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Lipschitz Stability of Solutions

to Some State-Constrained

Elliptic Optimal Control Problems

Roland Griesse

Abstract. In this paper, optimal control problems with pointwise state constraints
for linear and semilinear elliptic partial differential equations are studied. The prob-
lems are subject to perturbations in the problem data. Lipschitz stability with respect
to perturbations of the optimal control and the state and adjoint variables is estab-
lished initially for linear–quadratic problems. Both the distributed and Neumann
boundary control cases are treated. Based on these results, and using an implicit
function theorem for generalized equations, Lipschitz stability is also shown for an
optimal control problem involving a semilinear elliptic equation.
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1. Introduction

In this paper, we consider optimal control problems on bounded domains Ω⊂R
N

of the form:

Minimize
1

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖u− ud‖

2
L2(Ω) (1)

for the control u and state y, subject to linear or semilinear elliptic partial
differential equations. For instance, in the linear case with distributed control u
we have

−∆y + a0 y = u on Ω , y = 0 on ∂Ω, (2a)

while the boundary control case reads

−∆y + a0 y = f on Ω ,
∂y

∂n
+ β y = u on ∂Ω. (2b)

Instead of the Laplace operator, an elliptic operator in divergence form is also
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permitted. Moreover, the problem is subject to pointwise state constraints

ya ≤ y ≤ yb on Ω (or Ω), (3)

where ya and yb are the lower and upper bound functions, respectively. Unless
otherwise specified, ya and yb may be arbitrary functions with values in R ∪
{±∞} such that ya ≤ yb holds everywhere. Problems of type (1)–(3) appear as
subproblems after linearization of semilinear state-constrained optimal control
problems, such as the example considered in Section 3, but they are also of
independent interest.

Under suitable conditions, one can show the existence of an adjoint state and
a Lagrange multiplier associated with the state constraint (3). We refer to [9]
for distributed control of elliptic equations and [6,10,12,13] for their boundary
control. We also mention [7, 8, 33] and [3–5, 7, 11, 31–33] for distributed and
boundary control, respectively, of parabolic equations. In the distributed case,
the optimality system comprises

the state equation −∆y + a0 y = u on Ω (4)

the adjoint equation −∆λ = −(y − yd)− µ on Ω (5)

the optimality condition γ(u− ud)− λ = 0 on Ω, (6)

and a complementarity condition for the multiplier µ associated with the state
constraint (3).

In this paper, we extend the above-mentioned results by proving the Lips-
chitz stability of solutions for semilinear and linear elliptic state-constrained op-
timal control problems with respect to perturbations of the problem data. We
begin by showing that the linear–quadratic problem (1)–(3) admits solutions
which depend Lipschitz continuously on particular perturbations δ = (δ1, δ2, δ3)
of the right hand sides in the first order optimality system (4)–(6), i.e.,

−∆λ+ (y − yd) + µ = δ1 on Ω

γ(u− ud)− λ = δ2 on Ω

−∆y + a0 y − u = δ3 on Ω

in the case of distributed control. The perturbations δ1 and δ2 generate addi-
tional linear terms in the objective (1). Our main result for the linear–quadratic
cases is given in Theorems 2.3 and 4.3, for distributed and boundary control,
respectively. It has numerous applications: Firstly, it may serve as a starting
point to prove the convergence of numerical algorithms for nonlinear state-
constrained optimal control problems. The central notion in this context is
the strong regularity property of the first order necessary conditions, which
precisely requires their linearization to possess the Lipschitz stability proved
in this paper, compare [2]. Secondly, proofs of convergence of the discrete to
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the continuous solution as the mesh size tends to zero are also based on the
strong regularity property, see, e.g., [26]. Thirdly, our results ensure the well-
posedness of problem (1)–(3) in the following sense: If the optimality system
is solved only up to a residual δ (for instance, when solving it numerically),
our stability result implies that the approximate solution found is the exact
and nearby solution of a perturbed problem. Fourthly, our results can be used
to prove the Lipschitz stability for optimal control problems with semilinear
elliptic equations and with respect to more general perturbations by means of
Dontchev’s implicit function theorem for generalized equations, see [14]. We
illustrate this technique in Section 3.

To the author’s knowledge, the Lipschitz dependence of solutions in opti-
mal control of partial differential equations (PDEs) in the presence of point-
wise state constraints has not yet been studied. Most existing results con-
cern control-constrained problems: Malanowski and Tröltzsch [28] prove Lips-
chitz dependence of solutions for a control-constrained optimal control problem
for a linear elliptic PDE subject to nonlinear Neumann boundary control. In
the course of their proof, the authors establish the Lipschitz property also for
the linear–quadratic problem obtained by linearization of the first order neces-
sary conditions. In [36], Tröltzsch proves the Lipschitz stability for a linear–
quadratic optimal control problem involving a parabolic PDE. In Malanowski
and Tröltzsch [27], this result is extended to obtain Lipschitz stability in the case
of a semilinear parabolic equation. In the same situation, Malanowski [25] has
recently proved parameter differentiability. This result is extended in [18, 19]
to an optimal control problem governed by a system of semilinear parabolic
equations, and numerical results are provided there. All of the above citations
cover the case of pointwise control constraints. Note also that the general theory
developed in [23] does not apply to the problems treated in the present paper
since the hypothesis of surjectivity [23, (H3)] is not satisfied for bilateral state
constraints (3).

The case of state-constrained optimal control problems governed by ordi-
nary differential equations was studied in [15,24]. The analysis in these papers
relies heavily on the property that the state constraint multiplier µ is Lipschitz
on the interval [0, T ] of interest (see, e.g., [22]), so it cannot be applied to the
present situation.

