Zeitschrift fiir Analysis und ihre Anwendungen (© European Mathematical Society
Journal for Analysis and its Applications
Volume 25 (2006), 421-434

Best Possible Maximum Principles
for Fully Nonlinear
Elliptic Partial Differential Equations

G. Porru, A. Safoui and S. Vernier-Piro

Abstract. We investigate a class of equations including generalized Monge—-Ampere
equations as well as Weingarten equations and prove a maximum principle for suitable
functions involving the solution and its gradient. Since the functions which enjoy the
maximum principles are constant for special domains, we have a so called best possible
maximum principle that can be used to find accurate estimates for the solution of the
corresponding Dirichlet problem. For these equations we also give a variational form
which may have its own interest.
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1. Introduction

Let Q ¢ RY, N > 2, be a bounded domain and let u be a smooth function
defined in Q. If x = (z1...,2y) € Q we put u; = %, i=1,---,N, and define
A = [u;j], the (symmetric) Hessian matrix of u. For 1 <k < N let

S(k)()\b)AN)

be the k-th elementary symmetric function of the eigenvalues of A. Famous
equations investigated by L. Caffarelli, L. Nirenberg and J. Spruck in [2] are

the following:
S\, ... A n) = 1. (1.1)

Blow-up solutions of the same equations are discussed by P. Salani in [11]. One
can generalize equations (1.1) as follows. Let g(s) be a positive smooth real
function satisfying

G(s) = g(s) + 2s¢'(s) > 0. (1.2)
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Define the matrix

29'(|Vul?)

WR, R = Vu(Vu)', (1.3)

Q=1-
where [ is the N x N unit matrix and (Vu)" is the transposed matrix of Vu.

Note that @) is symmetric and positive definite. One finds

2¢'(|Vul?)
9(|Vul?)

Using the Hessian matrix A = [u;;] of u, define the new matrix

Q=1+ R. (1.4)

E = [ey] = g(|Vul)Q ' A. (1.5)

By standard results on matrix theory [1], E is similar to a diagonal matrix
with entries pq,...,uy, the (real) eigenvalues of E. For 1 < k < N let
o® (i1, ..., un) be the k-th elementary symmetric function of the eigenvalues
of E. In this paper we deal with the equations

For ¢ = 1 we have £ = A and equations (1.6) coincide with equations (1.1).
For g = (14 s)"2 we find Q = I + R, and we have

E=1+|Vu») 2Q ‘A

In this situation py, . .., ux coincide with the principal curvatures of the surface
u = u(z) in R¥™ and the corresponding equations (1.6) describe the Wein-
garten surfaces investigated by L. Caffarelli, L. Nirenberg and J. Spruck in [3].

Let a € R with )
N\ %
0<a< (k) . (1.7)

If G(s) is the function introduced in (1.2) and if « satisfies (1.7), we define

1

[Vul?
U(z) = 5/0 G(s)ds — au

In Section 3 we prove that if u is a solution to equation (1.6), then the function ¥
cannot assume its maximum value in ) unless it is a constant. For ¢ = 1 and
g(s) = (1 + s)"2 this result has been proved in [8] by G. A. Philippin and the
second author. We also show that if € is a ball, then we have ¥(x) = constant,
therefore our result is a best possible maximum principle. In Section 4 we give
a variational form for the invariants o® (1, ..., pux).
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2. Newton tensor

Let E be a matrix similar to the diagonal matrix diag{u,...,un}. For k =
1,...,N —1, the k-th Newton tensor T is defined as

Tk = g0 =D Bt 7O =7, (2.1)

where I is the N x N unit matrix, E* is the transposed of E and ¢ denotes
the k-th elementary symmetric function of the eigenvalues of E. By (2.1) one
finds

T = g0 — g6 DB 4 ... 4 (“1H(EY)

Since T is polynomial in E?, it is clear that
TWE! = B7®), (2.2)

A representation of the invariant ¢® in terms of the entries e;; of the matrix £
has been given by R. C. Reilly [9]:

1 [iy i
J(k) - E <]1 .. ]k) €irgr " Ciggno (2'3)

ineig
. : ) . . g1k N :
if the indexes iy,...,4; are distinct and (ji,...,jx) is an even (respectively
odd) permutation of (i, ...,i), otherwise it has value zero. Moreover, the
summation convention over repeated indexes from 1 to N is in effect.

