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Blow-up of Solutions for a Class of
Nonlinear Parabolic Equations

Zhang Lingling

Abstract. In this paper, the blow up of solutions for a class of nonlinear parabolic
equations

ug(z,t) = Va(a(u(z, t))b(z)e(t)Vaulz, t) + glz, |Veulz, 1), 1) f (u(z, t))

with mixed boundary conditions is studied. By constructing an auxiliary function
and using Hopf’s maximum principles, an existence theorem of blow-up solutions,
upper bound of “blow-up time” and upper estimates of “blow-up rate” are given
under suitable assumptions on a, b, ¢, f, g, initial data and suitable mixed boundary
conditions. The obtained result is illustrated through an example in which a, b, c, f, g
are power functions or exponential functions.
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1. Introduction

It is well known that the blow-up of solutions is very important in nonlinear
partial differential equations. In recent years, many authors have studied them
(see, e.g., [1 — 4, 6]). In paper [4], the following problem was discussed :

u=Au+ f(u) in Dx(0,7)
u=>0 on 0D x (0,7)
u(x,0) = up(x) in D,
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where D is the closure of D. In paper [3], the following problem was studied:
u=Au+ f(u) in Dx(0,7)
% +o(z,t)u =0 on 8_D x (0,7)
u(z,0) = ug(x) in D.

In paper [1], the following problem was investigated:

( w = Au+ f(x,u,q,t) in Dx (0,T)

u=0 on Ty x (0,7T)
ou
8_72,:0 OHFQX(O,T)

\u(xa()):u()(x)zoa -7_é0 n D7

where I'; UTy = 9D, q = |[Vul?.
In this paper, we shall study the following nonlinear parabolic equations:

( (i) ur = V(a(w)b(z)c(t)Vu) + g(x,q,t) f(u)  in D x(0,7T)
u=>0 onI'y x (0,7
(i) gy
n +o(x,t)u =20 on 'y x (0,7
| (iil) u(x,0) = up(x) >0, Z0 in D,

where I'y UT, = 0D, g = |Vu|?.V denotes the gradient operator, n is the outer
normal vector, g—z denotes the outward normal derivative, and D is a smooth
bounded domain of RV, N>2, 0<T < +oo.

The function a is assumed to be a positive C?-function, the functions b
and ¢ positive C'-functions, the function ¢ a nonnegative C''-function, the func-
tion f a nonnegative C*-function, and the function o a nonnegative C''-function.
Throughout this paper, for simplicity we denote the derivatives of f(s) with re-
spect to s by f'(s), the second derivatives by f”(s), the partial derivatives of
g(x,d,t) with respect to d by gq4(z,d,t). i.e.

_ df(s) _ d?f(s)

f/(s) = s f”(s) T T ds? gd(xvdv t) =

dg(x,d,t)
od

In this paper, an existence theorem of blow-up solutions is obtained. Upper
bounds of “blow-up time” and upper estimates of “blow-up rate” are given.
The result extends and supplements those obtained in [1 — 4, 6]. Our approach
depends heavily upon Hopf’s maximum principles.

This paper is organized as follows. In Section 2 the main result and its proof
are presented. In Section 3 we shall give an example to illustrate our result in
this paper may be applied.
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2. The main result and its proof

The main result is stated in the following theorem:

Theorem 2.1. Let u be a C3(D x (0,T))NC?(D x [0,T))-solution of (a) — (c).
Suppose that the following conditions (Hy) — (Hs) hold:
(Hy) Forse R, a(s)>0,f(s)>0,f(0)=0,

and for s € RT, d'(s) >0, f(s) >0, (J;/((;))>/2 0, (£525>/> 0, <5“(5)>/§ 0;
(Hy) for (z,d,t) € D x RT x R*,

b(z) >0, ¢(t) >0, (t) >0
9(@.d.t) 2 0, ga(w,d.t) 2 0, gi(w,d,1) 2 0, (£) (@) 2 0,
and for (z,t) € Ty x RT, o(x,t) >0, oy(x,t) < 0;
(H3) at z € D where flup(x)) =0, V(a(up)b(x)c(0)Vug) > 0;
(1) 7=y { SV (aua)b(a)c(0) Vi) + 90, 0) ()] | 0.