The remainder of this paper is organized as follows: In Section 2, we estab-
lish the Lipschitz continuity with respect to perturbations of optimal solutions
in the linear–quadratic distributed control case, in the presence of pointwise
state constraints. In Section 3, we use these results to obtain Lipschitz stability
also for a problem governed by a semilinear equation with distributed control,
and with respect to a wider set of perturbations. Finally, Section 4 is devoted
to the case of Neumann (co-normal) boundary control in the linear–quadratic
case.
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Throughout, let Ω be a bounded domain in R
N for some N ∈ N, and let Ω

denote its closure. By C(Ω) we denote the space of continuous functions on Ω,
endowed with the norm of uniform convergence. C0(Ω) is the subspace of C(Ω)
of functions with zero trace on the boundary. The dual spaces of C(Ω) and
C0(Ω) are known to be M(Ω) and M(Ω), the spaces of finite signed regular
measures with the total variation norm, see for instance [17, Proposition 7.16]
or [35, Theorem 6.19]. Finally, we denote by Wm,p(Ω) the Sobolev space of
functions on Ω whose distributional derivatives up to order m are in Lp(Ω),
see Adams [1]. In particular, we write Hm(Ω) instead of Wm,2(Ω). The space
Wm,p
0 (Ω) is the closure of C∞

c (Ω) (the space of infinitely differentiable functions
on Ω with compact support) in Wm,p(Ω).

2. Linear–quadratic distributed control

Throughout this section, we are concerned with optimal control problems gov-
erned by a state equation with an elliptic operator in divergence form and
distributed control. As delineated in the introduction, the problem depends on
perturbation parameters δ = (δ1, δ2, δ3):

Minimize
1

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖u− ud‖

2
L2(Ω) − 〈y, δ1〉W,W ′ −

∫

Ω

u δ2 (7)

over u ∈ L2(Ω)

s.t. −div (A∇y) + a0 y = u+ δ3 on Ω (8)

y = 0 on ∂Ω (9)

and ya ≤ y ≤ yb on Ω. (10)

We work with the state space W = H2(Ω) ∩H1
0 (Ω) so that the pointwise state

constraint (10) is meaningful. The perturbations are introduced below. Let us
fix the standing assumption for this section:

Assumption 2.1. Let Ω be a bounded domain in R
N (N ∈ {1, 2, 3}) with C1,1

boundary ∂Ω, see [20, p. 5]. The state equation is governed by an operator
with N ×N symmetric coefficient matrix A with entries aij which are Lipschitz
continuous on Ω. We assume the condition of uniform ellipticity: There exists
m0 > 0 such that

ξ>Aξ ≥ m0|ξ|
2 for all ξ ∈ R

N and almost all x ∈ Ω.

The coefficient a0 ∈ L∞(Ω) is assumed to be nonnegative a.e. on Ω. Moreover,
yd and ud denote desired states and controls in L2(Ω), respectively, while γ is a
positive number. The bounds ya and yb may be arbitrary functions on Ω such
that the admissible set KW = {y ∈W : ya ≤ y ≤ yb on Ω} is nonempty.
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The following result allows us to define the solution operator

Tδ : L
2(Ω)→ W

such that y = Tδ(u) satisfies (8)–(9) for given δ and u. For the proof we refer
to [20, Theorems 2.4.2.5 and 2.3.3.2]:

Proposition 2.2 (The State Equation). Given u and δ3 in L2(Ω), the state
equation (8)–(9) has a unique solution y ∈ W in the sense that (8) is satisfied
almost everywhere on Ω. The solution verifies the a priori estimate

‖y‖H2(Ω) ≤ cA ‖u+ δ3‖L2(Ω). (11)

In order to apply the results of this section to prove the Lipschitz stability
of solutions in the semilinear case in Section 3, we consider here very general
perturbations

(δ1, δ2, δ3) ∈W ′ × L2(Ω)× L2(Ω),

where W ′ is the dual of the state space W. Of course, this comprises more
regular perturbations. In particular, (7) includes perturbations of the desired
state in view of

1

2
‖y − (yd + δ1)‖

2
L2(Ω) =

1

2
‖y − yd‖

2
L2(Ω) −

∫

Ω

y δ1 + c

where c is a constant. Likewise, δ2 covers perturbations in the desired control ud,
and δ3 accounts for perturbations in the right hand side of the PDE.

We can now state the main result of this section which proves the Lipschitz
stability of the optimal state and control with respect to perturbations. It relies
on a variational argument and does not invoke any dual variables.

Theorem 2.3 (Lipschitz Continuity). For any δ = (δ1, δ2, δ3) ∈ W ′ × L2(Ω)×
L2(Ω), problem (7)–(10) has a unique solution. Moreover, there exists a con-
stant L > 0 such that for any two pertubations (δ ′1, δ

′
2, δ

′
3) and (δ′′1 , δ

′′
2 , δ

′′
3), the

corresponding solutions of (7)–(10) satisfy

‖y′ − y′′‖H2(Ω) + ‖u
′ − u′′‖L2(Ω)

≤ L
(
‖δ′1 − δ′′1‖W ′ + ‖δ′2 − δ′′2‖L2(Ω) + ‖δ

′

3 − δ′′3‖L2(Ω)

)
.