We also have a formula for the entries Ti(jk) of the Newton tensor [9]

I 2

where the generalized Kronecker symbol ( ) has the value 1 (respectively —1)

By (2.3) and (2.4) we find
tr{TWEY = (k + 1)o*+D), (2.5)
where tr{M} denotes the trace of the matrix M. We shall use the equation

T(k_l) B Ho k)

g Deiy

(2.6)

which follows by (2.3) and (2.4).
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3. Maximum principles

Let k be a fixed integer with 1 < k < N, and let g(s) be a smooth positive
function satisfying

G(s) =g(s)+2s¢'(s) >0 (3.1)
for s > 0. Typical examples are g(s) = (1+s)~2, v > 0. For p € RY define
29'(Ip)*) t
Q =1- R7 R = pp,
G(|pl?)

where I is the N x N unit matrix, p is used as a column matrix, p’ is its trans-
posed. Note that () is symmetric and positive definite. Indeed, the eigenvalues
of @ are 1 (counted N — 1 times) and . We have

Let u = u(x) be a smooth function defined in a bounded domain 2 C RY. If
A = [u;;] is the Hessian matrix of u, define the new matrix

E=E(A,p) = g(Ip)Q A, (3:2)

Although F is not, in general, symmetric, it is similar to a diagonal matrix with
entries fi1, ..., iy, the (real) eigenvalues of E. If p = Vu and g(s) = (1 + s)’%
then g1, ...,y are the principal curvatures of the surface u = u(x) contained
in RV+!,

Let F(E) = o®(uy,...,un), E = [ey], the k-th elementary symmetric
function of the eigenvalues of E. Since E depends on A and p, we introduce
the notation Z(A,p) = F(F), and define the associated matrices

Tz . JoF
A= {8%]7 b= [3%}

Since I is homogeneous with respect to e;;, also Z is homogeneous with respect
to u;; and
tr{A*A} = tr{ E*E'} = k F(E). (3.3)

By using the chain rule one finds
A = g(p)QE". (3.4)

By (2.6) we have

k
8eij

)
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where T¢F=D=TGF=-D(E?) is the (k — 1)-th Newton tensor associated with the
matrix E'. By (2.2) we have

E*E' = E'E*. (3.5)
We have the following

Lemma 3.1. Let h € RN be an arbitrary column vector and let W = pht + hpt.
Then,

0ZAD), e e |2 wo 4 a( L) phro + Xyt L
dp G G g

Proof. Since
_24'(]pl?)

Qp) = GUrP) R, R=pp,
we have
Q-+ =1~ 2L
- <%+4<G:)/ th+---)(R+W+~--)

— Q) - %W—4(%)' hR A -

_Q[ GQ W— 4<G)pthQ—1R+---],

where dots stand for terms of higher order with respect to |h|. Hence,

/

Qlp+h) = [I+ zé Qwa(L)p hQ—lR+...]Q—1

A Q Q! +4(G)th 'RQ! +-
Using this expansion we find
E(A,p+h)
=g(lp+2*)Q7 (p + h)A
= (9+2¢'p'h + - --)(Q 1A+ % Q 'wQ 1A+4<Gi> P hQ'RQ'A + )

29" 4 g t1 -1 29"
=F WE+4 E+ —=p'hE+---.
+5Q +(>thR+gph+
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Using the previous formula we find

2 / AN 2 /
—F(E+ %Q*WE n 4(%) PhQ'RE + L pthE + - >
g

WQt 4 4(9—/

= Z(A,p)+tr{E*Et [Q—Q o

" 1, 2
p'hRQ™ + —p'hl +---| 5.
G ) g

The lemma follows. ]

For p = Vu and h = AVu we have R = Vu(Vu)', W = RA + AR. Using

Lemma 3.1 we find

0Z(A,Vu)

