Best Possible Maximum Principles for Fully Nonlinear Elliptic Partial Differential Equations

G. Porru, A. Safoui and S. Vernier-Piro

Abstract. We investigate a class of equations including generalized Monge–Ampere equations as well as Weingarten equations and prove a maximum principle for suitable functions involving the solution and its gradient. Since the functions which enjoy the maximum principles are constant for special domains, we have a so called best possible maximum principle that can be used to find accurate estimates for the solution of the corresponding Dirichlet problem. For these equations we also give a variational form which may have its own interest.

Keywords. Fully nonlinear elliptic equations, Weingarten surfaces, best possible maximum principles

Mathematics Subject Classification (2000). 35B50, 35J60, 53A10

1. Introduction

Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded domain and let u be a smooth function defined in Ω . If $x = (x_1, \ldots, x_N) \in \Omega$ we put $u_i = \frac{\partial u}{\partial x_i}$ $\frac{\partial u}{\partial x_i}$, $i = 1, \dots, N$, and define $A = [u_{ij}]$, the (symmetric) Hessian matrix of u. For $1 \leq k \leq N$ let

$$
S^{(k)}(\lambda_1,\ldots,\lambda_N)
$$

be the k-th elementary symmetric function of the eigenvalues of A . Famous equations investigated by L. Caffarelli, L. Nirenberg and J. Spruck in [2] are the following:

$$
S^{(k)}(\lambda_1, \dots, \lambda_N) = 1. \tag{1.1}
$$

Blow-up solutions of the same equations are discussed by P. Salani in [11]. One can generalize equations (1.1) as follows. Let $g(s)$ be a positive smooth real function satisfying

$$
G(s) = g(s) + 2sg'(s) > 0.
$$
\n(1.2)

G. Porru and S. Vernier-Piro: Dipartimento di Matematica e Informatica, Universit´a di Cagliari, 09124 Cagliari, Italy; porru@unica.it, svernier@unica.it

A. Safoui: Department of Mathematics, University of Marrakesh, Marrakesh, Morocco; safoui@ucam.ac.ma

Define the matrix

$$
Q = I - \frac{2g'(|\nabla u|^2)}{G(|\nabla u|^2)}R, \quad R = \nabla u(\nabla u)^t,
$$
\n(1.3)

where I is the $N \times N$ unit matrix and $(\nabla u)^t$ is the transposed matrix of ∇u . Note that Q is symmetric and positive definite. One finds

$$
Q^{-1} = I + \frac{2g'(|\nabla u|^2)}{g(|\nabla u|^2)}R.
$$
\n(1.4)

Using the Hessian matrix $A = [u_{ij}]$ of u, define the new matrix

$$
E = [e_{ij}] = g(|\nabla u|^2)Q^{-1}A.
$$
\n(1.5)

By standard results on matrix theory $[1]$, E is similar to a diagonal matrix with entries μ_1, \ldots, μ_N , the (real) eigenvalues of E. For $1 \leq k \leq N$ let $\sigma^{(k)}(\mu_1, \ldots, \mu_N)$ be the k-th elementary symmetric function of the eigenvalues of E . In this paper we deal with the equations

$$
\sigma^{(k)}(\mu_1,\ldots,\mu_N)=1.\tag{1.6}
$$

For $g = 1$ we have $E = A$ and equations (1.6) coincide with equations (1.1). For $g = (1 + s)^{-\frac{1}{2}}$ we find $Q = I + R$, and we have

$$
E = (1 + |\nabla u|^2)^{-\frac{1}{2}} Q^{-1} A.
$$

In this situation μ_1, \ldots, μ_N coincide with the principal curvatures of the surface $u = u(x)$ in \mathbb{R}^{N+1} , and the corresponding equations (1.6) describe the Weingarten surfaces investigated by L. Caffarelli, L. Nirenberg and J. Spruck in [3].

Let $\alpha \in \mathbb{R}$ with

$$
0 \le \alpha \le \binom{N}{k}^{-\frac{1}{k}}.\tag{1.7}
$$

If $G(s)$ is the function introduced in (1.2) and if α satisfies (1.7), we define

$$
\Psi(x) = \frac{1}{2} \int_0^{|\nabla u|^2} G(s) ds - \alpha u
$$

In Section 3 we prove that if u is a solution to equation (1.6), then the function Ψ cannot assume its maximum value in Ω unless it is a constant. For $q = 1$ and $g(s) = (1 + s)^{-\frac{1}{2}}$ this result has been proved in [8] by G. A. Philippin and the second author. We also show that if Ω is a ball, then we have $\Psi(x) = constant$, therefore our result is a best possible maximum principle. In Section 4 we give a variational form for the invariants $\sigma^{(k)}(\mu_1,\ldots,\mu_N)$.