Proof. Let δ ∈ W ′ × L2(Ω) × L2(Ω) be arbitrary. We introduce the shifted
control variable v := u+ δ3 and define

f̃(y, v, δ) =
1

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖v − ud − δ3‖

2
L2(Ω)

− 〈y, δ1〉W,W ′ −

∫

Ω

(v − δ3) δ2.
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Obviously, our problem is now to

minimize f̃(y, v, δ) subject to (y, v) ∈M

where M = {(y, v) ∈ KW × L2(Ω) : −div (A∇y) + a0 y = v on Ω}. Due
to Assumption 2.1, the feasible set M is nonempty, closed and convex and
also independent of δ. In view of γ > 0 and the a priori estimate (11), the
objective is strictly convex. It is also weakly lower semicontinuous and radially
unbounded, hence it is a standard result from convex analysis [16, Chapter II,
Proposition 1.2] that (7)–(10) has a unique solution (y, u) ∈ W × L2(Ω) for
any δ.

A necessary and sufficient condition for optimality is

f̃y(y, v, δ)(y − y) + f̃v(y, v, δ)(v − v) ≥ 0 for all (y, v) ∈M. (12)

Now let δ′ and δ′′ be two perturbations with corresponding solutions (y ′, v′)
and (y′′, v′′). From the variational inequality (12), evaluated at (y ′, v′) and with
(y, v) = (y′′, v′′) we obtain

∫

Ω

(y − yd)(y
′′ − y′) + γ

∫

Ω

(v′ − ud − δ′3)(v
′′ − v′)

− 〈y′′ − y′, δ′1〉W,W ′ −

∫

Ω

(v′′ − v′) δ′2 ≥ 0

By interchanging the roles of (y′, v′) and (y′′, v′′) and adding the inequalities,
we obtain

‖y′ − y′′‖2L2(Ω) + γ ‖v′ − v′′‖2L2(Ω)

≤ 〈y′ − y′′, δ′1 − δ′′1〉W,W ′ + γ

∫

Ω

(v′ − v′′)(δ′3 − δ′′3) +

∫

Ω

(v′ − v′′)(δ′2 − δ′′2)

≤ ‖y′ − y′′‖H2(Ω)‖δ
′

1 − δ′′1‖W ′

+ ‖v′ − v′′‖L2(Ω)

(
γ ‖δ′3 − δ′′3‖L2(Ω) + ‖δ

′

2 − δ′′2‖L2(Ω)

)
.

Using the a priori estimate (11), the left hand side can be replaced by

γ

2
‖v′ − v′′‖2L2(Ω) +

γ

2c2A
‖y′ − y′′‖2H2(Ω).

Now we apply Young’s inequality to the right hand side and absorb the terms
involving the state and control into the left hand side, which yields the Lipschitz
stability of y and v, hence also of u.

As a precursor for the semilinear case in Section 3, we recall in Proposi-
tion 2.4 a known result concerning the adjoint state and the Lagrange multiplier
associated with problem (7)–(10).
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Proposition 2.4. Let δ ∈ W ′ × L2(Ω)× L2(Ω) be a given perturbation and let
(y, u) be the corresponding unique solution of (7)–(10). If KW has nonempty
interior, then there exists a unique adjoint variable λ ∈ L2(Ω) and unique La-
grange multiplier µ ∈W ′ such that the following holds:

−

∫

Ω

λ div (A∇y) +

∫

Ω

a0λy = −

∫

Ω

(y − yd)y + 〈y, δ1 − µ〉W,W ′ ∀y ∈W (13)

〈y, µ〉W,W ′ ≤ 〈y, µ〉W,W ′ ∀y ∈ KW (14)

γ(u− ud)− λ = δ2 on Ω. (15)

Proof. Let ỹ be an interior point of KW . Since T ′
δ(u) is an isomorphism from

L2(Ω)→ W , ũ can be chosen such that ỹ = Tδ(u)+T ′
δ(u)(ũ−u), hence a Slater

condition is satisfied. The rest of the proof can be carried out along the lines
of Casas [9], or using the abstract multiplier theorem [10, Theorem 5.2].

In the proposition above, we have assumed that KW has nonempty interior.
This is not a very restrictive assumption, as any ỹ ∈ KW satisfying ỹ − ya ≥ ε
and yb − ỹ ≥ ε on Ω for some ε > 0 is an interior point of KW .

Remark 2.5.

1. In [9], it was shown that the state constraint multiplier µ is indeed a
measure in M(Ω), i.e., µ has better regularity than just W ′. However, in the
following section we will not be able to use this extra regularity.

2. In view of the previous statement, if δ1 ∈ M(Ω), then so is the right
hand side −(y − yd) + δ1 − µ of the adjoint equation (13) and thus the adjoint
state λ is an element of W 1,s

0 (Ω) for all s ∈ [1, N
N−1

), see [9].
3. Note that we do not have a stability result for the Lagrange multiplier µ

so that we cannot use (13) to derive a stability result for the adjoint state λ
even in the presence of regular perturbations. This observation is very much in
contrast with the control-constrained case, where the control-constraint multi-
plier does not appear in the adjoint equation’s right hand side and hence the
stability of λ can be obtained using an a priori estimate for the adjoint PDE.

4. Nevertheless, from the optimality condition (15) we can derive the Lips-
chitz estimate

‖λ′ − λ′′‖L2(Ω) ≤ (γL+ 1) ‖δ′ − δ′′‖ (16)

for the adjoint states belonging to two perturbations δ ′ and δ′′. However, we
use here that the control is distributed on all of Ω.