29 B
o * 1t 1
2 AVu-tr{EE—G (RA+ AR)Q }

+ (V) AVu tr{E*Et[ <G> RQ™ + 25 IH

Using equation (1.3) we find 2Fgl(RA + AR) =2A — QA — AQ. Hence, recalling
that A = %QE = %EtQ, we have

tr {E*Et%‘q,(RA + AR)Q—l} —tr {E*E'(24Q7" — QAQ~! — A))

= ;tr {E*E'(2E' — QE' — E'Q)}

_ gtr{E*(Et)Z(] ~Q)
4q'
gG

(E')*R}.

We have used (1.3) and the equation tr { E*E'QE'} = tr { E*(E")?Q}, true
because E*E! = E'E*. Therefore,

aZ(A’Vu)AVu
d(Vu) (3.6)
49 " et | (9N po-t 1 29 ’
(E')?R} + (Vu)'AVu trd BE'[4( L) RQ™ + 11| .
G g

Our main result deals with the following equation:

Z(A,Vu) = F(B) = o™ (1, ..., uy) = 1. (3.7)
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The Dirichlet problem for equation (3.7) in case of g = 1 or g = (1 + )2 has
been investigated in [2] and [3]. A solution to (3.7) is called admissible if the
corresponding matrix A* = [ aauil is positive definite. We refer to [2, 3, 8, 11]
for existence, uniqueness and regularity results.

Theorem 3.2. Let « satisfy (1.7), let g satisfy (3.1) and let u(x) be an ad-
missible solution of the nonlinear elliptic equation (3.7) in a bounded domain
Q C RY. Then the function

[Vul?
U(x) = l/0 G(s)ds — au (3.8)

cannot assume its mazimum value in ) unless it is a constant.
Proof. Differentiating ¥ we find

W, = Gupup — a u; 29
\Ifij = 2G,UMUKU]'SUS + Gui]’gUg + Guiguj'g — QU . ( . )

With B = [¥;;] we have
tr{A*B} = 2G" tr{ A" ARA}+G tr{A* Ay }up+G tr{A* A2} —a tr{A*A}. (3.10)

Using the equations (3.2), (3.4) with p = Vu, and recalling that QF = E'Q
(by (3.2)) and that E*E* = E*E* (by (3.5)) we find

(r{A A2} = tr{A2A"} = L {E'QE'E"} = L B (EY2Q).  (3.11)
g g
Consider first ¢’ # 0. Using (1.3) and (3.11) we find

tr{A*ARA} = 2% tr{A*A(I — Q)A}

G G
= g {4742} - oo {47404}

G R 1 o ot t
— o [l B (EQ) - QB E QB Q)
- 259/ r{ £ (E")2(Q — Q2)}.

Using the last equation and the formula ) — Q2 = 2(%—/29R we find
1
tr{A*ARA} = 5 tr{ E*(E")*R}. (3.12)

If ¢ =0then G =g, Q=1and E = gA, therefore (3.12) holds trivially in this
situation.
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Differentiating the equation Z(A, Vu) = 1 with respect to x, and multiply-

ing by u, we find . .

%Uzjew + a—uiuiew =0,
or, using matrix notation,
0Z(A,Vu)
tr{A*A ———>AVu = 0.
r{ o hue + o) u

The latter equation and (3.6) yield

/

4g
tr{A*A = —
I‘{ Z}Ug gG

— (Vu)'AVu tr {E*Et {4(%’>,RQ1 + 279/[} }

tr{ B*(E")*R}
(3.13)

Since F(E) = F(e;;) is homogeneous of degree k with respect to e;;, also
Z(A,Vu) = Z(u;;,u;) is homogeneous of degree k with respect to wu;; and,
using equation (3.7) we find

tr{A*A} = tr{E*E"} = ko™ = L. (3.14)