2. Newton tensor

Let E be a matrix similar to the diagonal matrix diag $\{\mu_1, \ldots, \mu_N\}$. For $k =$ $1, \ldots, N-1$, the k-th Newton tensor $T^{(k)}$ is defined as

$$
T^{(k)} = \sigma^{(k)}I - T^{(k-1)}E^{t}, \qquad T^{(0)} = I,
$$
\n(2.1)

where I is the $N \times N$ unit matrix, E^t is the transposed of E and $\sigma^{(k)}$ denotes the k-th elementary symmetric function of the eigenvalues of E . By (2.1) one finds

$$
T^{(k)} = \sigma^{(k)}I - \sigma^{(k-1)}E^{t} + \cdots + (-1)^{k}(E^{t})^{k}.
$$

Since $T^{(k)}$ is polynomial in E^t , it is clear that

$$
T^{(k)}E^t = E^t T^{(k)}.
$$
\n(2.2)

A representation of the invariant $\sigma^{(k)}$ in terms of the entries e_{ij} of the matrix E has been given by R. C. Reilly [9]:

$$
\sigma^{(k)} = \frac{1}{k!} \begin{pmatrix} i_1 \cdots i_k \\ j_1 \cdots j_k \end{pmatrix} e_{i_1 j_1} \cdots e_{i_k j_k},
$$
\n(2.3)

where the generalized Kronecker symbol $\binom{i_1 \cdots i_k}{i_1 \cdots i_k}$ $j_1 \cdots j_k$ has the value 1 (respectively -1) if the indexes i_1, \ldots, i_k are distinct and (j_1, \ldots, j_k) is an even (respectively odd) permutation of (i_1, \ldots, i_k) , otherwise it has value zero. Moreover, the summation convention over repeated indexes from 1 to N is in effect.

We also have a formula for the entries $T_{ij}^{(k)}$ of the Newton tensor [9]

$$
T_{ij}^{(k)} = \frac{1}{k!} \binom{i_1 \cdots i_k i}{j_1 \cdots j_k j} e_{i_1 j_1} \cdots e_{i_k j_k}.
$$
 (2.4)

By (2.3) and (2.4) we find

$$
\text{tr}\{T^{(k)}E^t\} = (k+1)\sigma^{(k+1)},\tag{2.5}
$$

where $\text{tr}\{M\}$ denotes the trace of the matrix M. We shall use the equation

$$
T_{ij}^{(k-1)} = \frac{\partial \sigma^{(k)}}{\partial e_{ij}},\tag{2.6}
$$

which follows by (2.3) and (2.4) .

3. Maximum principles

Let k be a fixed integer with $1 \leq k \leq N$, and let $g(s)$ be a smooth positive function satisfying

$$
G(s) = g(s) + 2s g'(s) > 0
$$
\n(3.1)

for $s \geq 0$. Typical examples are $g(s) = (1 + \gamma s)^{-\frac{1}{2}}$, $\gamma \geq 0$. For $p \in \mathbb{R}^N$ define

$$
Q = I - \frac{2g'(|p|^2)}{G(|p|^2)}R, \quad R = p p^t,
$$

where I is the $N \times N$ unit matrix, p is used as a column matrix, p^t is its transposed. Note that Q is symmetric and positive definite. Indeed, the eigenvalues of Q are 1 (counted $N-1$ times) and $\frac{g}{G}$. We have

$$
Q^{-1} = I + \frac{2g'(|p|^2)}{g(|p|^2)}R.
$$

Let $u = u(x)$ be a smooth function defined in a bounded domain $\Omega \subset \mathbb{R}^N$. If $A = [u_{ij}]$ is the Hessian matrix of u, define the new matrix

$$
E = E(A, p) = g(|p|^2)Q^{-1}A.
$$
\n(3.2)

Although E is not, in general, symmetric, it is similar to a diagonal matrix with entries μ_1, \ldots, μ_N , the (real) eigenvalues of E. If $p = \nabla u$ and $g(s) = (1 + s)^{-\frac{1}{2}}$ then μ_1, \ldots, μ_N are the principal curvatures of the surface $u = u(x)$ contained in \mathbb{R}^{N+1} .