We close this section by another observation: Let δ′ and δ′′ be two pertur-
bations with associated optimal states y′ and y′′ and Lagrange multipliers µ′

and µ′′. Then

〈y′ − y′′, µ′ − µ′′〉W,W ′ ≤ 0

holds, as can be inferred directly from (14).
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3. A semilinear distributed control problem

In this section we show how the Lipschitz stability results for state-constrain-
ed linear–quadratic optimal control problems can be transferred to semilinear
problems using an appropriate implicit function theorem for generalized equa-
tions, see Dontchev [14] and also Robinson [34]. To illustrate this technique, we
consider the following parameter-dependent problem P(p):

Minimize
1

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖u− ud‖

2
L2(Ω) (17)

over u ∈ L2(Ω)

s.t. −D∆y + βy3 + αy = u+ f on Ω (18)

y = 0 on ∂Ω (19)

and ya ≤ y ≤ yb on Ω. (20)

The semilinear state equation is a stationary Ginzburg–Landau model, see [21].
We work again with the state space W = H2(Ω) ∩ H1

0 (Ω). Throughout this
section, we make the following standing assumption:

Assumption 3.1. Let Ω be a bounded domain in R
N (N ∈ {1, 2, 3}) with C1,1

boundary. Let D, α and β be positive numbers, and let f ∈ L2(Ω). Moreover,
let yd and ud be in L2(Ω) and γ > 0. The bounds ya and yb may be arbitrary
functions on Ω such that the admissible set KW = {y ∈ W : ya ≤ y ≤ yb on Ω}
has nonempty interior.

The results obtained in this section can immediately be generalized to the
state equation

−div (A∇y) + φ(y) = u+ f

with appropriate assumptions on the semilinear term φ(y). However, we pre-
fer to consider an example which explicitly contains a number of parameters
which otherwise would be hidden in the nonlinearity. In the example above,
we can take p = (yd, ud, f,D, α, β, γ) ∈ Π = [L2(Ω)]3 × R

4 as the perturbation
parameter and we introduce

Π+ = {p ∈ P : D > 0, α > 0, β > 0, γ > 0}.

In the sequel, we refer to problem (17)–(20) as P(p) when we wish to emphasize
its dependence on the parameter p. Note that in contrast to the previous section,
the parameter p now appears in a more complicated fashion which cannot be
expressed solely as right hand side perturbations of the optimality system.
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Proposition 3.2 (The State Equation). For fixed parameter p ∈ Π+ and for
any given u in L2(Ω), the state equation (18)–(19) has a unique solution y ∈ W
in the sense that y satisfies (18) almost everywhere on Ω. The solution depends
Lipschitz continuously on the data, i.e., there exists c > 0 such that

‖y − y′‖H1

0
(Ω) ≤ c ‖u− u′‖L2(Ω)

holds for all u, u′ in L2(Ω). Moreover, the nonlinear solution map

Tp : L
2(Ω)→ H2(Ω) ∩H1

0 (Ω)

defined by u 7→ y is Fréchet differentiable. Its derivative T ′
p(u)δu at u in the

direction of δu is given by the unique solution δy of

−D∆δy + (3βy2 + α) δy = δu on Ω

δy = 0 on ∂Ω

where y = Tp(u). Moreover, T ′
p(u) is an isomorphism from L2(Ω)→ W.

Proof. Existence and uniqueness in H1
0 (Ω) of the solution for (18)–(19) and the

assertion of Lipschitz continuity follow from the theory of monotone operators,
see [37, p. 557], applied to

A : H1
0 (Ω) 3 y 7→ −D∆y + βy3 + αy − f ∈ H−1(Ω).

Note that A is strongly monotone, coercive, and hemicontinuous. The solution’s
H2(Ω) regularity now follows from considering βy3 an additional source term,
which is in L2(Ω) due to the Sobolev Embedding Theorem (see [1, p. 97]).
Fréchet differentiability of the solution map is a consequence of the implicit
function theorem, see, e.g., [38, p. 250]. The isomorphism property of T ′

p(u)
follows from Proposition 2.2. Note that 3βy2+α ∈ L∞(Ω) since y ∈ L∞(Ω).

Before we turn to the main discussion, we state the following existence
result for global minimizers:

Lemma 3.3. For any given parameter p ∈ Π+, P(p) has a global optimal solu-
tion.

Proof. The proof follows a standard argument and is therefore only sketched.
Let {(yn, un)} be a feasible minimizing sequence for the objective (17). Then
{un} is bounded in L2(Ω) and, by Lipschitz continuity of the solution map, {yn}
is bounded in H1

0 (Ω). Extracting weakly convergent subsequences, one shows
that the weak limit satisfies the state equation (18)–(19). By compactness of
the embedding H1

0 (Ω) ↪→ L2(Ω) (see [1, p. 144]) and extracting a pointwise
a.e. convergent subsequence of {yn}, one sees that the limit satisfies the state
constraint (20). Weak lower semicontinuity of the objective (17) completes the
proof.



444 R. Griesse

For the remainder of this section, let p∗ = (y∗d, u
∗
d, f

∗, α∗, β∗, γ∗) ∈ Π+ denote
a fixed reference parameter. Our strategy for proving the Lipschitz dependence
of solutions for P(p) near p∗ with respect to changes in the parameter p is as
follows:

1. We verify a Slater condition and show that for every local optimal solu-
tion of P(p∗), there exists an adjoint state and a Lagrange multiplier satisfying
a certain first order necessary optimality system (Proposition 3.5).

2. We pick a solution (y∗, u∗, λ∗) of the first order optimality system (for in-
stance the global minimizer) and rewrite the optimality system as a generalized
equation.

3. We linearize this generalized equation and introduce new perturbations δ
which correspond to right hand side perturbations of the optimality system. We
identify this generalized equation with the optimality system of an auxiliary
linear-quadratic optimal control problem AQP(δ), see Lemma 3.7.