Insertion of (3.11), (3.12), (3.13) and (3.14) into (3.10) leads to

tr{A* B} Zg B (B2 R} — 29 (B (EY)?R)
g
_ ' et a9 po-1 ., 29
G (V) AVu tr{E E {4(G) RQ™ + JH (3.15)
+ ¢ tr{ E*(E")*Q} — ak.
g
By (3.9) we get
G(Vu) AVu = a|Vul* + (Vu)' VI (3.16)
and
GAR = aR + VU(Vu)'. (3.17)

We claim that

2G"
G

6 /
- 79 tr{ E*(E'?R} + C'V'T,

tr{E*(E")?R} — G(Vu)'AVu tr {E*Et4<g§/>/RQ_l} (3.18)
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where C' is a regular vector field. Note that E'R = gAQ 'R = GAR, RQ~! =
%R. Using the latter equations and (3.16) we have

(23’_679/) tr{ E*(E")2R} — G(Vu)'AVu tf{E*Etll(%),RQ—l}

/ N

C W {E*E'GAR} — G(Vu)tAVuZl(ga) C (B E'R)
g

u ﬂtr{E*EteAR}

2 e{ E'E'R} + C'VU.

The latter equation and (3.17) yield (3.18).
Insertion of (3.18) into (3.15) and use of (3.16) leads to

/ 4 /
tr{A*B} = 6?9 tr{ E*(E")’R} — 79 tr{ E*(E")’R} + %tr{E*(Et)zQ}
2 /
- a\Vu|27g tr{ E*E'} — ak + C'VU.
Since 279,]% + %Q = %I and tr{ E*E'} = k we find
* t G * t 229/
tr{A*"B} + C'VV¥ = Etr{E (E*)2} — a|Vul Fk —ak

Gl (52—
= - [ k]

(3.19)

To evaluate the quantity in the square brackets in (3.19) we recall the Newton
tensor relative to E*

Tk = g® [ _ k=D pt Ty =1, (3.20)
introduced in Section 2. Since E* = T*~V by (3.20) we find
EX(EHY2 =Tk V(EYHY2 = cWE - TWE!,
By (2.5) we have tr{T™E*} = (k + 1)c**+1 . Hence,

tr{E*(E")2} = ™o — (k4 1)o* Y. (3.21)

=

Define oy, = (]]X)_ . By standard inequalities (see [11]) we have

N
oF+D) < <k .\ 1>allz+1 (O_(k))

k+1
k
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and 1
oW > Nay(c®)E,

Hence, by (3.21) we find

N
tr{E*(E"2} > Nay(o™) & — (k+ 1) (k 1) al (oW 5
= k‘&k(U(k))% "
== k‘ozk,

where the equation o) = 1 has been used in the last step. Taking into account
this result, from (3.19) we find

AW+ C'V = tr{A*B} + C'V¥ > 0,

Since the matrix A* is positive definite, the theorem follows by Hopf’s first
maximum principle. O

Applications. If u is an admissible solution of equation (3.7) in a bounded
domain 2, then some estimates follow from Theorem 3.1. First of all, taking
a = 0 it follows that |Vu| takes its maximum value on the boundary 0.

Moreover, if u = 0 on 0, then u(z) < 0 in Q and, by Theorem 3.1 with
N

.) * we have

1 [lvul? 1 [IVula2
—/ G(s)ds — agu < —/ G(s) ds,
2 Jo 2 Jo

where |Vu|y = sup,caq |Vu|. In particular, if u,, = mingcq u(z), then

Oé:Oék:(

1 ‘VU|MQ
g < / G(s) ds. (3.22)
0

Inequality (3.22) becomes an equality if €2 is a ball. If € is strictly convex, a
bound for |Vu|y can be found in terms of the geometry of 9€2. We refer to [§]
for details.

The radial case. If u = u(r) with r = |z| we have

ZT; T r25ij — TiTj
ui:u'?, u; = u” - + 3 :
where 6;; is the familiar Kroneker delta. At the point (r,0,---,0) we have A =

diag{u”, “ ...,“7,}, Qfl:diag{%,l,...,1}.Hence,E:gdiag{%u" woo e

0 ) )

Since ¢ is invariant under rotations, at a point x with |z| = r we find

o) gh KZZ__D gu”(“?/)k_l + (Nk_ 1) (“7’)1 . (3.23)
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If w = u(r) is a solution of the ordinary differential equation

==

g(uW)2)u =rag, ap = (]]Z>_ ,
we have
G((W)2)u" = ay. (3.24)

By (3.23) we find 0*) = 1. The corresponding function ¥ with a = «, reads as

1 @2
U(r)= 5/0 G(s)ds — agu.