Dr | f(uo)
where Dy ={ z |z € D, f(up(x) #0} #0, qo = Vuo|?;
+oo
(Hs) % ds < 400, where My := max uy(z).
Mo D

Then u(x,t) must blow-up in finite time T satisfying
1 [T a(s)

T<5 ). 76)®

and
u(z, t) <H(B(T—1)),

where H™! is the inverse function of H(z) := f;oo ;EZ; ds, z > 0.

Proof. By (i) we know that
abcAu + (a'beVu + acVb) - Vu —u, = —fg < 0. (1)

From (1), (ii), (iii) and (Hs), it is easy to check that the solution u(x,t) is
nonnegative. Construct an auxiliary function as follows:

P(z,t) = —a(u)u + B (w). (2)
Then

VP = —d'u,Vu— aVu, + 8f'Vu (3)
AP = —d'uyAu — a"uyqg — 2a'Vu - Vu, — alAu, + Bf Au+ 3f"q (4)
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and

Pt = —a'(ut)Q — a(ut)t + ﬁf’ut
= —ad'(u;)? — a(abcAu + a'beq + acVb-NVu + gf); + Bf us

2 — a®beAuy — ad'beuyAu — ad”beuyg

= —a'(u)
— 2ad’beNVu-Vu, — ad' cu, Vb - Vu — a’bd Au
—aa'bdq — a*dVb-Vu — a*cVb -Vu, — ag.f

—2ag,fVu-Vu, — agf'u, + 0 f u.

In order to prove the theorem by using Hopf’s maximum principles, firstly

we prove that
abcAP + (acVb + 2g,fVu) - VP + (gf — %Qquq + %) P—-P >0.
So we do some relevant calculation. From (4) and (5), it follows that
abcAP — P, = Babef' Au + Babef"q + a' (u)? + ad’cuy Vb - Vu
+ a*eVb - Vu; + agif + 2ag,fVu - Vi,
+ a*bd Au + aa'bd' g + a*c’Vb - Vu + agf'u, — B u,.
By (3), we have
a’cVb - Vu; = acVb - (=VP — d'u;Vu + B Vu)

= —acVb-VP — ad cu; Vb - Vu+ Bacf'Vb - Vu

and
2a9,fVu - Vu, = 2g,fVu- (=VP — d'w,Vu+ Sf'Vu)

= —2¢,fVu-VP —2dg,fuq+2089,f f'q.

It follows from (3), (6) — (8) that
abcAP+ (acVb + 2g,fVu) - VP — P,
= Babef' Au + Babef"q + ' (w)* + Bacf'Vb - Vu
+ a*bd Au + aa'bd'q + a*d Vb - Vu + agi f — 2d'g, furq
+28gof f'q + agf'ue — B u.
By (1), we have
Babef' Au = Bf' (uy — gf — a’beq — acVb - Vu)
= Bf'w — Ba'bef'q — Bacf'Nb - Vu— Bgf f’
a’bd Au = a%(ut —gf —a'beq — acVb - Vu)

= a%,ut —aa'bdq — a*d'Vb - Vu — ac—c'gf.

(10)

(11)
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From (9) — (11) it follows that

abcAP+ (acVb+2g,fVu) - VP — P,
= Babcf"q — Ba'bef'q+ aSu, — aSgf — Bgf [+ d(u)? + ag.f
— 2d'gy fug + 289, f f'a + ag f'u (12)
= 6abe (L) 4= Bof '+ (w)* + agef
+aSu, — aSgf — 2d'g, fug + 2894f f'q + ag fuy.