4. We assume a coercivity condition (AC) for the Hessian of the Lagrangian
at (y∗, u∗, λ∗) and use the results obtained in Section 2 to prove the existence and
uniqueness of solutions to AQP(δ) and their Lipschitz continuity with respect
to δ. Consequently, the solutions to the linearized generalized equation from
Step 3 are unique and depend Lipschitz continuously on δ (Proposition 3.9).

5. In virtue of an implicit function theorem for generalized equations [14],
the solutions of the optimality system for P(p) near p∗ are shown to be locally
unique and to depend Lipschitz continuously on the perturbation p (Theo-
rem 3.10).

6. We verify that the coercivity condition (AC) implies second order suffi-
cient conditions, which are then shown to be stable under perturbations, to the
effect that solutions of the optimality system are indeed local optimal solutions
of the perturbed problem (Theorem 3.11).

We refer to the individual steps as Step 1–Step 6 and begin with Step 1.
For the proof of adjoint states and Lagrange multipliers, we verify the following
Slater condition:

Lemma 3.4 (Slater Condition). Let p ∈ Π+ and let u be a local optimal solution
for problem P(p) with optimal state y = Tp(u). Then there exists ũp ∈ L2(Ω)
such that

ỹ := Tp(u) + T ′

p(u)(ũp − u) (21)

lies in the interior of the set of admissible states KW .

Proof. By Assumption 3.1 there exists an interior point ỹ of KW . Since T ′
p(u)

is an isomorphism, ũ can be chosen such that (21) is satisfied.

Using this Slater condition, the following result follows directly from the
abstract multiplier theorem in [10, Theorem 5.2]:
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Proposition 3.5 (Lagrange Multipliers). Let p ∈ Π+ and let (y, u) ∈ W×L2(Ω)
be a local optimal solution for problem P(p). Then there exists a unique adjoint
variable λ ∈ L2(Ω) and unique Lagrange multiplier µ ∈W ′ such that

−D

∫

Ω

λ∆y +

∫

Ω

(3β|y|2 + α)λ y = −

∫

Ω

(y − yd) y − 〈y, µ〉W,W ′ ∀y ∈ W (22)

〈y, µ〉W,W ′ ≤ 〈y, µ〉W,W ′ ∀y ∈ KW (23)

γ(u− ud)− λ = 0 on Ω. (24)

From now on, we denote by (y∗, u∗, λ∗) a local optimal solution of (17)–(20)
for the parameter p∗ with corresponding adjoint state λ∗ and multiplier µ∗.

Our next Step 2 is to rewrite the optimality system as a generalized equa-
tion in the form 0 ∈ F (y, u, λ; p)+N(y) where N is a set-valued operator which
represents the variational inequality (23) using the dual cone of the admissible
set KW . We define

F : W × L2(Ω)× L2(Ω)× Π→ W ′ × L2(Ω)× L2(Ω)

F (y, u, λ; p) =



−D∆λ+ (3βy2 + α)λ+ (y − yd)

γ(u− ud)− λ

−D∆y + βy3 + αy − u− f




and

N(y) = {µ ∈W ′ : 〈y − y, µ〉Ω ≤ 0 for all y ∈ KW} × {0} × {0} ⊂ Z

if y ∈ KW , and N(y) = ∅ else. The term ∆λ is understood in the sense of
distributions, i.e., 〈∆λ, φ〉W ′,W =

∫
Ω
λ∆φ for all φ ∈ W.

It is now easy to check that the optimality system (18)–(19), (22)–(23) is
equivalent to the generalized equation

0 ∈ F (y, u, λ; p) +N(y). (25)

Hence a solution (y, u, λ) of (25) for given p ∈ Π+ will be called a critical
point. For future reference, we summarize the following evident properties of
the operator F :

Lemma 3.6 (Properties of F ).

(a) F is partially Fréchet differentiable with respect to (y, u, λ) in a neighbor-
hood of (y∗, u∗, λ∗; p∗). (This partial derivative is denoted by F ′.)

(b) The map (y, u, λ; p) 7→ F ′(y, u, λ; p) is continuous at (y∗, u∗, λ∗; p∗).
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(c) F is Lipschitz in p, uniformly in (y, u, λ) at (y∗, u∗, λ∗), i.e., there exist
L > 0 and neighborhoods U of (y∗, u∗, λ∗) in W × L2(Ω) × L2(Ω) and V
of p∗ in P such that

‖F (y, u, λ; p1)− F (y, u, λ; p2)‖ ≤ L ‖p1 − p2‖P

for all (y, u, λ) ∈ U and all p1, p2 ∈ V .

In Step 3 we set up the following linearization:

δ ∈ F (y∗, u∗, λ∗; p∗) + F ′(y∗, u∗, λ∗; p∗)
(
y−y∗

u−u∗

λ−λ∗

)
+N(y). (26)

For the present example, (26) reads



δ1
δ2
δ3


∈



−D∗∆λ+ (3β∗|y∗|2+α∗)λ+ 6β∗y∗λ∗(y−y∗) + y−y∗d

γ∗(u− u∗d)− λ

−D∗∆y + (3β∗|y∗|2 + α∗)y − 2β∗(y∗)3 − u− f ∗


+N(y). (27)

We confirm in Lemma 3.7 below that (27) is exactly the first order optimality
system for the following auxiliary linear–quadratic optimal control problem,
termed AQP(δ):

Minimize

{
1

2
‖y − y∗d‖

2
L2(Ω) + 3β∗

∫

Ω

y∗λ∗(y − y∗)2 +
γ∗

2
‖u− u∗d‖

2
L2(Ω)

− 〈y, δ1〉W,W ′ −

∫

Ω

u δ2

}
(28)

over u ∈ L2(Ω)

s.t. −D∗∆y + (3β∗|y∗|2 + α∗) y = u+ f ∗ + 2β∗(y∗)3 + δ3 on Ω (29)

y = 0 on ∂Ω (30)

and ya ≤ y ≤ yb on Ω. (31)

Lemma 3.7. Let δ ∈W ′×L2(Ω)×L2(Ω) be arbitrary. If (y, u) ∈ W ×L2(Ω) is
a local optimal solution for AQP(δ), then there exists a unique adjoint variable
λ ∈ L2(Ω) and unique Lagrange muliplier µ ∈ W ′ such that (27) is satisfied
with µ ∈ N(y).

