14)

Insertion of (3.11), (3.12), (3.13) and (3.14) into (3.10) leads to

tr{A∗B} =
2G′

G
tr{E∗(Et)2R} −

4g′

g
tr{E∗(Et)2R}

−G(∇u)tA∇u tr

{

E∗Et

[

4
(g′

G

)′

RQ−1 +
2g′

g
I

]}

+
G

g
tr{E∗(Et)2Q} − αk.

(3.15)

By (3.9) we get

G(∇u)tA∇u = α|∇u|2 + (∇u)t∇Ψ (3.16)

and
GAR = αR +∇Ψ(∇u)t. (3.17)

We claim that

2G′

G
tr{E∗(Et)2R} −G(∇u)tA∇u tr

{

E∗Et4
(g′

G

)′

RQ−1
}

=
6g′

g
tr{E∗(Et)2R}+ Ct∇Ψ,

(3.18)
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where C is a regular vector field. Note that E tR = gAQ−1R = GAR, RQ−1 =
G
g
R. Using the latter equations and (3.16) we have

(

2G′

G
−
6g′

g

)

tr{E∗(Et)2R} −G(∇u)tA∇u tr
{

E∗Et4
(g′

G

)′

RQ−1
}

= 2
G′g − 3g′G

Gg
tr{E∗EtGAR} −G(∇u)tA∇u 4

(g′

G

)′G

g
tr{E∗EtR}

= 4|∇u|2
g′′g − 3(g′)2

Gg
tr{E∗EtGAR}

− 4α|∇u|2
g′′g − 3(g′)2

Gg
tr{E∗EtR}+ Ct∇Ψ.

The latter equation and (3.17) yield (3.18).

Insertion of (3.18) into (3.15) and use of (3.16) leads to

tr{A∗B} =
6g′

g
tr{E∗(Et)2R} −

4g′

g
tr{E∗(Et)2R}+

G

g
tr{E∗(Et)2Q}

− α|∇u|2
2g′

g
tr{E∗Et} − αk + Ct∇Ψ.

Since 2g′

g
R + G

g
Q = G

g
I and tr{E∗Et} = k we find

tr{A∗B}+ Ct∇Ψ =
G

g
tr{E∗(Et)2} − α|∇u|2

2g′

g
k − αk

=
G

g

[

tr{E∗(Et)2} − α k
]

.

(3.19)

To evaluate the quantity in the square brackets in (3.19) we recall the Newton
tensor relative to Et

T (k) = σ(k)I − T (k−1)Et, T0 = I, (3.20)

introduced in Section 2. Since E∗ = T (k−1), by (3.20) we find

E∗(Et)2 = T (k−1)(Et)2 = σ(k)Et − T (k)Et.

By (2.5) we have tr{T (k)Et} = (k + 1)σ(k+1). Hence,

tr{E∗(Et)2} = σ(k)σ(1) − (k + 1)σ(k+1). (3.21)

Define αk =
(

N

k

)− 1

k . By standard inequalities (see [11]) we have

σ(k+1) ≤

(

N

k + 1

)

αk+1
k

(

σ(k)
)

k+1

k
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and
σ(1) ≥ Nαk(σ

(k))
1

k .

Hence, by (3.21) we find

tr{E∗(Et)2} ≥ Nαk(σ
(k))

k+1

k − (k + 1)

(

N

k + 1

)

αk+1
k (σ(k))

k+1

k

= kαk(σ
(k))

k+1

k

= kαk,

where the equation σ(k) = 1 has been used in the last step. Taking into account
this result, from (3.19) we find

A∗
ijΨij + Ct∇Ψ = tr{A∗B}+ Ct∇Ψ ≥ 0.

Since the matrix A∗ is positive definite, the theorem follows by Hopf’s first
maximum principle.

Applications. If u is an admissible solution of equation (3.7) in a bounded
domain Ω, then some estimates follow from Theorem 3.1. First of all, taking
α = 0 it follows that |∇u| takes its maximum value on the boundary ∂Ω.
Moreover, if u = 0 on ∂Ω, then u(x) < 0 in Ω and, by Theorem 3.1 with

α = αk =
(

N

k

)− 1

k we have

1

2

∫ |∇u|2

0

G(s) ds− αku ≤
1

2

∫ |∇u|M2

0

G(s) ds,

where |∇u|M = supx∈∂Ω |∇u|. In particular, if um = minx∈Ω u(x), then

−αkum ≤
1

2

∫ |∇u|M2

0

G(s) ds. (3.22)

Inequality (3.22) becomes an equality if Ω is a ball. If Ω is strictly convex, a
bound for |∇u|M can be found in terms of the geometry of ∂Ω. We refer to [8]
for details.

The radial case. If u = u(r) with r = |x| we have

ui = u′
xi

r
, uij = u′′

xixj

r2
+ u′

r2δij − xixj

r3
,

where δij is the familiar Kroneker delta. At the point (r, 0, · · · , 0) we have A =
diag{u′′, u′

r
, . . . , u′

r
}, Q−1=diag{G

g
, 1, . . . , 1}.Hence, E=g diag{G

g
u′′, u′

r
, . . . , u′

r
}.