Let $F(E) = \sigma^{(k)}(\mu_1, \ldots, \mu_N)$, $E = [e_{ij}]$, the k-th elementary symmetric function of the eigenvalues of E . Since E depends on A and p , we introduce the notation $Z(A, p) = F(E)$, and define the associated matrices

$$
A^* = \left[\frac{\partial Z}{\partial u_{ij}}\right], \qquad E^* = \left[\frac{\partial F}{\partial e_{ij}}\right].
$$

Since F is homogeneous with respect to e_{ij} , also Z is homogeneous with respect to u_{ij} and

$$
\text{tr}\{A^*A\} = \text{tr}\{E^*E^t\} = k\,F(E). \tag{3.3}
$$

By using the chain rule one finds

$$
A^* = g(|p|^2)Q^{-1}E^*.
$$
\n(3.4)

By (2.6) we have

$$
E^* = \left[\frac{\partial \sigma^{(k)}}{\partial e_{ij}}\right] = T^{(k-1)},
$$

where $T^{(k-1)} = T^{(k-1)}(E^t)$ is the $(k-1)$ -th Newton tensor associated with the matrix E^t . By (2.2) we have

$$
E^*E^t = E^t E^*.
$$
\n
$$
(3.5)
$$

We have the following

Lemma 3.1. Let $h \in \mathbb{R}^N$ be an arbitrary column vector and let $W = ph^t + hp^t$. Then,

$$
\frac{\partial Z(A,p)}{\partial p}h = \text{tr}\bigg\{E^*E^t\bigg[\frac{2g'}{G}WQ^{-1} + 4\bigg(\frac{g'}{G}\bigg)'p^thRQ^{-1} + \frac{2g'}{g}p^thI\bigg]\bigg\}.
$$

Proof. Since

$$
Q(p) = I - \frac{2g'(|p|^2)}{G(|p|^2)}R, \quad R = p p^t,
$$

we have

$$
Q(p+h) = I - \frac{2g'(|p+h|^2)}{G(|p+h|^2)}(p+h)(p+h)^t
$$

= $I - \left(\frac{2g'}{G} + 4\left(\frac{g'}{G}\right)'p^th + \cdots\right)(R+W+\cdots)$
= $Q(p) - \frac{2g'}{G}W - 4\left(\frac{g'}{G}\right)'p^thR + \cdots$
= $Q\left[I - \frac{2g'}{G}Q^{-1}W - 4\left(\frac{g'}{G}\right)'p^thQ^{-1}R + \cdots\right],$

where dots stand for terms of higher order with respect to $|h|$. Hence,

$$
Q^{-1}(p+h) = \left[I + \frac{2g'}{G}Q^{-1}W + 4\left(\frac{g'}{G}\right)'p^thQ^{-1}R + \cdots\right]Q^{-1}
$$

= $Q^{-1} + \frac{2g'}{G}Q^{-1}WQ^{-1} + 4\left(\frac{g'}{G}\right)'p^thQ^{-1}RQ^{-1} + \cdots$

Using this expansion we find

$$
E(A, p+h)
$$

= $g(|p+h|^2)Q^{-1}(p+h)A$
= $(g+2g'p^th+\cdots)\left(Q^{-1}A+\frac{2g'}{G}Q^{-1}WQ^{-1}A+4\left(\frac{g'}{G}\right)'p^thQ^{-1}RQ^{-1}A+\cdots\right)$
= $E+\frac{2g'}{G}Q^{-1}WE+4\left(\frac{g'}{G}\right)'p^thQ^{-1}RE+\frac{2g'}{g}p^thE+\cdots$

Using the previous formula we find

$$
Z(A, p+h)
$$

= F(E(A, p+h))
= F(E + $\frac{2g'}{G}$ Q⁻¹WE + 4($\frac{g'}{G}$)'p^thQ⁻¹RE + $\frac{2g'}{g}$ p^thE + ...)
= Z(A, p) + tr $\left\{ E^* E^t \left[\frac{2g'}{G} W Q^{-1} + 4 \left(\frac{g'}{G} \right)' p^t h R Q^{-1} + \frac{2g'}{g} p^t h I + ... \right] \right\}.$

The lemma follows.

For $p = \nabla u$ and $h = A\nabla u$ we have $R = \nabla u(\nabla u)^t$, $W = RA + AR$. Using Lemma 3.1 we find

 \Box

$$
\frac{\partial Z(A, \nabla u)}{\partial(\nabla u)} A \nabla u = \text{tr}\left\{ E^* E^t \frac{2g'}{G} (RA + AR) Q^{-1} \right\} + (\nabla u)^t A \nabla u \ \text{tr}\left\{ E^* E^t \left[4\left(\frac{g'}{G}\right)' R Q^{-1} + \frac{2g'}{g} I \right] \right\}.
$$