Proof. We note that the state equation (29)–(30) defines an affine solution op-
erator T : L2(Ω)→ W which turns out to satisfy

T (u) = Tp∗(u
∗) + T ′

p∗(u
∗)(u− u∗ + δ3).

Hence if u is a local optimal solution of (28)–(31) with optimal state y =
T (u), then ỹ and ũp∗ − δ3, taken from Lemma 3.4, satisfy the Slater condition
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ỹ = T (u) + T
′
(u)(ũp∗ − δ3 − u) with ỹ in the interior of KW . Along the lines

of Casas [9], or using the abstract multiplier theorem [10, Theorem 5.2], one
proves as in Proposition 2.4 that there exist λ ∈ L2(Ω) and µ ∈ W ′ such that

−D∗

∫

Ω

λ∆y +

∫

Ω

[
(3β∗|y∗|2 + α∗)λ

+ 6β∗y∗λ∗(y − y∗) + y − y∗d] y = 〈y, δ1 − µ〉W,W ′ ∀y ∈W

γ∗(u− u∗d)− λ = δ2 on Ω

〈µ, y − y〉W ′,W ≤ 0 ∀y ∈ KW

hold. That is,

−D∗∆λ+ (3β∗|y∗|2 + α∗)λ+ 6β∗y∗λ∗(y − y∗) + y − y∗d − δ1 + µ = 0,

and µ ∈ N(y) holds. Hence, (27) is satisfied.

In order that AQP(δ) has a unique global solution, we assume the following
coercivity property:

Assumption 3.8. Suppose that at the reference solution (y∗, u∗) with correspond-
ing adjoint state λ∗, there exists ρ > 0 such that

1

2
‖y‖2L2(Ω) + 3β∗

∫

Ω

y∗λ∗|y|2 +
γ∗

2
‖u‖2L2(Ω) ≥ ρ

(
‖y‖2H2(Ω) + ‖u‖

2
L2(Ω)

)
(AC)

holds for all (y, u) ∈ W × L2(Ω) which obey

−D∗∆y + (3β∗|y∗|2 + α∗) y = u on Ω (32a)

y = 0 on ∂Ω. (32b)

Note that Assumption 3.8 is satisfied if β∗‖y∗λ∗‖L2(Ω) is sufficiently small,
since then the second term in (AC) can be absorbed into the third.

Proposition 3.9. Suppose that Assumption 3.8 holds and let δ ∈W ′×L2(Ω)×
L2(Ω) be given. Then AQP(δ) is strictly convex and thus it has a unique global
solution. The generalized equation (27) is a necessary and sufficient condition
for local optimality, hence (27) is also uniquely solvable. Moreover, the solution
depends Lipschitz continuously on δ.

Proof. Due to (AC), the quadratic part of the objective (28) is strictly convex,
independent of δ. Hence we may repeat the proof of Theorem 2.3 with only
minor modifications due to the now different objective (28). The existence of
a unique adjoint state follows as in Proposition 2.4 and it is Lipschitz in δ
by (16). We conclude that for any given δ, AQP(δ) has a unique solution (y, u)
and adjoint state λ which depend Lipschitz continuously on δ. In addition, the
necessary conditions (27) are sufficient, hence the generalized equation (26) is
uniquely solvable and its solution depends Lipschitz continuously on δ.
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We note in passing that the property assured by Proposition 3.9 is called
strong regularity of the generalized equation (25). We are now in the position
to give our main theorem (Step 5):

Theorem 3.10 (Lipschitz Stability for P(p)). Let Assumption 3.8 be satis-
fied. Then there are numbers ε, ε′ > 0 such that for any two parameter vectors
(y′d, u

′
d, f

′, D′, α′, β′, γ′) and (y′′d , u
′′
d, f

′′, D′′, α′′, β′′, γ′′) in the ε-ball around p∗

in Π, there are critical points (y′, u′, λ′) and (y′′, u′′, λ′′), i.e., solutions of (25),
which are unique in the ε′-ball of (y∗, u∗, λ∗). These solutions depend Lipschitz
continuously on the parameter perturbation, i.e., there exists L > 0 such that

‖y′ − y′′‖H2(Ω) + ‖u
′ − u′′‖L2(Ω) + ‖λ

′ − λ′′‖L2(Ω)

≤ L
(
‖y′d − y′′d‖

2
L2(Ω) + ‖u

′

d − u′′d‖
2
L2(Ω) + ‖f

′ − f ′′‖L2(Ω)

+ |D′ −D′′|+ |α′ − α′′|+ |β ′ − β′′|+ |γ ′ − γ′′|
)
.

Proof. Using the properties of F (Lemma 3.6) and the strong regularity of
the first order necessary optimality conditions (25) (Proposition 3.9), the claim
follows directly from the implicit function theorem for generalized equations [14,
Theorem 2.4 and Corollary 2.5].