From (2), it is easy to get that

agf'ue = agf'2(Bf — P) = —gf'P+ Bgf [ (13)
0lu = a2 (Bf ~ P) = <P+ <57 (14)
—2d/ g, fung = “2g,faP — 289, f%q. (15)

It follows from (12) — (15) that
abcAP+ (acVb+2g,fVu) - VP — P,
= Ba’be (%)Iq +a'(w)? + agef + %ﬁf - a%gf
+20agef (£) a+ (—gf + 22g,fq— <) P,
ie.,
abcAP + (acVb+ 29, fVu) - VP + (gf' — £2g,fq+ <) P — P,
— Ba’be (f;)/ q+d (u)? + agf +2Bag,f (£) a+BSf —algf (16)
= Ba’be <f;/), q+a'(u)? + 2Bag,f (5)/ q-+ ﬁ%f +afc(?),.

The conditions (H;), (Hz) and (1) — (3) guarantee that the right side in the
equality (16) is nonnegative, i.e.,

abcAP + (acVb+29,fVu) - VP + (gf' — ©2g,fg+ <) P — P, > 0.  (17)
From (H3) and (Hy), it is easy to see that
max P(z,0)

= max {~a(ug) [V (a(uo)b(2)e(0) Vo) + gz a0, 0) (o)) +f (o)} = 0. (18)

On I'y x (0,7) we have u; = 0 and thus

P(z,t) = a(0)u + 5£(0) = 0. (19)
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On I'y x (0,T) we have

O = —a'u, Bt — a%s + Bf'5

= d' ouu; — (%)t — Bflou
= d'ouuy + a (ou), — Bf'ou
= o(a'u+ a)u; + aoyu — B f'ou
=o(du+a)(-L +2) + aopu — Bf'ou
—2(a'u+ a)P + aoyu + %j”(%)/
Combining (17) — (20) and Hopf’s Maximum Principle [5, 7], it follows that P

cannot assume its maximum on I'y X (0,7) , and in D x [0,T) the maximum of
P is 0. Hence we have in D x [0,T), P < 0 and

a(w)

f(u)

At the point 2y € D where ug(zo) = My, we get by integration
1 [ueod) a(s)

ug > 3. (21)

— —=ds > 1.

B I, f(s)
By using condition (Hs), it follows that u(x,t) must blow—up for a finite time
t = T. Further the following inequality must hold T < B ]\Zoo ; *) ds. By inte-

grating the inequality (21) over [t,s] (0 <t < s < T), for each fixed x, one
gets

ul@s) (s Sa(u
H(u(z,t)) > H(u(z,t))—H(u(x, s)) :/( ) %ds :/t fiu;ut dt > B(s—t),

so that u(z,t) < H'(B(s —t)). Hence, by letting s — T, we have u(z,t) <
H='(B(T — s)) . The proof of the theorem is completed. O

3. An example

Let u be a C3(D x (0,7)) N C?(D x [0,T))-solution of the following problem:

( 3
u =V (e“*t (1 + Z xf) Vu) + ¢t (24 +q Z 1'22) u’e” in D x (0,7)
i=1

i=1

u=>0 on 'y x (0,7)
ou ’
p —ue_tZa:f onI'y x (0,7

u(z,0) = up(z) = <1 — ixf)Q in D,

i=1
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where 'y UT'y, = 0D, D = {x— Ty, T, T3) ‘ E
In this example,

a(u) = e, b(x) =1+ 30 22 c(t) = ¢
glw,q.t) = ' (24 + g, 77), fu) = ue", ol t) = e ", xf.
It is easy to check that (H;) — (Hs) hold. In addition,
V (a(uo)b(z)c(0)Vuy)

3
=V (6“0 (1 + Z xf) Vu0>
i=1

2<1},0 < T < +o0.

zlz

From (22), it follows that

min G(UO) a\u x)c u T u
5= min { S [9 awo)be)e(0) V) + 9,0, 0)f o))}

uQ 3
[ e o
Zf%{u M (”Z“ )V“> (24”02 ) ”

: 4e(-v)’ 8 7 6 5 4 3 2
- in { A (4% — 24y + 60y5 — 80°+ T0y" — 52y + 43y — 20y + 3] }

= 3.1302

According to Theorem 2.1 u(z,t) must blow-up in finite time 7, and

1 +o00 1 +o00 1
T<> als) 4 — / ~ ds = 0.3195
B Ja, f(s) 3.1302 J; &2

as well as

u(z,t) < H (BT —1t)) = 313027 — )"
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