Using equation (1.3) we find $\frac{2g'}{G}$ $\frac{dg'}{G}(RA + AR) = 2A - QA - AQ$. Hence, recalling that $A = \frac{1}{g}QE = \frac{1}{g}$ $\frac{1}{g}E^{t}Q$, we have

$$
\operatorname{tr}\left\{E^*E^t\frac{2g'}{G}(RA+AR)Q^{-1}\right\} = \operatorname{tr}\left\{E^*E^t(2AQ^{-1} - QAQ^{-1} - A)\right\}
$$

$$
= \frac{1}{g}\operatorname{tr}\left\{E^*E^t(2E^t - QE^t - E^tQ)\right\}
$$

$$
= \frac{2}{g}\operatorname{tr}\left\{E^*(E^t)2(I-Q)\right\}
$$

$$
= \frac{4g'}{g\,G}\operatorname{tr}\left\{E^*(E^t)^2R\right\}.
$$

We have used (1.3) and the equation $\text{tr}\left\{E^*E^tQE^t\right\} = \text{tr}\left\{E^*(E^t)^2Q\right\}$, true because $E^*E^t = E^t E^*$. Therefore,

$$
\frac{\partial Z(A, \nabla u)}{\partial (\nabla u)} A \nabla u \n= \frac{4g'}{g G} \text{tr} \left\{ E^*(E^t)^2 R \right\} + (\nabla u)^t A \nabla u \text{ tr} \left\{ E^* E^t \left[4 \left(\frac{g'}{G} \right)' R Q^{-1} + \frac{2g'}{g} I \right] \right\}.
$$
\n(3.6)

Our main result deals with the following equation:

$$
Z(A, \nabla u) = F(E) = \sigma^{(k)}(\mu_1, \dots, \mu_N) = 1.
$$
 (3.7)

The Dirichlet problem for equation (3.7) in case of $g = 1$ or $g = (1 + s)^{-\frac{1}{2}}$ has been investigated in [2] and [3]. A solution to (3.7) is called admissible if the corresponding matrix $A^* = \left[\frac{\partial Z}{\partial u}\right]$ $\frac{\partial Z}{\partial u_{ij}}$ is positive definite. We refer to [2, 3, 8, 11] for existence, uniqueness and regularity results.

Theorem 3.2. Let α satisfy (1.7), let g satisfy (3.1) and let $u(x)$ be an admissible solution of the nonlinear elliptic equation (3.7) in a bounded domain $\Omega \subset \mathbb{R}^N$. Then the function

$$
\Psi(x) = \frac{1}{2} \int_0^{|\nabla u|^2} G(s) \, ds - \alpha u \tag{3.8}
$$

cannot assume its maximum value in Ω unless it is a constant.

Proof. Differentiating Ψ we find

$$
\Psi_i = Gu_{i\ell}u_{\ell} - \alpha u_i
$$

\n
$$
\Psi_{ij} = 2G'u_{i\ell}u_{\ell}u_{js}u_s + Gu_{ij\ell}u_{\ell} + Gu_{i\ell}u_{j\ell} - \alpha u_{ij}.
$$
\n(3.9)

With $B = [\Psi_{ij}]$ we have

$$
\text{tr}\{A^*B\} = 2G' \text{tr}\{A^*ARA\} + G \text{ tr}\{A^*A_\ell\}u_\ell + G \text{ tr}\{A^*A2\} - \alpha \text{ tr}\{A^*A\}. \tag{3.10}
$$

Using the equations (3.2), (3.4) with $p = \nabla u$, and recalling that $QE = E^t Q$ (by (3.2)) and that $E^*E^t = E^t E^*$ (by (3.5)) we find

$$
\text{tr}\{A^*A2\} = \text{tr}\{A^2A^*\} = \frac{1}{g}\text{tr}\{E^tQE^tE^*\} = \frac{1}{g}\text{tr}\{E^*(E^t)^2Q\}.
$$
 (3.11)

Consider first $g' \neq 0$. Using (1.3) and (3.11) we find

$$
\begin{split} \text{tr}\{A^*ARA\} &= \frac{G}{2g'}\text{tr}\{A^*A(I-Q)A\} \\ &= \frac{G}{2g'}\text{tr}\{A^*A2\} - \frac{G}{2g'}\text{tr}\{A^*AQA\} \\ &= \frac{G}{2gg'}\Big[\text{tr}\{E^*(E^t)^2Q\} - \text{tr}\{Q^{-1}E^*E^tQ^2E^tQ\}\Big] \\ &= \frac{G}{2gg'}\text{tr}\{E^*(E^t)2(Q-Q2)\}. \end{split}
$$

Using the last equation and the formula $Q - Q2 = \frac{2g'g}{G^2}R$ we find

$$
\text{tr}\{A^*ARA\} = \frac{1}{G}\,\text{tr}\{E^*(E^t)^2R\}.\tag{3.12}
$$

If $g' = 0$ then $G = g$, $Q = I$ and $E = gA$, therefore (3.12) holds trivially in this situation.