In the sequel, we denote these critical points by (yp, up, λp). Finally, in
Step 6 we are concerned with second order sufficient conditions:

Theorem 3.11 (Second Order Sufficient Conditions). Suppose that Assump-
tion 3.8 holds and that ya, yb ∈ H2(Ω). Then second order sufficient conditions
are satisfied at (y∗, u∗). Moreover, there exists ε > 0 (possibly smaller than
above) such that second order sufficient conditions hold also at the perturbed
critical points in the ε-ball around p∗. Hence they are indeed local minimizers
of the perturbed problems P(p).

Proof. In order to apply the theory of Maurer [29], we make the following
identifications:

G1(y, u) = ∆y − β y3 − α y + u+ f

K1 = {0} ⊂ Y1 = L2(Ω)

G2(y, u) = (y − ya, yb − y)>

K2 = [{ϕ ∈ H2(Ω) : ϕ ≥ 0 on Ω}]2 ⊂ Y2 = [H2(Ω)]2.

Note thatK2 is a convex closed cone of Y2 with nonempty interior. For instance,
ϕ ≡ 1 is an interior point. Since Π+ is open, one has p ∈ Π+ for all p such
that ‖p − p∗‖ < ε for sufficiently small ε. Consequently, the Slater condition
(Lemma 3.4) is satisfied also at the perturbed critical points. That is, there
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exists ũp such that ỹ = Tp(up)+T ′
p(up)(ũp−up) holds. This entails that (yp, up)

is a regular point in the sense of [29, equation (2.3)] with the choice

h =

(
T ′
p(up)(ũp − up)

ũp − up

)
.

The multiplier theorem [29, Theorem 2.1] yields the existence of λp and nonneg-
ative µ+p , µ

−
p ∈W ′ which coincide with our adjoint variable and state constraint

multiplier via µp = µ+p − µ−
p .

We continue by defining the Lagrangian

L(y, u, λ, µ+, µ−; p) =
1

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖u− ud‖

2
L2(Ω)

+

∫

Ω

(
−∆y + βy3 + αy − u− f

)
λ

+ 〈ya − y, µ−〉W,W ′ + 〈y − yb, µ
+〉W,W ′ .

By coercivity assumption (AC), abbreviating x = (y, u), we find that the La-
grangian’s second derivative with respect to x,

Lxx(y
∗, u∗, λ∗; p∗)(x, x) =

1

2
‖y‖2L2(Ω) + 3β∗

∫

Ω

y∗λ∗|y|2 +
γ∗

2
‖u‖2L2(Ω)

(which no longer depends on µ) is coercive on the space of all (y, u) satisfy-
ing (32), thus, in particular, the second order sufficient conditions [29, Theo-
rem 2.3] are satisfied at the nominal critical point (y∗, u∗, λ∗).

We now show that (AC) continues to hold at the perturbed Kuhn–Tucker
points. The technique of proof is inspired by [27, Lemma 5.2]. For a parameter p
from the ε-ball around p∗, we denote by (yp, up, λp) the corresponding solution
of the first order necessary conditions (25). One easily sees that

∣∣Lxx(yp, up, λp; p)(x, x)− Lxx(y
∗, u∗, λ∗; p∗)(x, x)

∣∣ ≤ c1ε
′‖x‖2 (33)

holds for some c1 > 0 and for all x = (y, u) ∈ W × L2(Ω), the norm being the
usual norm of the product space. For arbitrary u ∈ L2(Ω), let y satisfy the
linear PDE

−D∆y + (3βy2p + α)y = u on Ω (34a)

y = 0 on ∂Ω. (34b)

Let y be the solution to (32) corresponding to the control u, then y− y satisfies

−D∗∆y + (3β∗|y∗|2+α∗)y =
[
(3β∗|y∗|2+α∗)− (3βy2p+α)

]
y + (D−D∗)∆y on Ω
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and y = 0 on ∂Ω, i.e., by the standard a priori estimate and boundedness of
‖3βy2p + α‖L∞(Ω) near p

∗,

‖y − y‖H2(Ω) ≤ c2ε
′‖y‖H2(Ω) (36)

holds with some c2 > 0. Using the triangle inequality, we obtain from (36)

‖y − y‖H2(Ω) ≤
c2ε

′

1− c2ε′
‖y‖H2(Ω).

We have thus proved that for any x = (y, u) which satisfies (34), there exists
x = (y, u) which satisfies (32) such that

‖x− x‖ ≤
c2ε

′

1− c2ε′
‖x‖. (37)

Using the estimate from Maurer and Zowe [30, Lemma 5.5], it follows from (37)
that

Lxx(y
∗, u∗, λ∗; p∗)(x, x) ≥ ρ′‖x‖2 (38)

holds with some ρ′ > 0. Combining (33) and (38) finally yields

Lxx(yp, up, λp; p)(x, x) ≥ Lxx(y
∗, u∗, λ∗; p∗)(x, x)− c1ε

′‖x‖2

≥ (ρ′ − c1ε
′)‖x‖2

which proves that (AC) holds at the perturbed Kuhn–Tucker points, possibly
after further reducing ε′. Concluding as above for the nominal solution, the
second order sufficient conditions in [29, Theorem 2.3] imply that (yp, up) is in
fact a local optimal solution for our problem (17)–(20).