Since σ(k) is invariant under rotations, at a point x with |x| = r we find

σ(k) = gk

[(

N − 1

k − 1

)

G

g
u′′
(u′

r

)k−1

+

(

N − 1

k

)

(u′

r

)k
]

. (3.23)
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If u = u(r) is a solution of the ordinary differential equation

g((u′)2)u′ = rαk, αk =

(

N

k

)− 1

k

,

we have

G
(

(u′)2
)

u′′ = αk. (3.24)

By (3.23) we find σ(k) = 1. The corresponding function Ψ with α = αk reads as

Ψ(r) =
1

2

∫ (u′)2

0

G(s) ds− αku.

Using (3.24) we find

dΨ

dr
= G

(

(u′)2
)

u′′u′ − αku
′ = 0.

We conclude that Theorem 3.1 yields a best possible maximum principle.

4. Variational equations

In this section we present a variational form of the invariants σ(k). By equa-
tion (1.5), for g = 1 we have E = A, and the equation

1

k

(

T
(k−1)
ij (A)uj

)

i
= S(k)(A)

is well known. In case of g(s) = (1 + s)−
1

2 the following formula is proved in
[10, p. 381]:

1

k

(

1

(1 + |∇u|2)
1

2

T
(k−1)
ij (E)uj

)

i

= σ(k)(E). (4.1)

We prove a similar formula for a general g by using the Newton tensor T (k−1)(A)
instead of T (k−1)(E).

Proposition 4.1. We have

1

k

(

gkT
(k−1)
ij (A)uj

)

i
= σ(k)(E), (4.2)

where g = g(|∇u|2).



432 G. Porru et al.

Proof. In this proof the Newton tensors T (k)(A) are relative to A and we write
T (k) instead of T (k)(A). As usual we denote by S(k) the k-th elementary sym-
metric function of the eigenvalues of the Hessian matrix A.

Let us develop the left hand side of (4.2). Since the Newton tensor T (k−1)

is divergence free we have

1

k

(

gkT
(k−1)
ij uj

)

i
= gk−12g′T

(k−1)
ij ui`u`uj +

1

k
gkT

(k−1)
ij uij. (4.3)

Recall the Newton equation T (k) = S(k)I − T (k−1)A, or

T (k−1)A = S(k)I − T (k). (4.4)

Insertion of (4.4) into (4.3) and use of the equation T
(k−1)
ij uij = kS(k) yields

1

k

(

gkT
(k−1)
ij uj

)

i
= gk−12g′

[

S(k)|∇u|2 − T
(k)
ij uiuj

]

+ gkS(k). (4.5)

Now we develop the right hand side of (4.2). We have

σ(k)(E) = σ(k)(gQ−1A) = gkσ(k)
[

(

I +
2g′

g
R
)

A

]

. (4.6)

The (ij) entry of the matrix
(

I + 2g′

g
R
)

A is uij +
2g′

g
uj`u`ui. Therefore, using

Reilly’s formula (2.3) we have

σ(k)
[

(

I +
2g′

g
R
)

A

]

=
1

k!

(

i1 · · · ik
j1 · · · jk

)

(

ui1j1 +
2g′

g
uj1`1u`1ui1

)

· · ·
(

uikjk
+
2g′

g
ujk`k

u`k
uik

)

.

(4.7)

When we develop the product in above we find the term

1

k!

(

i1 · · · ik
j1 · · · jk

)

ui1j1 · · · uikjk
= S(k). (4.8)

Moreover we find k terms of the kind

2g′

g

1

k!

(

i1 · · · ik−1i

j1 · · · jk−1j

)

ui1j1 · · · uik−1jk−1
uj`u`ui.

We can write the above k terms globally as 2g′

g
T
(k−1)
ij uj`u`ui. Using (4.4), the

above expression reads as

2g′

g

[

S(k)|∇u|2 − T
(k)
ij uiuj

]

. (4.9)
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All the remaining terms appearing in the product (4.7) vanish because of the
skew-symmetry of the generalized Kronecker symbols. Let us consider in detail
the expression

(2g′)2

g2

1

k!

(

i1 · · · ik−2im

j1 · · · jk−2j n

)

ui1j1 · · · uik−2jk−2
uj`u`uiunsusum.

The term corresponding to
(

i1···ik−2i m

j1···jk−2j n

)

uium cancels the term corresponding to
(

i1···ik−2i m

j1···jk−2n j

)

umui. Hence, the insertion of (4.8) and (4.9) into (4.7) yields

σ(k)
[

(

I +
2g′

g
R
)

A

]

= S(k) +
2g′

g

[

S(k)|∇u|2 − T
(k)
ij uiuj

]

. (4.10)

Finally, insertion of (4.10) into (4.6) leads to

σ(k)(E) = gk

[

S(k) +
2g′

g

[

S(k)|∇u|2 − T
(k)
ij uiuj

]

]

= gkS(k) + gk−12g′
[

S(k)|∇u|2 − T
(k)
ij uiuj

]

.

(4.11)

Comparing (4.11) with (4.5), the proposition follows.
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