Differentiating the equation $Z(A, \nabla u) = 1$ with respect to x_{ℓ} and multiplying by u_ℓ we find

$$
\frac{\partial Z}{\partial u_{ij}} u_{ij\ell} u_{\ell} + \frac{\partial Z}{\partial u_i} u_{i\ell} u_{\ell} = 0,
$$

or, using matrix notation,

$$
\operatorname{tr}\{A^*A_{\ell}\}u_{\ell} + \frac{\partial Z(A,\nabla u)}{\partial(\nabla u)}A\nabla u = 0.
$$

The latter equation and (3.6) yield

$$
\text{tr}\{A^*A_{\ell}\}u_{\ell} = -\frac{4g'}{gG}\text{tr}\{E^*(E^t)^2R\} - (\nabla u)^t A \nabla u \text{ tr}\left\{E^*E^t \left[4\left(\frac{g'}{G}\right)'RQ^{-1} + \frac{2g'}{g}I\right]\right\}.
$$
\n(3.13)

Since $F(E) = F(e_{ij})$ is homogeneous of degree k with respect to e_{ij} , also $Z(A, \nabla u) = Z(u_{ij}, u_i)$ is homogeneous of degree k with respect to u_{ij} and, using equation (3.7) we find

$$
\text{tr}\{A^*A\} = \text{tr}\{E^*E^t\} = k\,\sigma^{(k)} = k.\tag{3.14}
$$

Insertion of (3.11), (3.12), (3.13) and (3.14) into (3.10) leads to

$$
\text{tr}\{A^*B\} = \frac{2G'}{G}\text{tr}\{E^*(E^t)^2R\} - \frac{4g'}{g}\text{tr}\{E^*(E^t)^2R\} - G(\nabla u)^t A \nabla u \text{ tr}\left\{E^*E^t \left[4\left(\frac{g'}{G}\right)'RQ^{-1} + \frac{2g'}{g}I\right]\right\} - \frac{G}{g}\text{tr}\{E^*(E^t)^2Q\} - \alpha k.
$$
\n(3.15)

By (3.9) we get

$$
G(\nabla u)^{t} A \nabla u = \alpha |\nabla u|^{2} + (\nabla u)^{t} \nabla \Psi
$$
\n(3.16)

and

$$
GAR = \alpha R + \nabla \Psi (\nabla u)^t. \tag{3.17}
$$

We claim that

$$
\frac{2G'}{G} \text{tr}\{E^*(E^t)^2 R\} - G(\nabla u)^t A \nabla u \text{ tr}\left\{E^* E^t 4\left(\frac{g'}{G}\right)' R Q^{-1}\right\} \n= \frac{6g'}{g} \text{tr}\{E^*(E^t)^2 R\} + C^t \nabla \Psi,
$$
\n(3.18)

where C is a regular vector field. Note that $E^{t}R = gAQ^{-1}R = GAR$, $RQ^{-1} =$ G $\frac{G}{g}R$. Using the latter equations and (3.16) we have

$$
\left(\frac{2G'}{G} - \frac{6g'}{g}\right) \text{tr}\left\{E^*(E^t)^2 R\right\} - G(\nabla u)^t A \nabla u \, \text{tr}\left\{E^* E^t 4\left(\frac{g'}{G}\right)' R Q^{-1}\right\}
$$
\n
$$
= 2 \frac{G'g - 3g'G}{Gg} \text{tr}\left\{E^* E^t G A R\right\} - G(\nabla u)^t A \nabla u \, 4\left(\frac{g'}{G}\right)' \frac{G}{g} \text{tr}\left\{E^* E^t R\right\}
$$
\n
$$
= 4|\nabla u|^2 \frac{g''g - 3(g')2}{Gg} \text{tr}\left\{E^* E^t G A R\right\}
$$
\n
$$
- 4\alpha |\nabla u|^2 \frac{g''g - 3(g')2}{Gg} \text{tr}\left\{E^* E^t R\right\} + C^t \nabla \Psi.
$$

The latter equation and (3.17) yield (3.18).

Insertion of (3.18) into (3.15) and use of (3.16) leads to

$$
\text{tr}\{A^*B\} = \frac{6g'}{g}\text{tr}\{E^*(E^t)^2R\} - \frac{4g'}{g}\text{tr}\{E^*(E^t)^2R\} + \frac{G}{g}\text{tr}\{E^*(E^t)^2Q\} - \alpha|\nabla u|^2\frac{2g'}{g}\text{tr}\{E^*E^t\} - \alpha k + C^t\nabla\Psi.
$$