4. Linear–quadratic boundary control

In this section, we briefly cover the case of optimal boundary control of a linear
elliptic equation with quadratic objective. Due to the similarity of the argu-
ments to the ones used in Section 2, they are kept short. We consider the
optimal control problem, subject to perturbations δ = (δ1, δ2, δ3):

Minimize
1

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖u− ud‖

2
L2(∂Ω) −

∫

Ω

y dδ1 −

∫

∂Ω

u δ2 (39)

over u ∈ L2(∂Ω)

s.t. −div (A∇y) + a0 y = f on Ω (40)

∂y/∂nA + β y = u+ δ3 on ∂Ω (41)

and ya ≤ y ≤ yb on Ω. (42)
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where ∂/∂nA denotes the co-normal derivative of y corresponding to A, i.e.,
∂y/∂nA = n>A∇y. The standing assumption for this section is the following
one:

Assumption 4.1. Let Ω be a bounded domain in R
N (N ∈ {1, 2}) with C1,1

boundary ∂Ω, see [20, p. 5]. The state equation is governed by an operator
with N ×N symmetric coefficient matrix A with entries aij which are Lipschitz
continuous on Ω. We assume the condition of uniform ellipticity: There exists
m0 > 0 such that

ξ>Aξ ≥ m0|ξ|
2 for all ξ ∈ R

N and almost all x ∈ Ω.

The coefficient a0 ∈ L∞(Ω) is assumed to satisfy ess inf a0 > 0, while β ∈
L∞(∂Ω) is nonnegative. Finally, the source term f is an element of L2(Ω).
Again, yd ∈ L2(Ω) and ud ∈ L2(∂Ω) denote desired states and controls, while
γ is a positive number. The bounds ya and yb may be arbitrary functions on
Ω such that the admissible set KC(Ω) = {y ∈ C(Ω) : ya ≤ y ≤ yb on Ω} is
nonempty.

Note that we restrict ourselves to one- and two-dimensional domains, as
in three dimensions we would need the control u ∈ Ls(∂Ω) for some s > 2 to
obtain solutions in C(Ω) for which a pointwise state constraint is meaningful.

Proposition 4.2 (The State Equation). Under Assumption 4.1, and given u
and δ3 in L2(∂Ω), the state equation (40)–(41) has a unique solution y ∈
H1(Ω) ∩ C(Ω) in the weak sense:

∫

Ω

A∇y · ∇y +

∫

Ω

a0yy +

∫

∂Ω

βyy =

∫

Ω

fy +

∫

∂Ω

uy for all y ∈ H1(Ω). (43)

The solution verifies the a priori estimate

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ cA
(
‖u‖L2(∂Ω) + ‖δ3‖L2(∂Ω) + ‖f‖L2(Ω)

)
.

Proof. Uniqueness and existence of the solution inH1(Ω) and the a priori bound
in H1(Ω) follow directly from the Lax–Milgram Theorem applied to the vari-
ational equation (43). The proof of C(Ω) regularity and the corresponding a
priori estimate follow from Casas [10, Theorem 3.1] if β y is considered a right
hand side term.

The perturbations are taken as (δ1, δ2, δ3) ∈ M(Ω) × L2(∂Ω) × L2(∂Ω).
They comprise in particular perturbations of the desired state yd and con-
trol ud. Notice that δ3 affects only the boundary data so that, as in the proof
of Theorem 2.3, we can absorb this perturbation into the control and obtain an
admissible set independent of δ.
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Theorem 4.3 (Lipschitz Continuity). For any δ = (δ1, δ2, δ3) ∈ M(Ω) ×
L2(∂Ω) × L2(∂Ω), problem (40)–(42) has a unique solution. Moreover, there
exists a constant L > 0 such that for any two (δ′1, δ

′
2, δ

′
3) and (δ′′1 , δ

′′
2 , δ

′′
3), the

corresponding solutions of (40)–(42) satisfy

‖y′ − y′′‖H1(Ω) + ‖y
′ − y′′‖C(Ω) + ‖u

′ − u′′‖L2(∂Ω)

≤ L
(
‖δ′1 − δ′′1‖M(Ω) + ‖δ

′

2 − δ′′2‖L2(∂Ω) + ‖δ
′

3 − δ′′3‖L2(∂Ω)

)
.

Similar to the distributed control case, if KC(Ω) has nonempty interior, one

can prove the existence of an adjoint state λ ∈ W 1,s(Ω) for all s ∈ [1, N
N−1

) and

Lagrange multiplier µ ∈M(Ω) such that

〈µ, y − y〉
M(Ω),C(Ω) ≤ 0 ∀y ∈ KC(Ω) (44a)

γ(u− ud)− λ = δ2 on ∂Ω (44b)

−div (A∇λ) + a0 λ = −(y − yd)− µΩ + δ1Ω on Ω (44c)

∂λ

∂nA
+ β λ = −µ∂Ω + δ1∂Ω on ∂Ω (44d)

where (44c) is understood in the sense of distributions, and (44d) holds in the
sense of traces (see Casas [10]). The measures µΩ and µ∂Ω are obtained by
restricting µ to Ω and ∂Ω, respectively, and the same splitting applies to δ1.

Note that again, we have no stability result for the Lagrange multiplier µ,
and hence we cannot derive a stability result for the adjoint state λ from (44c)–
(44d). We merely obtain from (44b) that on the boundary ∂Ω,

‖λ′ − λ′′‖L2(∂Ω) ≤ (γL+ 1)‖δ′ − δ′′‖

holds. Unless the state constraint is restricted to the boundary ∂Ω, this diffi-
culty prevents the treatment of a semilinear boundary control case along the
lines of Section 3.

5. Conclusion

In this paper, we have proved the Lipschitz stability with respect to perturba-
tions of solutions to pointwise state-constrained optimal control problems for
elliptic equations. For distributed control, it was shown how the stability result
for linear state equations can be extended to the semilinear case, using an im-
plicit function theorem for generalized equations. In the boundary control case,
this method seems not applicable since we are lacking a stability estimate for
the state constraint multiplier and thus for the adjoint state on the domain Ω.
This is due to the fact that the control variable and the state constraint act on
different parts of the domain Ω.
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