Using (3.24) we find

dv

- = G(()2)u"u' — o’ = 0.

We conclude that Theorem 3.1 yields a best possible maximum principle.

4. Variational equations

In this section we present a variational form of the invariants ¢®. By equa-
tion (1.5), for ¢ = 1 we have E' = A, and the equation

1
— (7Y ) =85k
k<Tb (Aﬁ@>i S®)(4)
is well known. In case of g(s) = (1 + s)~2 the following formula is proved in

[10, p. 381]:

L S S~ (S RN N (Y
k((l—l— |Vu|2)%TZ] (E) J)i (E). (4.1)

We prove a similar formula for a general g by using the Newton tensor T*=1(A)
instead of T*+~V(E).

Proposition 4.1. We have

(AT ,) = i), (4.2)

)

where g = g(|Vul?).
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Proof. In this proof the Newton tensors T*)(A) are relative to A and we write
T®) instead of T™)(A). As usual we denote by S®* the k-th elementary sym-
metric function of the eigenvalues of the Hessian matrix A.

Let us develop the left hand side of (4.2). Since the Newton tensor 7~
is divergence free we have

1 k— _ k— 1 k—
E(ngi(j 1)“j>i=gk 129/ T Vuspugu; + k;ng( Dy (4.3)

Recall the Newton equation 7 = S*) ] — T(k:=D A or
THEDA =W _T®), (4.4)
Insertion of (4.4) into (4.3) and use of the equation T(k Yy = kS® yields

1 _
- (ngi(jk l)uj>i = g" 124 [;SY("")|Vu|2 - ﬂ(f)uiuj} + g*s®), (4.5)

Now we develop the right hand side of (4.2). We have

o"(E)=0®(9Q7'A) = g"o™ [(1 + %‘C]/R) A] . (4.6)

The (ij) entry of the matrix (I 4 2 R)A is + 2 u]gugul Therefore, using
Reilly’s formula (2.3) we have

(¥ l(] + %Q/R)A}

1 iy iy 2 2 (4.7)
- k! (Jl .. ]k> (uiljl + ?U’jleluelu’h) s (uikjk + ?ujkekuzkuik)
When we develop the product in above we find the term
Liie) o g
k! <]1 .. ]k) Wiygy ** Wiggp = . (4.8)

Moreover we find k terms of the kind

29 1 Zk 12
g k" G- k1] Wiygy =" Wig_qjp_q WjeWeUs.

We can write the above k terms globally as 279/7}(]-]671)

above expression reads as

ujpueu;. Using (4.4), the

2
g[ 0| V| - uu] (4.9)
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All the remaining terms appearing in the product (4.7) vanish because of the
skew-symmetry of the generalized Kronecker symbols. Let us consider in detail
the expression

(29’)2 1 (Zl s ik_Qi m
g2 K'\ji---jr—2gn

)uiljl .. .uik72jk72uﬂu@uiunsusum.
The term cormesponding to (17"
(i1-..ik—2im)umui. Hence, the insertion of (4.8) and (4.9) into (4.7) yields

JiJk—2mj

)uium cancels the term corresponding to

/ /

29 2g
(k) 29 — qlk) 4 29 | g(k) 2 _plk),, .
o {(I#— p R)A] SV g [S |Vul* =T uluj} (4.10)

Finally, insertion of (4.10) into (4.6) leads to

J

2 /
O'(k)(E) =g" {S(k) + 29 [S(k)|Vu\2 — Ti(-k)uiujH
g (4.11)
= g"5® + g*12g/ [0 Vul — TP uu).

Comparing (4.11) with (4.5), the proposition follows. O
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