Since $\frac{2g'}{a}$ $\frac{dg'}{g}R+\frac{G}{g}Q=\frac{G}{g}$ $\frac{G}{g}I$ and $\text{tr}\lbrace E^*E^t\rbrace = k$ we find

$$
\operatorname{tr}\{A^*B\} + C^t \nabla \Psi = \frac{G}{g} \operatorname{tr}\{E^*(E^t)2\} - \alpha |\nabla u|^2 \frac{2g'}{g} k - \alpha k
$$
\n
$$
= \frac{G}{g} \Big[\operatorname{tr}\{E^*(E^t)2\} - \alpha k \Big].
$$
\n(3.19)

To evaluate the quantity in the square brackets in (3.19) we recall the Newton tensor relative to E^t

$$
T^{(k)} = \sigma^{(k)}I - T^{(k-1)}E^{t}, \qquad T_0 = I,
$$
\n(3.20)

introduced in Section 2. Since $E^* = T^{(k-1)}$, by (3.20) we find

$$
E^*(E^t)2 = T^{(k-1)}(E^t)2 = \sigma^{(k)}E^t - T^{(k)}E^t.
$$

By (2.5) we have $\text{tr}\{T^{(k)}E^{t}\} = (k+1)\sigma^{(k+1)}$. Hence,

$$
\text{tr}\{E^*(E^t)2\} = \sigma^{(k)}\sigma^{(1)} - (k+1)\sigma^{(k+1)}.
$$
\n(3.21)

Define $\alpha_k = \binom{N}{k}^{-\frac{1}{k}}$. By standard inequalities (see [11]) we have

$$
\sigma^{(k+1)} \le \binom{N}{k+1} \alpha_k^{k+1} \left(\sigma^{(k)}\right)^{\frac{k+1}{k}}
$$

and

$$
\sigma^{(1)} \geq N \alpha_k (\sigma^{(k)})^{\frac{1}{k}}.
$$

Hence, by (3.21) we find

$$
tr{E^*(E^t)2} \ge N\alpha_k(\sigma^{(k)})^{\frac{k+1}{k}} - (k+1) \binom{N}{k+1} \alpha_k^{k+1} (\sigma^{(k)})^{\frac{k+1}{k}}
$$

= $k\alpha_k(\sigma^{(k)})^{\frac{k+1}{k}}$
= $k\alpha_k$,

where the equation $\sigma^{(k)} = 1$ has been used in the last step. Taking into account this result, from (3.19) we find

$$
A_{ij}^* \Psi_{ij} + C^t \nabla \Psi = \text{tr}\{A^* B\} + C^t \nabla \Psi \ge 0.
$$

Since the matrix A^* is positive definite, the theorem follows by Hopf's first maximum principle. \Box

Applications. If u is an admissible solution of equation (3.7) in a bounded domain Ω, then some estimates follow from Theorem 3.1. First of all, taking $\alpha = 0$ it follows that $|\nabla u|$ takes its maximum value on the boundary $\partial \Omega$. Moreover, if $u = 0$ on $\partial\Omega$, then $u(x) < 0$ in Ω and, by Theorem 3.1 with $\alpha = \alpha_k = \left(\frac{N}{k}\right)^{-\frac{1}{k}}$ we have

$$
\frac{1}{2} \int_0^{|\nabla u|^2} G(s) \, ds - \alpha_k u \le \frac{1}{2} \int_0^{|\nabla u|_{M^2}} G(s) \, ds,
$$

where $|\nabla u|_M = \sup_{x \in \partial \Omega} |\nabla u|$. In particular, if $u_m = \min_{x \in \Omega} u(x)$, then

$$
-\alpha_k u_m \le \frac{1}{2} \int_0^{|\nabla u|_{M}^2} G(s) \, ds. \tag{3.22}
$$

Inequality (3.22) becomes an equality if Ω is a ball. If Ω is strictly convex, a bound for $|\nabla u|_M$ can be found in terms of the geometry of $\partial \Omega$. We refer to [8] for details.

The radial case. If $u = u(r)$ with $r = |x|$ we have

$$
u_i = u' \frac{x_i}{r},
$$
 $u_{ij} = u'' \frac{x_i x_j}{r^2} + u' \frac{r^2 \delta_{ij} - x_i x_j}{r^3},$

where δ_{ij} is the familiar Kroneker delta. At the point $(r, 0, \dots, 0)$ we have $A =$ $diag\{u'', \frac{u'}{r}\}$ $\frac{u'}{r}, \ldots, \frac{u'}{r}$ $\frac{u'}{r}$, $Q^{-1} = \text{diag}\left\{\frac{G}{g}\right\}$ $\frac{G}{g}, 1, \ldots, 1$. Hence, $E = g \operatorname{diag}\left\{\frac{G}{g}\right\}$ $\frac{G}{g}u^{\prime\prime},\frac{u^{\prime}}{r}$ $\frac{u'}{r}, \ldots, \frac{u'}{r}$ $\frac{\mu'}{r}$. Since $\sigma^{(k)}$ is invariant under rotations, at a point x with $|x| = r$ we find

$$
\sigma^{(k)} = g^k \left[\binom{N-1}{k-1} \frac{G}{g} u'' \left(\frac{u'}{r} \right)^{k-1} + \binom{N-1}{k} \left(\frac{u'}{r} \right)^k \right]. \tag{3.23}
$$

If $u = u(r)$ is a solution of the ordinary differential equation

$$
g((u')2)u' = r\alpha_k, \quad \alpha_k = \binom{N}{k}^{-\frac{1}{k}},
$$

we have

$$
G\big((u')2\big)u'' = \alpha_k. \tag{3.24}
$$

By (3.23) we find $\sigma^{(k)} = 1$. The corresponding function Ψ with $\alpha = \alpha_k$ reads as

$$
\Psi(r) = \frac{1}{2} \int_0^{(u')2} G(s) \, ds - \alpha_k u.
$$

Using (3.24) we find

$$
\frac{d\Psi}{dr} = G\big((u')2\big)u''u' - \alpha_k u' = 0.
$$

We conclude that Theorem 3.1 yields a best possible maximum principle.

4. Variational equations

In this section we present a variational form of the invariants $\sigma^{(k)}$. By equation (1.5), for $g = 1$ we have $E = A$, and the equation

$$
\frac{1}{k} \Big(T_{ij}^{(k-1)}(A) u_j \Big)_i = S^{(k)}(A)
$$

is well known. In case of $g(s) = (1 + s)^{-\frac{1}{2}}$ the following formula is proved in [10, p. 381]:

$$
\frac{1}{k} \left(\frac{1}{(1+|\nabla u|^2)^{\frac{1}{2}}} T_{ij}^{(k-1)}(E) u_j \right)_i = \sigma^{(k)}(E). \tag{4.1}
$$

We prove a similar formula for a general g by using the Newton tensor $T^{(k-1)}(A)$ instead of $T^{(k-1)}(E)$.

Proposition 4.1. We have

$$
\frac{1}{k} \left(g^k T_{ij}^{(k-1)}(A) u_j \right)_i = \sigma^{(k)}(E),\tag{4.2}
$$

where $g = g(|\nabla u|^2)$.

Proof. In this proof the Newton tensors $T^{(k)}(A)$ are relative to A and we write $T^{(k)}$ instead of $T^{(k)}(A)$. As usual we denote by $S^{(k)}$ the k-th elementary symmetric function of the eigenvalues of the Hessian matrix A.

Let us develop the left hand side of (4.2) . Since the Newton tensor $T^{(k-1)}$ is divergence free we have

$$
\frac{1}{k} \left(g^k T_{ij}^{(k-1)} u_j \right)_i = g^{k-1} 2g' T_{ij}^{(k-1)} u_i \mu_i u_j + \frac{1}{k} g^k T_{ij}^{(k-1)} u_j. \tag{4.3}
$$

Recall the Newton equation $T^{(k)} = S^{(k)}I - T^{(k-1)}A$, or

$$
T^{(k-1)}A = S^{(k)}I - T^{(k)}.
$$
\n(4.4)

Insertion of (4.4) into (4.3) and use of the equation $T_{ij}^{(k-1)}u_{ij} = kS^{(k)}$ yields

$$
\frac{1}{k} \left(g^k T_{ij}^{(k-1)} u_j \right)_i = g^{k-1} 2g' \left[S^{(k)} |\nabla u|^2 - T_{ij}^{(k)} u_i u_j \right] + g^k S^{(k)}.\tag{4.5}
$$

Now we develop the right hand side of (4.2). We have

$$
\sigma^{(k)}(E) = \sigma^{(k)}(gQ^{-1}A) = g^k \sigma^{(k)} \left[\left(I + \frac{2g'}{g} R \right) A \right]. \tag{4.6}
$$

The (*ij*) entry of the matrix $(I + \frac{2g'}{g})$ $\frac{dg'}{g}R$) A is $u_{ij} + \frac{2g'}{g}$ $\frac{g}{g}u_{j\ell}u_{\ell}u_i$. Therefore, using Reilly's formula (2.3) we have

$$
\sigma^{(k)} \left[\left(I + \frac{2g'}{g} R \right) A \right] \n= \frac{1}{k!} {i_1 \cdots i_k \choose j_1 \cdots j_k} \left(u_{i_1 j_1} + \frac{2g'}{g} u_{j_1 \ell_1} u_{\ell_1} u_{i_1} \right) \cdots \left(u_{i_k j_k} + \frac{2g'}{g} u_{j_k \ell_k} u_{\ell_k} u_{i_k} \right).
$$
\n(4.7)

When we develop the product in above we find the term

$$
\frac{1}{k!} \binom{i_1 \cdots i_k}{j_1 \cdots j_k} u_{i_1 j_1} \cdots u_{i_k j_k} = S^{(k)}.
$$
\n(4.8)

Moreover we find k terms of the kind

$$
\frac{2g'}{g}\frac{1}{k!}\binom{i_1\cdots i_{k-1}i}{j_1\cdots j_{k-1}j}u_{i_1j_1}\cdots u_{i_{k-1}j_{k-1}}u_{j\ell}u_{\ell}u_i.
$$

We can write the above k terms globally as $\frac{2g'}{g}$ $\frac{lg'}{g}T_{ij}^{(k-1)}u_{j\ell}u_{\ell}u_i$. Using (4.4), the above expression reads as

$$
\frac{2g'}{g} \left[S^{(k)} |\nabla u|^2 - T_{ij}^{(k)} u_i u_j \right]. \tag{4.9}
$$

 \Box

All the remaining terms appearing in the product (4.7) vanish because of the skew-symmetry of the generalized Kronecker symbols. Let us consider in detail the expression

$$
\frac{(2g')}{g^2}\frac{1}{k!}\binom{i_1\cdots i_{k-2}i m}{j_1\cdots j_{k-2}j n}u_{i_1j_1}\cdots u_{i_{k-2}j_{k-2}}u_{j\ell}u_{\ell}u_{i_1j_2}u_{s_2j_3}u_{m}.
$$

The term corresponding to $\binom{i_1\cdots i_{k-2}i_m}{i_1\cdots i_{k-2}i_m}$ $\lim_{j_1\cdots j_{k-2}j_n} u_i u_m$ cancels the term corresponding to $\binom{i_1\cdots i_{k-2}i}{i_1\cdots i_k}$ $\lim_{j_1 \cdots j_{k-2} \neq j} u_m u_i$. Hence, the insertion of (4.8) and (4.9) into (4.7) yields

$$
\sigma^{(k)} \left[\left(I + \frac{2g'}{g} R \right) A \right] = S^{(k)} + \frac{2g'}{g} \left[S^{(k)} |\nabla u|^2 - T_{ij}^{(k)} u_i u_j \right]. \tag{4.10}
$$

Finally, insertion of (4.10) into (4.6) leads to

$$
\sigma^{(k)}(E) = g^k \left[S^{(k)} + \frac{2g'}{g} \left[S^{(k)} |\nabla u|^2 - T_{ij}^{(k)} u_i u_j \right] \right]
$$

= $g^k S^{(k)} + g^{k-1} 2g' \left[S^{(k)} |\nabla u|^2 - T_{ij}^{(k)} u_i u_j \right].$ (4.11)

Comparing (4.11) with (4.5), the proposition follows.

References

- [1] Beckenbach, E. F. and Bellman, R., Inequalities. New York: Springer 1993.
- [2] Caffarelli, L., Nirenberg, L. and Spruck, J., The Diriclet problem for nonlinear second order elliptic equations, III: Functions of eigenvalues of the Hessian. Acta Math. 155 (1985), $261 - 301$.
- [3] Caffarelli, L., Nirenberg, L. and Spruck, J., Nonlinear second order elliptic equations, V: The Dirichlet problem for Weingarten hypersurfaces. Comm. Pure Appl. Math. 41 (1988), 47 – 70.
- [4] Ma X., Isoperimetric bounds for a class of Monge-Ampere equations in two dimensions (to appear in: Analysis).
- [5] Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Berlin: Springer 1977.
- [6] Payne, L. E. and Philippin, G. A., Some maximum principles for nonlinear elliptic equations in divergence form with applications to capillary surfaces and to surfaces of constant mean curvature. Nonlinear Analysis 3 (1979), 193 – 211.
- [7] Philippin, G. A. and Safoui, A., Some maximum principles and symmetry results for a class of boundary value problems involving the Monge-Ampere equation. *Math. Models and Meth. in Appl. Sci.* 11 (2001), $1073 - 1080$.

- [8] Philippin, G. A. and Safoui, A., Some application of the maximum principle to a variety of fully nonlinear elliptic PDE's. Z. Angew. Math. Phys. 54 (2003), 739 – 755.
- [9] Reilly, R. C., Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Diff. Geometry 8 (1973), $465 - 477$.
- [10] Reilly, R. C., On the Hessian of a function and the curvatures of its graph. Michigan Math. J. 20 (1973), 373 – 383.
- [11] Salani, P., Boundary blow-up problems for Hessian equations. Manuscripta Math. 96 (1998), 281 – 294.

Received May 27, 2004